第八章 非线性控制系统分析 单元测试题(B
第8章 非线性系统分析

一、非线性控制系统概述(11)
考虑著名的范德波尔方程
x 2 (1 x2 ) x x 0, 0
该方程描述具有非线性阻尼的非线性二阶系统。当扰动使 x 1 时,因为 (1 x 2 ) 0 系统具有负阻尼,此时系统 x(t ) 的运动呈发散形式;当 x 1 时,因为 从外部获得能量, 2 (1 x 2)>0,系统具有正阻尼,此时系统消耗能量, x(t ) 的运动呈收敛形式;而 当x=1 时,系统为零阻尼, 系统运动呈等幅振荡形式。 上述分析表明,系统能克 服扰动对 的影响,保持幅 值为1的等幅振荡,见右图。
1
第八章 非线性控制系统分析
本章主要内容: 一、非线性控制系统概述 二、常见非线性特性及其对系统运动的影响 三、描述函数法
2
第八章、非线性控制系统分析
本章要求 : 1、了解非线性系统的特点 2、了解常见非线性特性及其对系统运动的影响 3、掌握研究非线性系统描述函数法
3
一、非线性控制系统概述
本节主要内容: 1、研究非线性控制理论的意义 2、非线性系统的特征 3、非线性系统的分析与设计方法
5
一、非线性控制系统概述(2)
6
一、非线性控制系统概述(3)
在下图所示的柱形液位系统中,设 H为液位高度,Qi 为 C 为贮槽的截面积。根据水力 液体流入量, Q0为液体流出量, 学原理知
Q0 k H
其中比例系数 k 取决于液体的粘度的阀阻。 液体系统的动态方程为
dH C Qi Q 0 Qi k H dt
显然,液位和液体输入量的数字关系式为非线性微分方程。 由此可见,实际系统中普遍存在非线性因素。
7
一、非线性控制系统概述(4)
《自动控制原理》考点精讲(第8讲 非线性控制系统分析)

自动控制原理(自动控制理论)考点精讲
量外,还含有关于ω的高次谐波分量。使输出波形发生非线
性畸变。 正弦响应的复杂性:①跳跃谐振及多值响应;②倍频振荡与 分频振荡;③组合振荡(混沌);④频率捕捉。 混沌:
自动控制原理(自动控制理论)考点精讲
网学天地( )
e
x
x(t)
x(t)
x(t)
x(t)
ωt ωt
ωt ωt
自动控制原理(自动控制理论)考点精讲
自动控制原理(自动控制理论)考点精讲
网学天地( )
例:欠阻尼二阶系统的相平面描述——相轨迹
相轨迹在某些特定情况 下,也可以通过积分法, 直接由微分方程获得x和x 导数的解析关系式:
x dx = f (x, x) ⇒ g(x)dx = h(x)dx dx
自动控制原理(自动控制理论)考点精讲
α
=
dx dx
=
f (x, x) x
则与该曲线相交的任何相轨迹在交点处的切线斜率均为α,
该曲线称为等倾线。 注1:线性系统的等倾线为直线; 注2:非线性系统的等倾线为曲线或折线。
自动控制原理(自动控制理论)考点精讲
网学天地( )
由等倾线的概念知,当相轨迹经过该等倾线上任一点时,其 切线的斜率都相等,均为α。取α为若干不同的常数,即可 在相平面上绘制出若干条等倾线,在等倾线上各点处作斜率 为α的短直线,并以箭头表示切线方向,则构成相轨迹的切 线方向场。
自动控制原理非线性系统习题题库

8-1考虑并回答下面的问题:(a )在确定非线性元件的描述函数时,要求非线性元件不是时间的函数,并要求有斜对称性,这是为什么(b )什么样的非线性元件是无记忆的什么样的非线性元件是有记忆的它们的描述函数各有什么特点(c )线性元件的传递函数与非线性元件的描述函数,有什么是相同的有什么是不同的线性元件可以有描述函数吗非线性元件可以有传递函数吗(d )非线性系统线性部分的频率特性曲线与非线性元件的负倒描述函数曲线相交时,系统一定能够产生稳定的自激振荡吗8-2设非线性元件的输入、输出特性为35135()()()()y t b x t b x t b x t =++证明该非线性元件的描述函数为2413535()48N A b b A b A =++式中A 为非线性元件输入正弦信号的幅值。
8-3某非线性元件的输入、输出特性如图所示。
图 习题8-3图(a )试求非线性元件的描述函数。
(b )将图所示非线性元件表示为有死区继电器和有死区放大器的并联,用非线性元件并联描述函数的求法求它的描述函数,并与(a )中的结果相比较。
8-4滞环继电特性如图(a )所示,证明它的描述函数可以表示为4()arcsin M a N A A A π⎛⎫=∠ ⎪⎝⎭且负倒描述函数的虚部为常值,负倒描述函数曲线如图(b )所示。
(a ) (b )图 习题8-4图8-5大对数控制系统的控制器后面都带有限幅器。
对图(a )所示PI 调节器输出带有限幅器的情况,在输入信号发生大的阶跃变化时,系统输出将出现比较大的退饱和超调。
所谓退饱和超调是指,在大的误差信号e 作用下,PI 调节器的输出将很快将到达饱和值,经限幅器限幅后控制作用u 维持在最大值max u 。
在max u 的作用下,输出c 逐渐增大,误差e 逐渐减小,但只要误差未改变符号,PI 调节器的积分项就将继续增大,0e =时积分项的值一般要远大于限幅器的限幅值max u 。
当输出超调以后,误差的符号变负,调节器积分项的值开始下降,但在一段时间内仍将维持在很大的数值上,因此会导致很大的超调。
精品文档-自动控制原理(王春侠)-第八章

