直流升压电路原理图
升压电路原理

升压电路原理我们知道,自举电路也叫升压电路,利用自举升压二极管,自举升压电容等电子元件,使电容放电电压和电源电压叠加,从而使电压升高.有的电路升高的电压能达到数倍电源电压。
下面一起来了解一下升压电路原理。
升压电路原理举个简单的例子:有一个12V 的电路,电路中有一个场效应管需要15V 的驱动电压,这个电压怎么弄出来?就是用自举。
通常用一个电容和一个二极管,电容存储电压,二极管防止电流倒灌,频率较高的时候,自举电路的电压就是电路输入的电压加上电容上的电压,起到升压的作用。
升压电路只是在实践中定的名称,在理论上没有这个概念。
升压电路主要是在甲乙类单电源互补对称电路中使用较为普遍。
甲乙类单电源互补对称电路在理论上可以使输出电压Vo 达到Vcc 的一半,但在实际的测试中,输出电压远达不到Vcc 的一半。
其中重要的原因就需要一个高于Vcc 的电压。
所以采用升压电路来升压。
开关直流升压电路(即所谓的boost 或者step-up 电路)原理the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。
基本电路图见图1.假定那个开关(三极管或者mos 管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。
下面要分充电和放电两个部分来说明这个电路。
充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。
这时,输入电压流过电感。
二极管防止电容对地放电。
由于输入是。
电感升压电路原理

电感式升压电路一、DC/DC 升压原理升压式DC/DC变换器主要用于输出电流较小的场合,只要采用1~2节电池便可获得3~12V工作电压,工作电流可达几十毫安至几百毫安,其转换效率可达70%-80%。
升压式DC/DC变换器的基本工作原理如图所示。
电路中的VT为开关管,当脉冲振荡器对双稳态电路臵位(即Q端为1)时,VT导通,电感VT中流过电流并储存能量,直到电感电流在RS上的压降等于比较器设定的闽值电压时,双稳态电路复位,即Q端为0。
此时VT截止,电感LT中储存的能量通过一极管VD1供给负载,同时对C进行充电。
当负载电压要跌落时,电容C放电,这时输出端可获得高于输大端的稳定电压。
输出的电压由分压器R1和 R2分压后输入误差放大器,并与基准电压一起去控制脉冲宽度,由此而获得所需要的电压,即V0=VR*(R1/R2+1) 式中:VR——基准电压。
降压式DC/DC变换器的输出电流较大,多为数百毫安至几安,因此适用于输出电流较大的场合。
降压式DC/DC变换器基本工作原理电路如图所示。
VT1为开关管,当VT1导通时,输入电压Vi通过电感L1向负载RL供电,与此同时也向电容C2充电。
在这个过程中,电容C2及电感L1中储存能量。
当VT1截止时,由储存在电感L1中的能量继续向 RL供电,当输出电压要下降时,电容C2中的能量也向RL放电,维持输出电压不变。
二极管VD1为续流二极管,以便构成电路回路。
输出的电压Vo经R1和 R2组成的分压器分压,把输出电压的信号反馈至控制电路,由控制电路来控制开关管的导通及截止时间,使输出电压保持不变。
DC/DC升压稳压器原理DC/DC升压有三种基本工作方式:一种是电感电流处于连续工作模式,即电感上电流一直有电流;一种是电感电流处于断续工作模式,即在开关截止末期电感上电流发生断流;还有一种是电感电流处于临界连续模式,即在开关截止期间电感电流刚好变为“0”时,开关又导通给电感储能。
下面我们将主要介绍连续工作模式及断续工作模式的工作原理。
mc34063升压电路图大全(十款模拟电路设计原理图详解)

mc34063升压电路图大全(十款模拟电路设计原理图详解)MC34063DC/DC变换器控制电路简介:MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。
片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出1.5A的开关电流。
它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。
特点:能在3.0-40V的输入电压下工作短路电流限制低静态电流输出开关电流可达1.5A(无外接三极管)输出电压可调工作振荡频率从100HZ到100KHZMC34063电路原理:振荡器通过恒流源对外接在CT管脚(3脚)上的定时电容不断地充电和放电以产生振荡波形。
充电和放电电流都是恒定的,振荡频率仅取决于外接定时电容的容量。
与门的C输入端在振荡器对外充电时为高电平,D输入端在比较器的输入电平低于阈值电平时为高电平。
当C和D输入端都变成高电平时触发器被置为高电平,输出开关管导通;反之当振荡器在放电期间,C输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。
电流限制通过检测连接在VCC和5脚之间电阻上的压降来完成功能。
当检测到电阻上的电压降接近超过300mV时,电流限制电路开始工作,这时通过CT管脚(3脚)对定时电容进行快速充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。
MC34063引脚图及原理框图MC34063引脚功能1脚:开关管T1集电极引出端;2脚:开关管T1发射极引出端;3脚:定时电容ct接线端;调节ct可使工作频率在100100kHz范围内变化;4脚:电源地;5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于。
直流升压电路原理图

