博弈论_完全信息动态博弈
第3讲 完全信息动态博弈

最优化的一阶条件意味着: s(q1) (a q1 c) =1 2 2
第3讲 完全信息动态博弈
假定q1 a c。这实际上是库诺特模型中企业2的反应函数,不同的 是,这里,s(q1)是当企业1选择q1时企业2的实际选择,而在库诺 2 特模型中,R2 q1)是企业2对于假设的q1的最优反应。 ( 因为企业1预测到企业2将根据s(q1)选择q 2,企业1在第一阶段的问 2 题是: max 1 = q1,s(q1)=q1 a q1 s(q1) c) ( 2 2
第3讲 完全信息动态博弈
• 这个例子也说明,在博弈中,拥有信息优势可能 使参与人处于劣势,而这在单人决策中是不可能 的。企业2在斯坦克尔伯格博弈中的利润之所以低 于库诺特博弈中的利润,是因为它在决策之前就 知道了企业1的产量。即使企业1先行动,但如果 企业2在决策之前不能观测到企业1的产量,我们 就回到了库诺特均衡,因为此时,企业1的先动优 势就不存在了。
第3讲 完全信息动态博弈
* 1 回忆一下,在上一讲得到的库诺特模型的纳什均衡是q1 =q* = (a c), 2 3 3 比较这两个结果,发现斯坦克尔伯格均衡的总产量 (a c)大于库诺特 4 2 的总产量 (a c)。但是,企业1的斯坦克尔伯格均衡产量大于库诺特 3
均衡产量,而企业2的斯坦克尔伯格均衡产量小于库诺特均衡产量。 因为企业1本来可以选择库诺特均衡产量但它没有选择,说明企业1在斯坦 克尔伯格博弈中的利润大于库诺特博弈中的利润,而总产量上升意味着 总利润下降了从而企业2的利润一定下降了。这就是所谓的“先动优势”。
第3讲 完全信息动态博弈
• 宏观经济政策的动态一致性 宏观经济学上与子博弈精炼纳什均衡相对应的概 念是政府政策的动态一致性(dynamic consistency 或time consistency)。政府政策 的动态一致性指的是,一个政策不仅在制定阶段 应该是最优的(从政府的角度),而且在指定之 后的执行阶段也应该是最优的,假设没有任何新 的信息出现。如果一个政策只是在制定阶段是最 优的,而在执行阶段并不是最优的,这个政策就 是动态不一致的。说它是动态不一致的,是因为
完全信息动态博弈和演化博弈的关系

完全信息动态博弈和演化博弈的关系在博弈论的研究领域中,完全信息动态博弈和演化博弈是两个重要的分支。
它们分别从不同的角度研究博弈现象,但二者之间也存在一定的联系和关系。
本文将探讨完全信息动态博弈和演化博弈的关系,并对它们的特点和应用进行分析。
1. 完全信息动态博弈的定义和特点完全信息动态博弈是指博弈参与者在博弈过程中具备完全信息的情况下,根据先后顺序依次做出决策,随着时间的推移,博弈过程也在不断变化。
在完全信息动态博弈中,博弈参与者对于其他参与者的行动和策略都有准确的了解,能够全面考虑对手的决策,以此来优化自己的策略选择。
完全信息动态博弈的特点包括:首先,信息对称,每个博弈者都能了解其他博弈者的策略和收益函数;其次,决策按照时间顺序依次进行,每个博弈者的行动会对其他人的决策产生影响;最后,完全信息动态博弈具有策略的时序性,参与者需要根据他们观察到的其他人的决策来选择自己的策略。
2. 演化博弈的定义和特点演化博弈是指博弈参与者根据其在群体中的优势来选择策略,并通过遗传和选择机制在演化过程中逐步改变策略的过程。
