基于单片机的病房呼叫系统设计 (3)
基于单片机的病房呼叫系统

基于单片机的病房呼叫系统————————————————————————————————作者:————————————————————————————————日期:单片机病房呼叫系统摘要:本论文是基于AT89S52单片机设计的病房呼叫系统设计。
每床都有一个按键,当患者有需要的时候,按下按键,此时,值班室的系统板上会显示此患者的床位号,并且震铃3秒.当呼叫源有呼叫信号时,在系统上有相应的声、光呼叫信号指示,并能显示出呼叫号码.然后护士按下“响应"键取消当前呼叫。
本系统是一个64个床位的的病房呼叫系统,具有安装方便,成本低、维修快,布线简单,不需用复杂编程等特点。
通过利用Proteus专用仿真软件对其仿真,使其更加突出本设计的正确性与实用性.最后不需用复杂的编程与布线从而实现多功能的病房呼叫系统的功能。
它不仅体现出现代科技的发展带来的便利,也展示出人类的智慧.关键词: AT89S52;病房呼叫;数据传输课题设计的主要目标根据国外与国内病房呼叫系统发展趋势,本课题设计的主要目标如下:利用51系列单片机进行病房呼叫系统设计。
利用独立式键盘作为呼叫按钮。
利用两位八段数码管来显示病房呼叫的病床号。
利用Proteus ISIS仿真软件对病房呼叫系统功能进行仿真.系统设计方案要求病房呼叫系统设计要求(1)设计一个可容64张床位的病房呼叫系统。
(2)要求每个床位都有一个按钮,当患者需要呼叫护士时,按下按钮。
此时护士值班室内的呼叫系统板上显示该患者的床位号,并振铃3秒。
当护士按下“响应”键时,取消当前呼叫。
病房呼叫系统设计总体方案由于需要比较多的输入输出口,所以采用内部存储资源比较多的AT89S52单片机,2位LED动态显示,需要10根数据线,其中8根作为线选,相当于地址线,选择其中一位显示,另外2根作为LED显示码输入线。
根据按键要求,每个病床位需要一个按钮,共64个.扬声器可以用一个准I/O口.采用AT89S52作为运算和控制单元完全满足系统的需求。
基于单片机的病房呼叫控制系统设计

基于单片机的病房呼叫控制系统设计病房呼叫控制系统是一种应用于医院病房的设备,通过使用单片机和各种传感器、继电器等元件,实现对病人呼叫的监测与控制。
该系统能够提高病患的就医体验,提高医院的工作效率,以下是基于单片机的病房呼叫控制系统的设计。
1.系统架构设计硬件设计:包括单片机主控模块、呼叫按钮模块、显示屏模块、继电器模块、传感器模块等。
软件设计:包括单片机程序设计、呼叫处理逻辑设计、数据传输协议设计等。
2.系统功能设计(1)病人呼叫功能:病房里的每个床铺都配有一个呼叫按钮模块,病人可以通过按压呼叫按钮向医护人员发出求助信号。
(2)呼叫接收功能:当病人按下呼叫按钮后,系统会自动检测到并将呼叫信息传输给医护人员。
(3)医生呼叫功能:医生可以通过医护专用操作面板发送呼叫信号给病房内的病人,以提醒病患或派对应的护理人员。
(4)报警功能:当病人在紧急情况下按下呼叫按钮时,系统会自动触发报警装置进行报警。
(5)护士响应功能:当病人发起呼叫后,医护人员可以通过显示屏模块实时看到病人的呼叫信息,及时进行响应。
(6)历史记录功能:系统会记录下每次呼叫的相关信息,以供医院后续分析统计。
3.系统工作流程设计(1)病人按下呼叫按钮后,按钮模块会检测到信号变化,并将信号传输给单片机主控模块。
(2)单片机主控模块接收到呼叫信号后,会将信号转化为相应的数据,并发送给显示屏模块和继电器模块。
(3)显示屏模块会显示病人的呼叫信息,继电器模块会触发相应的继电器,比如触发报警装置或者呼叫专用手机。
(4)医护人员根据显示屏上的信息来判断病人的需求,及时进行回应。
(5)在医护人员回应完病人的呼叫后,单片机主控模块会将响应状态记录下来。
4.系统测试与改进设计完系统后,需要进行系统的测试和改进。
测试需要验证系统的各项功能是否正常,包括呼叫功能、呼叫接收功能、报警功能等。