直流升压电路原理图
直流升压电路原理图如下所示:
[图中画有一个电源,标有正负极符号。
电源右侧画有一个开关,开关下方与负极相连的是一个大电感L。
在电感上方,与
正极相连的是一个准指数器件(由多个电容和电阻组成)。
指数器件的末端与三极管的基极相连,并且三极管的通向基极的二极管反向,连接到负极。
三极管的基极上方连接有通过电感
L来回交替充电的电容C。
三极管的发射极连接到负极,集电
极上方为输出电压节点。
]
在这个电路中,电感L和准指数器件构成自激振荡电路,电
容C和二极管反向给三极管的基极提供了正或负脉冲。
当开
关打开时,电感L开始储存电能,同时准指数器件对电感L
施加了反向电压,使得电感L的磁场能量逐渐增加。
在电容C充电过程中,当电容C的电压逐渐升高至三极管基
极的截止电压,三极管进入饱和状态,导通电流从电感L流
入三极管的集电极,输出电压也随之升高。
在电容C卸电过程中,三极管的通向基极的二极管反向给三
极管的基极提供了负脉冲,使得三极管迅速截止,停止导通。
此时,储存在电感L的磁场能量无法立即消失,通过三极管
的集电极,经过滤波电容C后,将能量传递到输出电压节点,使得输出电压进一步升高。
通过上述充放电过程的交替进行,电路实现了直流升压。
boost电路分析

图一boost升压电路,开关直流升压电路(即所谓的boost或者step-up电路)原理2007-09-29 13:28the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。
基本电路图见图一。
假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。
下面要分充电和放电两个部分来说明这个电路充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。
这时,输入电压流过电感。
二极管防止电容对地放电。
由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。
随着电感电流增加,电感里储存了一些能量。
放电过程图三如图三,这是当开关断开(三极管截止)时的等效电路。
当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。
而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。
升压完毕。
说起来升压过程就是一个电感的能量传递过程。
充电时,电感吸收能量,放电时电感放出能量。
如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。
如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。
一些补充:AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上).1 电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大).2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之十.3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过0.2--0.3V,单只做不到就多只并联。
Boost电路的结构及工作原理_Boost的应用电路

Boost电路的结构及工作原理_Boost的应用电路Boost电路定义Boost升压电路的英文名称为theboostconverter,或者叫step-upconverter,是一种开关直流升压电路,它能够将直流电变为另一固定电压或可调电压的直流电,也称为直流直流变换器(DC/DCConverter)。
直流直流变换器通过对电力电子器件的通断控制,将直流电压断续地加到负载上,通过改变占空比改变输出电压平均值。
假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,那么电容电压等于输入电压。
开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许Dy=1的状态下工作。
电感Lf在输入侧,成为升压电感。
Boost电路结构下面以UC3842的Boost电路为例介绍Boost电路的结构。
图中输入电压Vi=16~20V,既供给芯片,又供给升压变换。
开关管以UC3842设定的频率周期开闭,使电感L储存能量并释放能量。
当开关管导通时,电感以Vi/L的速度充电,把能量储存在L中。
当开关截止时,L产生反向感应电压,通过二极管D把储存的电能以(V o-Vi)/L的速度释放到输出电容器C2中。
输出电压由传递的能量多少来控制,而传递能量的多少通过电感电流的峰值来控制。
整个稳压过程由二个闭环来控制,即:闭环1输出电压通过取样后反馈给误差放大器,用于同放大器内部的2.5V基准电压比较后产生误差电压,误差放大器控制由于负载变化造成的输出电压的变化。
闭环2Rs为开关管源极到公共端间的电流检测电阻,开关管导通期间流经电感L的电流在Rs上产生的电压送至PwM比较器同相输入端,与误差电压进行比较后控制调制脉冲的脉宽,从而保持稳定的输出电压。
误差信号实际控制着峰值电感电流。
Boost电路的工作原理Boost电路的工作原理分为充电和放电两个部分来说明。
充电过程。
直流升压降压原理

3.1 基本斩波电路重点:最基本的2种——降压斩波电路和升压斩波电路。
3.1.1 降压斩波电路➢➢斩波电路的典型用途之一是拖动直流电动机,也可带蓄电池负载,两种情况下负载中均会出现反电动势,如图3-1中E m所示➢➢工作原理,两个阶段✧✧t=0时V导通,E向负载供电,u o=E,i o按指数曲线上升✧✧t=t1时V关断,i o经V D续流,u o近似为零,i o呈指数曲线下降✧✧为使i o连续且脉动小,通常使L值较大E图3-1 降压斩波电路的原理图及波形a)电路图b)电流连续时的波形c)电流断续时的波形➢➢数量关系电流连续时,负载电压平均值E E Tt E t t t U onoff on on o α==+=(3-1)α导通占空比,简称占空比或导通比U o 最大为E ,减小α,U o 随之减小 降压斩波电路。
也称为Buc k 变换器(Buc k Converter )。
负载电流平均值RE U I m o o -= (3-2)电流断续时,u o 平均值会被抬高,一般不希望出现➢ ➢斩波电路三种控制方式(1)脉冲宽度调制(PWM )或脉冲调宽型——T 不变,调节t o n (2)频率调制或调频型——t o n 不变,改变T (3)混合型——t o n 和T 都可调,使占空比改变 其中PWM 控制方式应用最多➢ ➢基于“分段线性”的思想,可对降压斩波电路进行解析3.1.2 升压斩波电路1. 升压斩波电路的基本原理R图3-2 升压斩波电路及其工作波形a)电路图b)波形➢➢工作原理✧✧假设L值、C值很大✧✧V通时,E向L充电,充电电流恒为I1,同时C的电压向负载供电,因C值很大,输出电压u o为恒值,记为U o。
设V通的时间为t o n,此阶段L上积蓄的能量为E I1t o n✧✧V断时,E和L共同向C充电并向负载R供电。
设V断的时间为t o f f,则此期间电感L释放能量为()off ot IEU1-✧ ✧ 稳态时,一个周期T 中L 积蓄能量与释放能量相等()off o on t I E U t EI 11-=(3-20)化简得:E t T E t t t U offoffoffon o =+=(3-21)1/≥off t T ,输出电压高于电源电压,故称升压斩波电路。
BOOST—直流升压电路

