初三数学-平行四边形知识点

合集下载

九年级数学上册第三章知识点

九年级数学上册第三章知识点

九年级数学上册第三章知识点九年级数学上册第三章知识点一、平行四边形1、平行四边形的性质定理:平行四边形的对边相等。

平行四边形的对角相等(邻角互补)。

平行四边形的对角线互相平分。

2、平行四边形的判定方法:定义:两组对边分别平行的四边形是平行四边形。

判定定理:两组对边分别相等的四边形是平行四边形。

一组对边平行且相等的四边形是平行四边形。

两组对角分别相等的四边形是平行四边形。

对角线互相平分的四边形是平行四边形。

二、矩形1、矩形的性质定理:矩形的四个角都是直角。

矩形的对角线相等。

2、矩形的判定方法:定义:有一个角是直角的平行四边形是矩形。

判定定理:有三个角是直角的四边形是矩形。

对角线相等的平行四边形是矩形。

(对角线相等且互相平分的四边形是矩形。

)三、菱形1、菱形的性质定理:菱形的四条边都相等。

菱形的对角线相等,并且每条对角线平分一组对角。

2、菱形的判定方法:定义:有一组邻边相等的平行四边形是菱形。

判定定理:四条边都相等的四边形是菱形。

对角线互相垂直的平行四边形是菱形。

(对角线互相垂直且平分的四边形是菱形。

)四、正方形1、正方形的性质定理:正方形的'四个角都是直角,四条边都相等。

正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。

2、正方形的判定定理:l 有一个角是直角的菱形是正方形。

l 有一组邻边相等的矩形是正方形。

l 有一个角是直角且有一组邻边相等的平行四边形是正方形。

l 对角线相等的菱形是正方形。

l 对角线互相垂直的矩形是正方形。

l 对角线相等且互相垂直的平行四边形是正方形。

l 对角线相等且互相垂直、平分的四边形是正方形。

五、等腰梯形1、等腰梯形的性质定理:等腰梯形的两条对角线相等。

等腰梯形在同一底上的两个角相等。

2、等腰梯形的判定方法:定义:两腰相等的梯形是等腰梯形。

判定定理:在同一底上的两个角相等的梯形是等腰梯形。

六、三角形的中位线1、定义:连接三角形两边中点的线段叫做三角形的中位线。

平行四边形知识点整理笔记

平行四边形知识点整理笔记

平行四边形知识点整理笔记
平行四边形是初中数学中一个重要的概念,它具有平行、矩形、菱形、正方形等特殊形态。

下面是一份关于平行四边形知识点的整理笔记:
1. 平行四边形的定义:在同一平面内,不相交的两条直线叫做平行线,它们所组成的四边形叫做平行四边形。

2. 平行四边形的性质:
(1) 对边平行且相等;
(2) 对角线互相平分;
(3) 对角线相等且互相垂直;
(4) 对边平行且相等的梯形是平行四边形。

3. 平行四边形的判定:
(1) 两组对边分别平行的四边形是平行四边形;
(2) 对角线相等的平行四边形是平行四边形;
(3) 对边平行且相等的梯形是平行四边形。

4. 平行四边形的应用:
(1) 矩形、菱形、正方形都是特殊的平行四边形,它们具有平行、矩形、菱形、正方形等特殊形态;
(2) 梯形是平行四边形的一种特殊形态,它在某些情况下可以转化为平行四边形;
(3) 在平面几何中,平行四边形的面积可以通过底和高来计算,也可以借助平行四边形的性质和判定来求解。