在测试过程中,可以模拟真实病房环境,通过按下呼叫按钮来触发系统的运行。
同时,还需进行系统的改进调整,以使系统更加可靠、稳定和易于维护。
基于AT89C51单片机的病房呼叫系统的设计

基于AT89C51单片机的病房呼叫系统的设计摘要:本文提出了一种基于AT89C51单片机的病房呼叫系统设计方案。
该系统采用了红外传感器、按键、LCD显示器等硬件设备,并采用C语言编程实现系统控制与数据处理。
该系统能够实时监测病人在病房内的情况,并在病人有需要时发出呼叫信号,方便病人及时获取医疗人员的帮助。
经过实验验证,该系统稳定可靠,可应用于医疗卫生领域。
关键词:AT89C51单片机、病房呼叫系统、红外传感器、LCD显示器、C语言编程Abstract: This paper proposes a design scheme for a hospital ward call system based on the AT89C51 single-chip microcomputer. The system adopts hardware devices such as infrared sensors, buttons, and LCD displays, and uses C language programming to implement system control and data processing. The system can monitor the situation of patients in the ward in real time, and issue a call signal when patients need help, which is convenient for patients to obtain timely medical assistance. After experimental verification, the system is stable and reliable and can be applied to the medical and health field.Keywords: AT89C51 single-chip microcomputer, ward call system, infrared sensor, LCD display, C language programming一、引言随着人们生活水平的提高以及医疗技术的不断发展,人们对医疗服务质量和效率的要求越来越高。
基于AT89C51单片机的病房呼叫系统的设计

基于AT89C51单片机的病房呼叫系统的设计1. 引言现代医疗技术的快速发展使得病房管理变得更加高效和智能化。
基于AT89C51单片机的病房呼叫系统的设计应运而生。
本文将详细介绍该系统的设计原理、硬件和软件实现以及应用前景。
2. 系统设计原理2.1 系统结构基于AT89C51单片机的病房呼叫系统主要由呼叫器、接收器和控制器三部分组成。
呼叫器由患者佩戴,当患者需要医护人员时,通过按压按钮发送信号给接收器。
接收器将信号传输给控制器,控制器通过显示屏和声音提示医护人员。
2.2 系统工作原理当患者按压按钮时,呼叫器内部电路会产生相应信号,并通过无线传输技术将信号发送给接收器。
接收器通过解码电路将信号转化为数字信号,并传输给控制器。
控制器根据不同患者发出不同声音提示,并在显示屏上显示相应患者信息。
3. 硬件设计3.1 呼叫器设计呼叫器采用AT89C51单片机作为核心控制器,通过按钮触发中断,产生呼叫信号。
同时,呼叫器还配备了无线发送模块,用于将信号发送给接收器。
3.2 接收器设计接收器采用AT89C51单片机作为核心控制器,通过无线接收模块接收呼叫信号。
接收到信号后,通过解码电路将其转化为数字信号,并传输给控制器。
3.3 控制器设计控制器采用AT89C51单片机作为核心控制器,通过数字信号输入端口接收解码后的呼叫信息。