演化博弈考虑的不是个体之间的完全信息,而是从整体出发,通过个体之间的相互作用和进化选择来探讨不同策略之间的稳定性和最终结果。
演化博弈的特点包括:首先,演化博弈关注的是群体中不同策略的相对频率和进化趋势,而不是个体行动的绝对收益;其次,演化博弈中存在着演化稳定策略,即一旦某种策略在群体中形成,就会对其他策略形成一种稳定的威胁;最后,演化博弈的结果依赖于演化的时间尺度和环境的改变。
3. 完全信息动态博弈与演化博弈的关系完全信息动态博弈和演化博弈虽然从不同的角度出发,但也存在一定的联系和关系。
首先,完全信息动态博弈可以看作演化博弈的一种特殊情况,即当演化博弈的时间尺度趋于无穷时,完全信息动态博弈的结果可以看作是演化博弈的极限情况。
因此,完全信息动态博弈可以为演化博弈提供一种基础理论框架。
其次,演化博弈可以用来解释完全信息动态博弈中出现的某些稳定策略。
博弈论 第 三 章 完全信息动态博弈讲解

房地产开发博弈
开发
A hA(1) 不开发
h表示信息集
N hN(1)
需求大
需求小
N hN(2)
需求大
需求小
B hB(1)
开发
不开发
B hB(2)
B hB(3)
开发
不开发 开发 不开发 开发
B hB(4)
不开发
(4,4)
(8,0) (-3,-3)
(1,0) (0,8) (0,0) (0,1) 单 位:百万元
定 义 一 个 展 开 式 博 弈 的 子 博 弈G 由 一 个 决 策 结x 和 所 有 该 决 策 结 的 后继结T(x)( 包 括终点结0 组 成, 它 满 足 下 列 条 件:⑴x 是 一 个 单 点 信 息 结即h(x)={x};⑵对于所有的 x′∈T(x),如果x″∈h(x′),则x″∈T(x)。
(3)
N
1/3
2/3
1
Y1
z1
1
x1
w1
(2,6) (5,6)
2
2
a2 (9,0)
b2 (0,3)
a2 (9,5)
b2 (0,3)
3.3 子 博 弈 与 子 博 弈 完 美
Nash 均衡在原则上适用所有的博弈,但对于预 测 参与人的行为来说,Nash均衡可能并不是 一个 合理的预测, 如房地产博弈:
A
开发
不开 发
A
开发
不开发
B
B
B
B
开发 不开发 开发 不开发 开发 不开发 开发
不开发
有了信息集的概念, 展开式表示也可以用来表 示静态博弈, 如“囚徒的困境 ”博弈可以表 示为:
1
坦白
2
博弈论基础读书笔记三完全信息动态博弈和逆向归纳法

博弈论基础读书笔记三完全信息动态博弈和逆向归纳法第⼆章完全信息动态博弈先来说明两个概念:1、是指在博弈中,参与⼈同时选择或虽⾮同时选择但后⾏动者并不知道先⾏动者采取了什么具体⾏动。
2、是指在博弈中,参与⼈的⾏动有先后顺序,且后⾏动者能够观察到先⾏动者所选择的⾏动。
这⼀章,我们来讨论关于完全信息(即参与者的收益函数是共同知识的博弈)动态博弈的问题。
在这⾥我们还将博弈分为两种:完美信息博弈:即要选择⾏动的参与者完全知道这⼀步之前所有的博弈过程。
完全但不完美信息博弈:即要选择⾏动的参与者不知道这⼀步之前的博弈过程。
进⾏这章之前先简要的解释⼀些东西:所有的动态博弈的中⼼问题都是可信任性。
下⾯给⼀个经典的⼿雷博弈的例⼦:第⼀,参与者1可以选择⽀付1000美元给参与者2或者是⼀分不给。
第⼆,参与者2观察参与者1的选择,然后决定是否引爆⼀颗⼿雷将两个⼈同炸死。
如果参与者2威胁参与者1如果他不付1000美元就引爆⼿雷,如果参与者1相信这个威胁,则最优选择是⽀付1000美元。