BOOST 电路-直流升压变换电路:
基本电路形式:
直流输出电压的平均值高于输出电压的平均值
1.电感电流连续
电感电流连续时,BOOST 变换器分为两个工作阶段:
T 导通,即on t 期间:
电源为只为电感提供能量,电感储能,电源不给负载提供能量,负载仅靠储于电容C 中的能量维持工作;
T 关断,即off t 期间:
电源跟电感共同向负载供电,同时还给电容C 充电,电源对BOOST 电路的输入电流就是升压电感L 电流
故输出电压能够大于输入电压。
维持电感电流临界连续时的电感值为: d OK S O U I DT L 2=
电感电流临界连续的负载电流平均值为: d O S OK U L DT I 2=
当实际负载电流
,O I 大于临界连续值OK I 时,电感电流连续,当实际负载电流等于临界连续值OK I 时,电感电流临界连续,当负载电流小于临界电流OK I 时,电感电流断续,
开关频率越高,电感L 越大,
OK I 越小,越容易实现电感电流连续工作的情况 <1>输出
输出电压 D U U d
O -=1,输出电流d O I D I )1(-=
<2>电感电流的峰-峰值
fL D
U I d L =∆
<3>输出电压纹波为(,O u ∆为纹波电压) ,S L O O T C R D U U =∆
τS
O O T D U U =∆
C R L =τ,为时间常数
注:实际中,选择电感电流的增量L I ∆时,应使电感的峰值电流L d I I ∆+不大于最大平均直流输入电流
d I 的0020,防止电感L 饱和失效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几款直流升压电路
直流升压就是将电池提供的较低的直流电压,提升到需要的电压值,其基本的工作过程都是:高频振荡产生低压脉冲——脉冲变压器升压到预定电压值——脉冲整流获得高压直流电,因此直流升压电路属于DC/DC电路的一种类型。
在使用电池供电的便携设备中,都是通过直流升压电路获得电路中所需要的高电压,这些设备包括:手机、传呼机等无线通讯设备、照相机中的闪光灯、便携式视频显示装置、电蚊拍等电击设备等等。
一、几种简单的直流升压电路
以下是几种简单的直流升压电路,主要优点:电路简单、低成本;缺点:转换效率较低、电池电压利用率低、输出功率小。
这些电路比较适合用在万用电表中,替代高压叠层电池。
二、24V供电CRT高压电源
一些照相机CRT使用11.4cm(4.5英寸)纯平面CRT作为显示部件,其高压部件的阳极电压为+20kV,聚焦极电压为+3.2kV,加速极电压为+1000V,高压部件供电为直流24V。
以下电路是为替换维修这些显示器的高压部件而设计(电路选自网络文章,原作者不详)。
该电路的设计也可为其他升压电路设计提供参考。
基本原理:NE555构成脉冲发生器,调节电位器VR2可使之产生频率为20kHz左右的脉冲,电位器VR1调脉宽。
TR1为推动级,脉冲变压器T1采用反极性激励,即TR1导通时TR2截止,TR1截止时TR2导通,D3、C9、VR3、R7及D4、R6、TR3组成高压保护电路。
VR2用于调频率,调节VR2可调整高压大小。
VR2选用精密可调电阻。
T2可选用彩电行输出变压器变通使用。
笔者选用的是东洋SE-1438G系列35cm(14英寸)彩电的行输出变压器,采用此变压器阳极电压可达20kV,再适当选取R8的阻值使加速极电压为+1000V、R9的阻值使聚焦极电压为+3.2kV即可。
整个部件采用铝盒封装,铝壳接地,这样可减少对电路干扰。
直流升压电压电路图集锦:
三极管升压电路:
DC-DC 5V升压到30V的电路图6V-12V转换直流250V升压电源电路
晶体管搭构的直流升压电路贴子发表于:2006/8/30 16:05:11
这个电路的设计优点在于利用交越效应保证Q4和Q2不会同时导通。