控制器还配备了显示屏和声音模块,用于显示患者信息和发出声音提示。
4. 软件设计4.1 呼叫系统程序设计呼叫系统程序主要包括按钮触发中断程序、无线发送程序和数据传输协议等。
其中按钮触发中断程序用于检测患者是否按下按钮,并产生相应的呼叫信号。
无线发送程序负责将呼叫信号通过无线传输技术发送给接收器。
数据传输协议用于确保数据的可靠传输。
4.2 接收系统程序设计接收系统程序主要包括无线接收程序、解码程序和数据传输协议等。
无线接收程序用于接收呼叫信号,并将其转化为数字信号。
解码程序将数字信号转化为可读的呼叫信息。
基于AT89C51单片机的病房呼叫系统的设计

基于AT89C51单片机的病房呼叫系统的设计1. 前言现代医疗技术的快速发展使得医院病房的管理变得更加高效和便捷。
基于AT89C51单片机的病房呼叫系统是一种应用于医院病房的智能化管理系统,它能够帮助医院提高工作效率、提供更好的护理服务。
本文将深入探讨该系统的设计原理、功能和应用。
2. 系统设计原理2.1 单片机基础知识介绍AT89C51单片机的基本原理和工作方式,包括内部结构、指令集、时钟控制等。
2.2 系统硬件设计分析系统所需硬件模块,包括呼叫按钮、显示屏幕、报警器等,并详细介绍它们之间的连接方式和工作原理。
2.3 系统软件设计讨论系统所需软件模块,包括按键扫描、显示控制、报警器控制等,并详细介绍它们之间的关系和实现方法。
3. 功能实现与应用3.1 呼叫按钮功能实现分析呼叫按钮模块如何与单片机进行交互,实现病人呼叫功能,并介绍相关的电路设计和程序实现。
3.2 显示屏幕功能实现介绍显示屏幕模块的设计和显示内容的控制,包括显示病人信息、呼叫状态等,并详细讨论其程序设计。
3.3 报警器功能实现分析报警器模块的工作原理和控制方法,包括报警音频输出、报警信号处理等,并详细讨论其程序设计。
3.4 系统应用场景探讨基于AT89C51单片机的病房呼叫系统在医院病房中的应用场景,包括病人呼叫护士、护士接收呼叫信息等,并分析其优势和局限性。
4. 系统性能评估与改进4.1 系统性能评估指标制定系统性能评估指标,包括响应时间、稳定性、可靠性等,并详细介绍评估方法和实验过程。
4.2 系统改进方案根据系统性能评估结果,提出改进方案并进行分析和讨论,包括硬件优化、软件优化等,以提高系统的性能和可靠性。
5. 结论总结基于AT89C51单片机的病房呼叫系统的设计原理、功能和应用,强调其在医院病房中的重要性和优势,并展望其未来发展方向。
6. 参考文献列出本文所参考的相关文献,以供读者进一步了解和深入研究。
单片机病房呼叫系统设计

单片机病房呼叫系统设计摘要:一般来说,病房呼叫系统是方便于病人患者与医护人员灵活沟通的一种呼叫系统,是解决医护人员与病人患者之间信息反馈的一种手段。
病床呼叫系统的好坏直接关系到病人患者的生命安危,像今年的新冠型肺炎,没有一个灵活可靠的医疗系统真的不行。
本课题的任务是设计出基于STM32单片机的病床呼叫系统以及对它的各项功能进行控制的控制系统。
系统设计包括矩阵键盘,LCD12864液晶显示器显示电路,在该设计中每个病房都有一个按键,当患者有需要时,按下按键,此时值班室的显示屏可显示此患者的床位号,多人使用时可实现循环显示,医护人员按下“响应”键取消当前呼叫。
值班室与病房终端利用zigbee无线通信技术进行信息传输。
值班人员可以从LCD12864显示器显示病床的信息,护士站可以快速掌握消息。
软件部分用C语言进行编程,采用模块化设计思想。
该系统硬件电路简单,子程序具有通用性,完全符合设计要求。