但参与者1却不会对这⼀威胁信以为真,因为它不可置信(参与者2不会蠢到因为1000美元⽽同归于尽,⾄于参与者1考虑参与者2是不是疯⼦的情况在第三章讨论)。
这个例⼦就是典型的完全且完美信息博弈。
在2.1节我们将在后⾯使⽤逆向归纳解,来求解这个问题。
在2.2节我们会丰富前⼀节的博弈模型使之成为完全但不完美博弈,我们会定义这种博弈的⼦博弈精炼解,它是逆向归纳法的延申。
在2.3节研究重复博弈,即多次重复⼀个给定博弈。
这⾥分析问题的中⼼使(可信的)威胁和对以后做出的承诺对当前⾏为的影响。
在2.4节中我们介绍分析⼀般的完全信息动态博弈所需要的⼯具。
不再区别信息是否是完美的。
本节和本章的重点都在语⾔,⼀个完全信息动态博弈可能会有多个纳什均衡,但其中⼀些均衡或许包含了不可置信的威胁和承诺,⼦博弈精炼纳什均衡则是通过了可信检验的均衡。
看到这⾥你可能还是⼀头雾⽔,但是⽆所谓,让我们⼀节⼀节的来讲,看到最后你在回头看前⾯的总结可能会更有利于你对本章的理解。
完全信息动态博弈

-3 1
-3, 0,
-3 0
1, 0,
0 1
1, 0,
0 0
这里有3个纯战略Nash均衡,分别是 {开发,{不开发,开发}} (均衡结果:A
14
开发,B不开发) {开发,{不开发,不开发}} {不开发,{开发,开发}} 在每一个均衡,给定对方的战略,自己 的战略是最优的(效用最大) 均衡结果是(开,不开) , (开,不开) , (不开,开) 。注意均衡与均衡结果不同。 一般定义:扩展式博弈的战略 令 H i 为第 i 个参与人的信息集的集合,
1
选择什么行动, 而不是简单的, 与环境无关的 行动选择。 为了说明,我们考虑房地产开发博弈的 例子。有两个开发商A和B,互为竞争对手,决 定是否进行房地产开发。但他们不是同时行 动,且后行动者可以观察到先行动者的行动。 假定博弈的行动顺序如下: (1)开发商A先行 动,选择开发或不开发; (2)在A决策后,自 然选择市场需求大小; (3) 开发商B在观察到A 的决策和市场需求(自然的行动)后,决定开 发或不开发。 如图是房地产开发博弈的博弈树。
4
路径: (path)从初始结到终点结,由结 和枝所组成的系列。 扩展式 (extensive form) 是对博弈的一种描述,满足以下条件: (1)由结和枝组成的整体结构,由单个 起始结开始到终点结, 中间无闭合的圈。 即没 有以下结构
11
1
(所有前列结全排序) (2)必须说明每个结点属于某个参与人。 (3)在自然选择的结上,有自然选择不同 枝的概率。 (4)有划分每个参与人的结的信息集。 (每个信息集是决策结集合的一个子集, 满足 (a)每个决策结都是同一个参与人的决
11
1
U 2 L R L R 1 D
完全信息动态博弈模型

完全信息动态博弈模型完全信息动态博弈模型是博弈论中一种重要的博弈模型,它描述了一组参与者在了解所有相关信息的情况下,通过一系列决策和行动来实现最优化的结果。
下面将详细介绍完全信息动态博弈模型的相关内容。
一、博弈的参与者:完全信息动态博弈模型中,通常包括两个或多个参与者,每个参与者都可以做出自己的决策和行动。
参与者可以是个人、组织、公司等,他们之间存在着相互竞争和合作的关系。
二、博弈的信息:完全信息动态博弈模型中的参与者拥有完全信息,即每个参与者都能够获得关于其他参与者的决策和行动的完整信息。