8.2 描 述 函 数 法 8.2.1 描述函数的基本概念
设非线性环节的输入为 x(t)=A sinωt
一般情况下,非线性环节的稳态输出y(t)是非正弦周期信号。 将y(t)用傅氏级数表示为
y t A0 An cos nt+Bn sin nt =A0 Yn sin nt+n
n =1
n =1
kx,
x ≤a
y Msignx, x >a
2
图8-1 饱和非线性特性
3
2. 死区特性
死区又称不灵敏区,如图8-2所示。其输入与输出之间关
系的表达式为
0,
x ≤Δ
y k x Δsignx, x >Δ
式中,Δ为死区范围; k为线性段的斜率。
当输入信号小于Δ时,对系统来说,虽然有输入但无输
出,只有当|x|>Δ时才有输出,这时,输出与输入之间为
第八章 非线性控制系统分析
8.1 非线性系统的基本概念 8.2 描述函数法 8.3 相平面法 8.4 Matlab应用实例
1
8.1 非线性系统的基本概念 8.1.1 典型非线性特性
控制系统中含有本质非线性环节,如果这些本质非线性特 性能用简单的折线来描述,则称为典型非线性特性。
1. 饱和特性 饱和特性是一种常见的非线性特性,如图8-1所示。其数 学表达式为
最后指出,这种方法只适用于单个的非线性元件,如果有 两个以上的非线性元件,则必须把它们合并为一个模块,否则 第二个元件的输入就不会是正弦波。
22
8.2.2 典型非线性特性的描述函数 1. 死区特性 在具有死区的元件中,当输入在死区的幅值范围内时
就没有输出。图8-6所示为死区非线性特性及其输入、输出波 形。
自动控制原理第八章非线性控制系统

如果一个非线性系统在初始扰动下偏离平衡状态,但在时间推移过程中能够恢复到平衡状态,则称该系统是稳定 的。
线性系统稳定的必要条件
系统矩阵A的所有特征值均具有负实 部。
系统矩阵A的所有特征值均具有非正实 部,且至少有一个特征值为0。
劳斯-赫尔维茨稳定判据
劳斯判据
通过计算系统矩阵A的三次或更高次特征多项式的根的实部来判断系统的稳定性。如果所有根的实部 均为负,则系统稳定;否则,系统不稳定。
输出反馈方法
通过输出反馈来改善非线性系统的性能,实 现系统的稳定性和跟踪性能。
自适应控制方法
通过在线调整控制器参数来适应非线性的变 化,提高系统的跟踪性能和稳定性。
非线性系统的设计方法
根轨迹法
通过绘制根轨迹图来分析系统的稳定性,并 设计适当的控制器。
相平面法
通过绘制相平面图来分析非线性系统的动态 行为,进行系统的分析和设计。
感谢您的观看
THANKS
自动控制原理第八章非线性 控制系统
目录
• 非线性系统的基本概念 • 非线性系统的分析方法 • 非线性系统的稳定性分析 • 非线性系统的校正与设计 • 非线性系统的应用实例
01
非线性系统的基本概念
非线性系统的定义
非线性系统的定义
非线性系统是指系统的输出与输入之 间不满足线性关系的系统。在自动控 制原理中,非线性系统是指系统的动 态特性不能用线性微分方程来描述的 系统。
02
它通过将非线性系统表示为一 个黑箱模型,通过测量系统的 输入输出信号来研究其动态特 性。
03
输入输出法适用于分析具有复 杂结构的非线性系统,通过实 验测量和数据分析,可以了解 系统的动态响应和稳定性。
03
第8章 非线性系统分析 参考答案