关键词:STM32,病床呼叫系统,zigbee,LCD12864目录第1章绪论 (1)1.1课题研究背景 (1)1.2国内外研究现状 (1)1.3课题设计内容 (3)第2章系统的总体设计 (4)2.1系统核心硬件的选择 (4)2.1.1主控芯片的选择 (4)2.1.2显示模块的选择 (4)2.1.3无线模块的选择 (5)2.1.4按键模块的选择 (6)2.2系统总体方案 (6)第3章硬件电路设计 (8)3.1单片机STM32及最小系统 (8)3.2LCD12864液晶显示模块 (9)3.2.1LCD12864液晶显示屏的介绍 (9)3.2.2LCD12864的显示原理 (10)3.3zigbee模块设计 (11)3.4矩阵键盘的设计 (12)3.5电源电路的设计 (12)3.6报警模块电路设计 (13)第4章系统软件的设计 (15)4.1软件和工作分析 (15)4.2主程序设计 (15)4.3无线zigbee的连接程序设计 (16)4.4显示电路流程图 (17)第5章系统调试 (19)5.1硬件的焊接 (19)5.2系统硬件调试 (20)5.3实物测试 (21)附录 (23)第1章绪论1.1课题研究背景一般来说,病房呼叫系统是方便于病人患者与医护人员灵活沟通的一种呼叫系统,是解决医护人员与病人患者之间信息反馈的一种手段。
基于AT89C51单片机的病房呼叫系统的设计

基于AT89C51单片机的病房呼叫系统的设计现代医疗技术的快速发展为病房管理提供了更便捷、高效的解决方案。
病房呼叫系统作为一种重要的医疗设备,能够提高医护人员的工作效率,保障患者的生命安全。
本文旨在探讨,通过详细介绍系统的硬件搭建和软件编程,实现对病人的监控和及时呼叫,以提高病房管理的效率和质量。
第一章:病房呼叫系统的概述随着医疗技术的不断进步,病房呼叫系统作为一种重要的医疗设备,不仅可以提高医护人员的工作效率,还可以保障患者的生命安全。
病房呼叫系统通常包括呼叫按钮、显示器、呼叫接收器等部件,通过呼叫按钮的触发,医护人员可以及时了解患者的需求,并做出相应的处理。
基于AT89C51单片机的病房呼叫系统具有结构简单、性能稳定等特点,是目前比较常用的设计方案之一。
第二章:AT89C51单片机的介绍AT89C51单片机是一种经典的8位单片机,由美国Atmel公司生产,具有高性能、低功耗等优点。
AT89C51单片机广泛应用于各种嵌入式系统中,包括病房呼叫系统在内。
单片机通过外围设备的连接,可以实现各种功能,为病房呼叫系统的设计提供了强大的支持。
第三章:基于AT89C51单片机的病房呼叫系统的硬件设计病房呼叫系统的硬件设计是整个系统设计的基础,包括呼叫按钮、显示器、呼叫接收器等部件。
在本章中,我们将详细介绍每个硬件部件的选型和连接方式,以及它们之间的工作原理。
通过对硬件设计的深入分析,可以确保系统的稳定性和可靠性。
第四章:基于AT89C51单片机的病房呼叫系统的软件设计软件设计是病房呼叫系统的核心部分,在系统的功能实现和性能优化中扮演着重要的角色。
本章将详细介绍基于AT89C51单片机的病房呼叫系统的软件设计思路和实现方法,包括系统的初始化、呼叫按钮的检测、呼叫信息的处理等。
通过对软件设计的深入研究,可以提高系统的灵活性和可扩展性。
第五章:基于AT89C51单片机的病房呼叫系统的系统集成系统集成是指将硬件设计和软件设计相结合,构建完整的病房呼叫系统。
毕业设计(论文)基于单片机的病房呼叫控制系统设计

基于单片机的病房呼叫控制系统设计目录摘要 (I)ABSTRACT................................................................................................................... I I 第1章绪论 (1)1.1设计目的及意义 (1)1.2国内外研究现状 (2)1.3设计意义 (2)第2章设计方案概述 (4)2.1设计原理 (4)2.2设计总体概述 (4)2.3模块器件选型 (5)第3章系统的硬件电路 (6)3.1系统主电路图 (6)3.2单片机AT89C51 (6)3.2.1单片机AT89C51简介 (6)3.2.2单片机AT89C51的主要功能和特性 (7)3.2.3单片机复位电路 (8)3.2.4单片机时钟电路 (9)3.3功能模块电路 (9)3.3.1无线发射模块电路 (10)3.3.2无线接收模块电路 (12)3.3.3数码管显示电路 (15)3.3.4报警电路 (16)第4章系统的软件设计 (18)4.1程序流程图 (18)4.1.1主程序流程图 (18)4.1.2定时中断服务流程图 (19)4.1.3跳出中断服务流程图 (19)4.2程序设定 (20)4.2.1程序初始化设定 (20)4.2.1延时子程序设定 (21)4.2.2数码管显示时序设定 (21)4.2.3单片机外部中断设定 (22)第5章硬件焊接及调试 (24)5.1硬件焊接 (24)5.2硬件调试 (24)结论 (26)致谢 (27)参考文献.................................................................................... 错误!未定义书签。
附录1附录2摘要随着科学技术的发展,无线技术在我们生活的不同领域都得到了十分普遍的应用,而医疗方面对无线技术的需求也是日益增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础课程设计(论文)基于单片机的病房呼叫系统设计学生姓名:指导教师:学生学号:专业:电气工程及其自动化信息技术学院电气工程系2012年12月摘要在大型机关,旅馆和医院中,常需要有一种内部联络和呼叫系统,以便在旅客(病员)和服务人员之间建立必要的联络,这种呼叫指示系统在提示的同时,能够用数码管显示各呼叫的号码。
本设计是以AT89C51为核心的病人呼叫系统,对该系统的硬件和软件结构进行了相应的描述。
通过对病区的数据采集,实现医院医疗人员值班室和病人房之间的通信呼叫联系,具有使用方便、操作简单等特点。
这使得衡量一个医院的综合水平高低,不再仅局限于软、硬件的建设上,更要比服务。
临床呼叫求助装置是传送临床信息的重要手段,关系病员安危,传统的病房呼叫系统普遍采用有线式,虽然布线安装繁琐、维护不便、利用率低,而且实时性差。
但是相对无线式呼叫系统而言,它的可靠性高,不会干扰其它医疗仪器设备,目前大多数医院采用有线呼叫系统,在医院的病房里每个床位边都装有一个呼叫按钮,当病人需要帮助时,按下呼叫按钮,护士办公室里呼叫显示板上相应房间号的指示灯点亮并进行声音提示。
关键词:单片机;程序;数码管;AT89C51;呼叫系统目录关键词 (1)1 任务提出与方案论证 (1)1.1 单片机病房呼叫系统的发展史 (1)1.2 功能简介 (2)1.3 设计任务 (2)1.4 设计要求 (2)2 总体设计 (3)2.1 单片机的引脚介绍 (4)2.2 单片机复位电路介绍 (5)2.3 时钟电路的介绍 (6)2.4 单片机的开发软件介绍 (6)3 详细设计 (7)3.1 LED显示接口技术介绍 (7)3.2 MXP2彩频LCD电路模块 (9)3.3 报警电路设计 (10)3.4 键盘模块电路设计 (10)3.5 键盘的工作方式介绍 (11)3.6 系统软件的设计 (12)3.6.1 主程序流程图 (12)3.6.2 子程序流程图 (13)3.6.3 源程序代码 (16)4 总结 (19)参考文献 (21)1 任务提出与方案论证病床呼叫系统是病人请求值班医生或护士进行诊断护理的紧急呼叫工具,可将病人的请求快速传送给值班医生或护士,是提高医院和病室护理水平的必要设备之一。
继电器控制的门铃式呼叫系统,由于外观粗燥、噪声大、功能单一,在医院达标定级中已不能适应现代医院的要求。
利用单片机的多机通讯功能,设计出的具有振铃、显示房号等功能的多功能病床呼叫系统,满足了医院的病房管理和护理的要求。
而现在,只需要一块几厘米见方的单片机,写入简单的程序,就可以使您以前的电路简单很多。
相信您在使用并掌握了单片机技术后,不管在您今后开发或是工作上,一定会带来意想不到的惊喜。