通过完全信息,参与者能够准确地评估自己的决策和行动对其他参与者的影响,并作出最优化的决策。
三、博弈的行动和策略:在完全信息动态博弈中,参与者可以选择不同的行动和策略来达到自己的目标。
每个参与者根据自己对其他参与者行动和策略的评估,以及自己的目标和利益,选择最优化的行动和策略。
四、博弈的时间顺序:完全信息动态博弈是一个时间序列上的博弈模型,参与者的决策和行动是有序进行的。
参与者按照一定的时间顺序依次进行决策和行动,每个参与者都会考虑前面参与者的行动和决策对自己的影响,进而作出自己的决策。
五、博弈的结果和收益:完全信息动态博弈模型的结果是参与者的收益和利益。
通过多轮反复的博弈过程,参与者根据自己的决策和行动可以获得不同的结果和收益。
每个参与者的最终目标是通过优化自己的决策和行动,获得最大的收益和利益。
完全信息动态博弈模型是博弈论中一种重要的模型,它能够帮助我们分析和理解多方参与者在了解所有相关信息的情况下,通过一系列决策和行动来实现最优化的结果。
通过对博弈的参与者、信息、行动和策略、时间顺序以及结果和收益的分析,可以更好地理解和应用完全信息动态博弈模型。
博弈论与信息经济学第6章完全且完美信息动态博弈——重复超级博弈-连锁店悖论-无名氏定理

博弈论与信息经济学第6章完全且完美信息动态博弈——重复超级博弈-连锁店悖论-无名氏定理博弈论与信息经济学第6章完全且完美信息动态博弈——重复/超级博弈-连锁店悖论-无名氏定理经济学院丁言强内容提要重复博弈与战略空间有限次重复博弈:连锁店悖论无限次重复博弈冷酷战略与针锋相对战略无名氏定理阿伯罗定理: 两期战略序贯博弈与重复博弈序贯博弈的特征是,参与人在前一个阶段的行动选择决定随后的子博弈的结构,因此,从后一个决策结开始的子博弈不同于从前一个决策结开始的子博弈,或者说,同样结构的子博弈只出现一次。
动态博弈的另一种特殊但是非常重要的类型是所谓的“重复博弈”,就是同样结构的博弈重复多次,其中的每次博弈称为“阶段博弈”。
在每个阶段博弈,参与人可能同时行动,也可能不同时行动,在后一种情况下,每个阶段博弈本身就是一个动态博弈。
重复博弈的3个基本特征重复博弈可能是不完美信息博弈,也可能是完美信息博弈,但在博弈论中一般指的是前一种情况。
(1)阶段博弈之间没有“物质上”的联系,即前一阶段的博弈不改变后一阶段博弈的结构;(2)所有参与人都观测到博弈过去的历史;(3)参与人的总支付是所有阶段博弈支付的贴现值之和或加权平均值。
重复博弈的战略空间战略是一套完备的相机行动规则,它必须说明在每一种可能的状态下参与人的行动选择,即使参与人并不预期这种状态真的会出现。
因为可以观察到其他参与人过去行动的历史,一个参与人可以使自己在某个阶段博弈的选择依赖于其他参与人过去的行动历史。
所以,参与人在重复博弈中的战略是定义在博弈历史上的每个阶段博弈中的行动选择规则,即从博弈历史到行动空间的映射。
重复博弈的战略空间参与人在重复博弈中的战略空间远远大于且复杂于在每一个阶段博弈中的战略空间。
比如说,即使囚徒困境博弈只重复5次,每个囚徒的纯战略数量大于20亿个,战略组合的数量更多。
所以,重复博弈可能带来一些“额外的”均衡结果,这些均衡结果在一次博弈中是从来不会出现的。
博弈论——完全信息动态博弈

2 完全信息的动态博弈2.1完全和完美信息的动态博弈动态博弈(dynamic game):参与人在不同的时间选择行动。