参考答案一、填空题1. 非本质;本质2. 自持振荡3. 初始条件;输入信号大小4. 饱和非线性;死区非线性;间隙非线性;继电器非线性5. 不稳定6. 稳定;不稳定;半稳定7. 自左向右;自右向左 二、分析与计算题1. 求3()()y t ax t =的描述函数。
解:由于3()()y t ax t =是单值奇函数,所以其傅里叶级数展开式中A 0=0、A 1=0、φ1=0,将()sin x t A t ω=代入B 1的计算公式,可得2102330340320320303031()sin 1sin sin 2sin 21cos 2()2212cos 2cos 241cos 412cos 22242311(cos 2cos 4)828231(sin 284B y t td taA t td t aA td t aA t d t aA t t d t tt aA d t aA t t d t aA πππππππωωπωωωπωωπωωπωωωπωωωπωωωπππ===-=-+=+-+==-+=-⎰⎰⎰⎰⎰⎰⎰31sin 4)003234t t aA ππωω+=所以32133()44B aA N A aA A A ===2.设具有滞环继电器非线性特性的非线性系统结构如题图8.1所示,已知b =1,a =0.3,试判断系统是否存在自持振荡,若存在,则求出自持振荡的幅值和频率。
题图8.1解:具有滞环的继电器非线性特性的描述函数为24()j()abN A A a Aπ=≥其描述函数负倒数特性为1j ()()4a A a N A bπ-=≥ 可见,描述函数负倒数特性的虚部为常数4a b π-,即1()N A -曲线为一条虚部为4abπ-的直线。
由于10()(21)(0.41)G s s s =++,所以222222222210(j )(2j 1)(0.4j 1)10(12j )(10.4j )(14)(10.16)10(1 2.4j 0.8)(14)(10.16)10824j (14)(10.16)(14)(10.16)G ωωωωωωωωωωωωωωωωω=++--=++--=++-=-++++由以上可知,1()N A -曲线与(j )G ω必有交点,而且交点为稳定的,因此会产生自持振荡。
自动控制原理-第8章非线性控制系统

8非线性控制系统前面几章讨论的均为线性系统的分析和设计方法,然而,对于非线性程度比较严重的系统,不满足小偏差线性化的条件,则只有用非线性系统理论进行分析。
本章主要讨论本质非线性系统,研究其基本特性和一般分析方法。
8.1非线性控制系统概述在物理世界中,理想的线性系统并不存在。
严格来讲,所有的控制系统都是非线性系统。
例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。
当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。
实际上,所有的物理元件都具有非线性特性。
如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。
图8-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u为电机的控制电压,纵坐标为电机的输出转速,如果伺服电动机工作在A1OA2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。
但如果电动机的工作区间在B1OB2区段•那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。
8.1.1控制系统中的典型非线性特性组成实际控制系统的环节总是在一定程度上带有非线性。
例如,作为放大元件的晶体管放大器,由于它们的组成元件(如晶体管、铁心等)都有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;执行元件例如电动机,总是存在摩擦力矩和负载力矩,因此只有当输入电压达到一定数值时,电动机才会转动,即存在不灵敏区,同时,当输入电压超过一定数值时,由于磁性材料的非线性,电动机的输出转矩会出现饱和;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,等等。
实际控制系统总是或多或少地存在着非线性因素,所谓线性系统只是在忽略了非线性因素或在一定条件下进行了线性化处理后的理想模型。
常见典型非线性特性有饱和非线性、死区非线性、继电非线性、间隙非线性等。
自动控制原理 第8章非线性控制理论系统