本设计是以AT89C51为核心的病人呼叫系统,对该系统的硬件和软件结构进行了相应的描述。
通过对病区的数据采集,实现医院医疗人员值班室和病人房之间的通信呼叫联系,具有使用方便、操作简单等特点。
1.1 单片机病房呼叫系统的发展史随着全球老龄化进程的加快,全球生存环境的恶化,以及人类对健康关注的增加,医疗行业正快速膨胀。
由于医疗行业的客户是患者,医疗行业比任意一个行业都需要提高客户满意度。
患者希望得到最佳质量的护理和服务,因为他们的生命就掌握在服务提供者的手里,所以他们提出要求的苛刻程度超过其他任何客户。
如何更好的满足患者的要求,提高患者的满意度,是从事医疗行业的所有管理人员应该思考的问题。
在中国,约在 30,000个医院中仅 30%的医院拥有自己的信息管理系统,拥有前端电话接入系统的医院就更少了,前端电话接入系统包括智能话务引导,智能话务分配,传真自动收发,呼叫管理监控,短信自动收发与管理,电子邮件的收发管理等系统,这些子系统是独立于后端的业务层。
这些子系统可以把电话挂号,电话咨询专家,电话 / 短信 /EMAIL 投诉,电话回访,短信问候等前端与客户直接接触的内容有机的结合在一起。
后端客户信息管理系统主要是对会员制患者的资料的管理、对非会员患者的病例的记录与积累、业务统计分析等与提高客户满意度直接相关的子系统。
病床呼叫系统是病人请求值班医生或护士进行诊断护理的紧急呼叫工具,可将病人的请求快速传送给值班医生或护士,是提高医院和病室护理水平的必要设备之一。
继电器控制的门铃式呼叫系统,由于外观粗燥、噪声大、功能单一,在医院达标定级中已不能适应现代医院的要求。
利用单片机的多机通讯功能,设计出的具有振铃、显示房号等功能的多功能病床呼叫系统,满足了医院的病房管理和护理的要求。
而现在,只需要一块几厘米见方的单片机,写入简单的程序,就可以使您以前的电路简单很多。
相信您在使用并掌握了单片机技术后,不管在您今后开发或是工作上,一定会带来意想不到的惊喜。
1.2 功能简介临床求助呼叫(监护)是传送临床信息的重要手段,病房呼叫系统是病人请求值班医生或护士进行诊断和护理的紧急呼叫工具,可将病人的请求快速传送给值班医生或护士,并在值班室的监控中心电脑上留下准确完整的记录,是提高医院和病室护理水平的必备设备之一,呼叫系统的优劣直接关系到病员的安危,历来受到各大医院的普遍重视。
它要求及时、准确、可靠、简便可行。
为此,我们采用单片机AT89C51为系统核心,配以LED及键盘电路模块和MPX2彩屏LCD电路模块实现病人呼叫(监护)系统的设计。
1.3 设计任务本次设计主要是设计一个单片机控制的病房呼叫系统。
利用AT89C51结合显示电路,LED数码管以及按键来设计。
在设计时,我们应将软硬件有机地结合起来,使得系统能够正确的反应病人的呼叫并使服务台能够回应。
1.4 设计要求设计一个可容64张床位的病房呼叫系统。
要求每个床位都有一个按钮,当患者需要呼叫护士时,按下按钮,此时护士值班室内的呼叫系统板上显示该患者的床位号,并振铃。
当护士按下“响应”键时,结束当前呼叫2 总体设计在本系统中,我采用单片机AT89C51为核心的系统主要包括2个部分:数据采集和数据的输出,数据的输出用来进行呼叫,编码使用单片机完成,数据采集负责接收分机发来的信号,并进行解码、显示该患者的床位号,并响铃,主机上设有键盘可以取消当前呼叫。
其实现结构框图如图2-1所示。
图2-1 系统总体方案图将由8×8键盘矩阵采集到的键值经过P0.P2输入到单片机AT89C51中,通过简单的点亮呼叫病号对应床号灯和病区内的警示灯,然后通过P1口把相关信息传送到MPX2彩屏LCD显示。
同时报警警示灯闪烁、报警声响起。
医疗人员可以通过控制键盘操作,完成呼叫响应和信息查询等监护工作。
2.1 单片机的引脚介绍AT89C51可以说是最常用的51单片机了,下图介绍AT89C51的引脚图资料。
如图2-2所示。