完全信息动态博弈指的是各博弈方先后行动,后行动者知道先行动者的具体行动是什么且各博弈方对博弈中各种策略组合下所有参与人相应的得益都完全了解的博弈静态博弈习惯用战略式(Strategic form representation)表述,动态博弈习惯用扩展式(Extensive form representation)表述。
战略式表述的三要素:参与人集合、每个参与人的战略集合、由战略组合决定的每个参与人的支付。
扩展式表述的要素包括:参与人集合、参与人的行动顺序、参与人的行动空间、参与人的信息集、参与人的支付函数、外生事件(自然的选择)的概率分布。
n人有限战略博弈的扩展式表述用博弈树来表示1(1,2) (0,3)①结:包括决策结和终点结。
决策结是参与人采取行动的时点,终点结是博弈行动路径的终点。
第一个行动选择对应的决策结为“初始结”,用空心圆表示,其它决策结用实心圆表示。
X表示结的集合,x X表示某个特定的结。
z表示终点结,Z表示终点结集合。
表示结之间的顺序关系,x x´表示x在x´之前。
x之前所有结的集合称为x的前列集,x之后所有结的集合称为x的后续集。
以下两种情况不允许:前者违背了传递性和反对称性;后者违背了前列节必须是全排序的。
在以上两个假设之下,每个终点结都完全决定了博弈树的某个路径。
②枝:博弈树上,枝是从一个决策结到其直接后续结的连线,每一个枝代表参与人的一个行动选择。
在每一个枝旁标注该具体行动的代号。
一般地,每个决策结下有多个枝,给出每次行动时参与人的行动空间,即此时有哪些行动可供选择。
③信息集(information sets):博弈树中某一决策者在某一行动阶段具有相同信息的所有决策结集合称为一个信息集。
博弈树上的所有决策结分割成不同的信息集。
每一个信息集是决策结集合的一个子集(信息集是由决策结构成的集合),该子集包括所有满足下列条件的决策结:(1)每一个决策结都是同一个参与人的决策结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
隐性勾结(Tacit Collusion) 乙 高价 甲 高价 低价 10, 10 12, 5 低价 5, 12 8, 8
两家厂商面临同样的单位成本每单位 2 元,无固 定成本。两家均采高价(4 元)则每家可销售 5 万个, 若均采低价(3 元)则每家可售 8 万个, 若一家采高价, 一家采低价, 则采高价者售出 2.5 万个而采低价者售 出 12 万个。如果这二家厂商每月均需面对对方,长 久以往,是否能达到每月(10, 10)的报酬?
协调博弈(Games of Coordination) 策略式 2 L 规格 1 L 规格 2, 2 S 规格 -1, -1
等值 L L 1 S 2 S ( 1, 1 ) 2 S L ( -1, -1 ) ( -1, -1 ) ( 2, 2 ) 静态(扩展式) 不完美信息
S 规格 -1, -1 1, 1
协调博弈(Games of Coordination)
乙 L 规格 甲 L 规格 2, 2 S 规格 -1, -1 S 规格 -1, -1 1, 1
同时出招时有两个纳什均衡,究竟何者会成立? 在考虑动态调整后, 允许一家先行, 是否可以达成某 一特定均衡?换言之, 纳什均衡原本众多, 但在动态 博弈中是否得以精炼(refinement), 使均衡数目减少?