第8章 非线性控制系统分析
3
典型非线性特性
饱和非线性可以由磁饱和、放大器输出饱和、功率限制等引起。一般情况下, 系统因存在饱和特性的元件,当输入信号超过线性区时,系统的开环增益会有大 幅度地减小,从而导致系统过渡过程时间的增加和稳态误差的加大。但在某些自 动控制系统中饱和特性能够起到抑制系统振荡的作用。因为在暂态过程中,当偏 差信号增大进入饱和区时,系统的开环放大系数下降,从而抑制了系统振荡。在 自动调速系统中,常人为地引入饱和特性,以限制电动机的最大电流。
2020/4/3
第8章 非线性控制系统分析
9
典型非线性特性
图8.4 继电器非线
2020/4/3
第8章 非线性控制系统分析
10
8.1.2 非线性系统的特点
非线性元件系统与线性控制系统相比,有如下特点:
1. 叠加原理不适用于非线性控制系统。即几个输入信号作用于非线性控制系 统所引起的输出,不再等于每一个输入信号所引起的输出之总和。
同时满足 x 2 0,f(x1,x 2 ) 0 的特殊点,由于该点相轨迹的斜率为0/0,是一
图8.6 相平面图
2020/4/3
第8章 非线性控制系统分析
16
8.2.2 相轨迹的性质
在相平面的分析中,相轨迹可以通过解析法作出,也可以通过图解法或实验
法作出。相轨迹一般具有如下几个重要性质:
间 之 向,是t 1在的x.相1相推的轨平移减迹面,小运下系方动半统向方平状,向面态即的上沿向确,相左定由轨运于迹在动x的相。2<运平0动,面方表的向示上是随半x着平1的时面增间上t大,的方由推向于移x,2,即>0相向,轨右表迹运示的动随运。着动反时方
自动控制原理
第8章 非线性控制系统分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.当系统输入为速度信号时,受死区的影响,系统无调节作用,导致系统输出在时间上
的
,降低了系统的
。
5.坐标原点处相轨迹的斜率不能由该点的坐标唯一地确定,这种点叫做
。
6.相轨迹上相邻两点时间增量的计算一般有以下三种方法:(1)
;
ห้องสมุดไป่ตู้(2)
;(3)
。
7.描述函数法只能用来研究系统的
,不能给出时间响应的确切信息。
用,使得系统能从非周期性的能源中获取能量,从而维持周期运动形式。
A.非线性 B.低通滤波 C.振荡 D.阻尼
5.下图属于继电特性等效增益曲线:(
)
-
-
A.
B.
C.
D.
6.下图属于死区特性等效增益曲线:(
)
-
-
A.
B.
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建
1 0.2
10 c(t) s
s s +1
四、给定非线性系统如图所示
k
—
D
G( jw)
其中线性部分的频率特性和死区非线性元件的描述函数分别为
G( jw) =
jw (1 +
K
jw )(1
+
0.5
jw
)
,
N
(X
)
=
2k p
êép êë 2
- arcsin
D X
-
D X
当 K 取何值时,系统存在极限环,并分析极限环的稳定性。
G(Z)R(Z )
GR(Z )
C.
D.
1 + G(Z)H (Z)
1 + GH (Z )
3. 当特征根为一对具有负实部的共轭复根时,奇点为
;当特征根为一对具有正实部
的共轭复根时,奇点为
。(
)
A.稳定焦点,不稳定焦点
B.不稳定焦点,稳定焦点
C.稳定节点,不稳定节点
D.不稳定节点,稳定节点
4. 极限环是非线性系统中的特有现象,它只发生在非守恒系统中,产生的原因是 的作
1 + çæ è
D X
÷ö 2 ø
ù úX úû
³
D, K
=1
五、已知非线性控制系统的结构图如图所示
r(t) —
b a
3
c(t)
s(0.8s + 1)(s +1)
4
PDF 文件使用 "pdfFactory Pro" 试用版本创建
为使系统不产生自振,试利用描述函数法确定继电特性参数 a,b 的数值。
A. 0
B. ¥
C.1/K
D. T/K
2. 已知离散控制系统结构图如图所示,则其输出采样信号的 Z 变换的表达式 C(z)为:
(
)
1
PDF 文件使用 "pdfFactory Pro" 试用版本创建
G(Z )R(Z )
GR(Z )
A.
B
1 + GH (Z ) 1 + G(Z )H (Z )
5
PDF 文件使用 "pdfFactory Pro" 试用版本创建
第八章 非线性控制系统分析
单元测试题(B)
一、填空题
1.在没有外界周期变化信号输入时,非线性系统完全可能产生具有固定周期和幅值的
过程。
2.
法是运用内环非线性反馈控制,构成伪线性系统,
并以此为基础,设计外环控制网络。
3.继电特性常常使系统产生
现象,但如果选择合适的继电特性可提高系
统的
,也可构成正弦信号发生器。
8.系统的线性部分应具有较好的
性能。
二、单项选择题 (在下列每小题的四个备选答案中选出一个正确的答案,并将其字母标
号填入题干的括号内。)
1.
某单位反馈采样系统的开环脉冲传递函数为
G(Z)=
KZ (Z -
(1 - e-T ) 1)(Z - e-T )
,则在单位斜坡输
入下的稳态误差 e( ¥ )为:(
)
C.
D.
7.下图属于饱和特性等效增益曲线:(
)
-
-
A.
B.
C.
D.
8.下图属于间隙特性等效增益曲线:(
)
-
-
A.
B.
3
PDF 文件使用 "pdfFactory Pro" 试用版本创建
C.
D.
三、非线性系统如图所示,试用描述函数法分析周期运动的稳定性。
r(t) —