图2-2 AT89C51引脚图(1) RESET一般接2个元件:①接10K电阻到地,②接10μ电容到电源。
(2) -EA / VPP一般情况下接高电平(这时使用MCU内部RAM/ROM)。
(3) ALE / PROG一般情况下空着(这时使用MCU内部RAM/ROM)。
(4) -PSEN一般情况下空着(当使用MCU内部RAM/ROM时)。
(5) P0内部没有上拉电阻,所以必要时需要在每个引脚外接5.1K左右上拉电阻到电源。
(6) XTAL1是片内振荡器的反相放大器输入端,XTAL2则是输出端,使用外部振荡器时,外部振荡信号应直接加到XTAL1,而XTAL2悬空。
内部方式时,时钟发生器对振荡脉冲二分频,如晶振为12MHz,时钟频率就为6MHz,晶振的频率可以在1MHz-24MHz内选择,电容取20PF左右。
(7) VDD:电源+5V。
VSS:GND接地。
引脚功能说明:①电源引脚Vcc(40脚):典型值+5V。
Vss(20脚):接低电平。
②输入输出口引脚:P0口:I/O双向口。
作输入口时,应先软件置“ 1”。
P1口:I/O双向口。
作输入口时,应先软件置“ 1”。
P2口:I/O双向口。
作输入口时,应先软件置“ 1”。
P3口:I/O双向口。
作输入口时,应先软件置“ 1”。
③控制引脚:RST/Vpd、ALE/-PROG、-PSEN、-EA/Vpp组成了MSC-51的控制总线。
RST/Vpd(9脚):复位信号输入端(高电平有效)。
第二功能:加+5V备用电源,可以实现掉电保护RAM信息不丢失。
ALE/-PROG(30脚):地址锁存信号输出端。
第二功能:编程脉冲输入。
-PSEN(29脚):外部程序存储器读选通信号。
-EA/Vpp(31脚):外部程序存储器使能端。
2.2 单片机复位电路介绍当MCS-51系列单片机的复位引脚RST出现两个机器周期以上的高电平时,单片机就执行复位操作。
如果RST持续为高电平,单片机就处于循环复位状态。
根据应用的要求,复位操作通常有两种基本的方式:上电复位和上电或开关复位。
上电复位要求接通电源后,自动实现复位操作。
常用的上电复位如下图2-3中所示。
图中电容C1和电阻对电源+5V来说构成微分电路。
上电后,保持RST一段高电平时间,由于单片机内的等效电阻的作用,不用图中电阻,也能达到上电复位的操作功能。
如下图2-4中所示。
图 2-3 上电复位电路图 2-4 上电复位和按钮复位电路2.3 时钟电路的介绍采用时钟方式时,在XTAL1和XTAL2之间接入石英晶体振荡器(晶振)即可使内部振荡器起振,产生单片机工作所需的时钟脉冲。
如图2-5所示。
图2-5 MCS-51内部振荡方式MCS-51单片机时钟脉冲也可以由外部产生,但芯片的制造工艺不同,外部时钟源的输入方式有所不同。
对于HMOS型芯片,外部振荡信号接至XIAL2引脚,XTAL1接地,XTAL2引脚对电源接入上拉电阻。
而CHMOS型芯片,外部振荡信号接至XTAL1,XTAL2悬空。
2.4 单片机的开发软件介绍单片机开发中除必要的硬件外,同样离不开软件,我们写的汇编语言源程序要变为CPU可以执行的机器码有两种方法,一种是手工汇编,另一种是机器汇编,目前已极少使用手工汇编的方法了。
机器汇编是通过汇编软件将源程序变为机器码,用于MCS-51单片机的汇编软件有早期的A51,随着单片机开发技术的不断发展,从普遍使用汇编语言到逐渐使用高级语言开发,单片机的开发软件也在不断发展,Keil软件是目前最流行开发MCS-51系列单片机的软件,这从近年来各仿真机厂商纷纷宣布全面支持Keil即可看出。
Keil提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(Vision)将这些部份组合在一起。
运行Keil软件需Pentium 或以上的CPU,16MB或更多RAM、20M以上空闲的硬盘空间、WIN98、NT、WIN2000、WINXP等操作系统。