L L 1 S 2 S 2 S L
( 2, 2 )
( -1, -1 ) 完美动态博弈信息 ( -1, -1 )
( 1, 1 )
2’ strategies例如(L, L)代表1采L后2采L,而且 1采S后2采L。藉以表示出2的策略因1策略而意 义不同。 「策略」的涵义:表示出在各个信息集合观察 到(1的行动)之下的相应行动,(L, L)代表是在二 个信息集合下2所分别采取的策略。 如此扩展式表示2能区分1采用了L还是S。当2 能观察到1的行动,因为2的信息集合中只有单 一个元素(singleton),故称2有完美信息 (perfect information)。
子博弈完美均衡(Subgame Perfect Equilibrium)与存在性
以上策略式博弈有三个纳均衡策略组合:
x=(L, (L, L)),y=(L, (L, S)),z=(S, (S, S)),三者 中有二个具同样报酬,但仍非同一均衡。这三个均 衡中只有中间这个NE是合理的,其它两个NE不合 理(理由可从以下所谈「逆推法」来看)。
定义:子博弈完美均衡(Subgame Perfect Nash Equilibrium, SPNE)
是一策略组合,在原博弈中是纳什均衡,而且它相关的策略 在每个子博弈中也都是该子博弈的纳什均衡。
在以上例子中,x 不是子博弈完美均衡因为 L 不 是纳什均衡策略(在 1 采用 S 后子博弈中),z 不 是子博弈完美均衡因为 S 不是纳什均衡策略(在 1 采用 L 后子博弈中)。 只有 y 是 SPNE。如此结论也可用逆推法来 看,从最后的小树(子博弈)来看,找到 NE, 再往前推(以箭头表示):
如此信息集合表示2不能区分 1是否采用了L或S。
信息集合
一旦改了信息集合(如下),就代表完全不同的博弈: 2’s strategies (L, L) 1 L S 2, 2* -1, -1 (L, S) 2, 2* 1, 1 等值 (S, L) -1, -1 -1, -1 (S, S) -1, -1 1, 1*
L L 1 S 2 2 2 S ( 1, 1 ) ( 2, 2 )
只有一個 SPNE:
S L ( -1, -1 ) ( -1, -1 )
(L, (L, S)) 原有三個NE
动态博弈扩展式的表示法
动态博弈以扩展型式(Extensive Form)来表示。扩 展型式博弈 =(N, H, P, I, U)有五要素:
参赛者,iN={1, 2, , n} 历史H,h=(a1, , ak) H。博弈树(game tree)是一多个 环节(nodes)与枝干(branches)的集合,从单一的起始环节, 不经回转,直到终结环节(以Z表其集合)。博弈树就代表博 弈历史(到某一环节止亦可)。 对每个环节的分配法则P:将每个环节(除终结环节外)分 配给不同的参赛者并赋予行动时可选的策略。对hH \ Z 而言,P(h)是分配法则。 参赛者行动时的信息集合I (Information Set)。 对应参赛者可能选取策略,各参赛者在终结环节所得的报 酬U。
定义:完美信息(Perfect Information)
参赛者完全得知以前各参赛者所实行动。换言之,参赛者面 对的信息集合都只有单一元素(singleton);若不满足此条件 则为不完美信息(Imperfect Information)博弈。
定义:子博弈(Subgame)
是原博弈的一部份(小树subtree),从单一元素的信息集合开 始到终结环结,并且不会改变任何的信息集合。
吓阻进入(Entry Deterrence) 旧公司 原价 低价 进 10, 50* -10, 30 新公司 不进 0, 100 0, 100* 如果新、旧公司同时出招,均衡为何? 如果新公司决定进入此产业之后,旧公司是否 会采低价之价格战策略?旧公司是否能吓阻新公司 进入? 如果旧公司是连锁店(chain stores), 是否在每个城 市或区 域都采价格战,以吓阻新集团进入?
博弈论
由静态到动态博弈的范例 考虑以下原为静态博弈的范例,但在允许参赛者可以先 后出招后就成为动态的博弈:
创新(Innovation) Zenith 推新产品 不推 推 Sony 不推 3, 3 12, 5 如果 Sony 与 Zenith 同时出招,均衡为何? 如果 Sony 是产业领导者,先宣布它是否推 出新产品,均衡是否会改变? 10, 2* 15, 0