综上所述,平行四边形是初中数学中一个重要的概念,它具有平行、矩形、菱形、正方形等特殊形态,其在平面几何、代数、概率统计等领域都有广泛的应用。

在解题时,可以利用其性质和判定来求解,也可以将其转化为熟悉的图形来进行计算和分析。

初中平行四边形知识点归纳

初中平行四边形知识点归纳

初中平行四边形知识点归纳初中数学的平行四边形知识点是一个比较难学的知识点,为了帮助同学们学好平行四边形,以下是店铺分享给大家的初中平行四边形知识点,希望可以帮到你!初中平行四边形知识点1.定义:两组对边分别平行的四边形叫平行四边形2.平行四边形的性质(1)平行四边形的对边平行且相等;(2)平行四边形的邻角互补,对角相等;(3)平行四边形的对角线互相平分;3.平行四边形的判定平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:第一类:与四边形的对边有关(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;第二类:与四边形的对角有关(4)两组对角分别相等的四边形是平行四边形;第三类:与四边形的对角线有关(5)对角线互相平分的四边形是平行四边形常见考法(1)利用平行四边形的性质,求角度、线段长、周长;(2)求平行四边形某边的取值范围;(3)考查一些综合计算问题;(4)利用平行四边形性质证明角相等、线段相等和直线平行;(5)利用判定定理证明四边形是平行四边形。

误区提醒(1)平行四边形的性质较多,易把对角线互相平分,错记成对角线相等;(2)“一组对边平行且相等的四边形是平行四边形”错记成“一组对边平行,一组对边相等的四边形是平行四边形”后者不是平行四边形的判定定理,它只是个等腰梯形。

初中数学学习方法总结1.突出一个“勤”字(克服一个“惰”字)数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”“勤能补拙是良训,一分辛劳一分才:我们在学习的时候要突出一个勤字,克服一个“懒”字,怎么突出“勤”字“聪”:怎么个勤法,从这个字面上来看,要做到五勤:“耳勤”“眼勤”(耳朵听,眼睛看,接受信息)“口勤”(讨论,回答问题,而不是讲话,消化信息)“脑勤”(善于思考问题,积极思考问题——吸收、储存信息)那是不是做到以上四点就行了呢?不是。

平行四边形的知识点整理

平行四边形的知识点整理

平行四边形的知识点整理平行四边形是我们初中数学学习的一个重要内容。

学习平行四边形需要掌握多种知识点,包括平行、四边形的性质、平行四边形的特征等。

本文将对平行四边形的知识点进行整理,帮助读者更加深入地理解和掌握平行四边形的相关知识。

一、平行概念平行是指两条直线在同一平面内且不存在交点,这两条直线称为平行线。

平行的概念是学习平行四边形的基础,只有掌握了平行的概念,才能进一步学习平行四边形的相关知识。

二、四边形的性质四边形是由四条线段组成的图形。

四边形有多种类型,包括矩形、平行四边形、菱形、正方形等。

下面介绍几种四边形的性质。

1.平行四边形的性质平行四边形是指有两组对边分别平行的四边形。

平行四边形的性质包括:①对边相等:平行四边形的两组对边分别平行且相等。

②同位角相等:平行四边形相对的内角和为180°,对应角相等,邻角互补。

③对角线互相平分:平行四边形的对角线互相平分。

2.矩形的性质矩形是一种特殊的平行四边形,其性质包括:①对边相等:矩形的两组对边分别相等。

②内角为直角:矩形的四个内角都是直角。

③对角线相等:矩形的对角线相等。

④轴对称:矩形的每一条对角线都是矩形轴对称的。

3.菱形的性质菱形是一种四边形,其性质包括:①对边相等:菱形的两组对边分别相等。

②对角线互相垂直:菱形的对角线互相垂直。

③轴对称:菱形的每一条对角线都是菱形轴对称的。

4.正方形的性质正方形是一种矩形,其性质包括:①对边相等:正方形的两组对边分别相等。

②内角为直角:正方形的四个内角都是直角。

③对角线相等:正方形的对角线相等。

④轴对称:正方形的每一条对角线都是正方形轴对称的。

三、平行四边形的特征平行四边形有一些特殊的性质和特征,下面介绍几个典型的特征。

1.根据对边和角的关系判断是否平行四边形判断一个四边形是否是平行四边形,可以根据其对边和角的关系来确定。

如果四边形的两组对边分别平行且相等,那么这个四边形就是平行四边形。

如果对边相等但不平行,那么这个四边形是菱形。

平行四边形初中知识点

平行四边形初中知识点

平行四边形初中知识点
一、平行四边形的定义。

1. 两组对边分别平行的四边形叫做平行四边形。

- 用符号“▱”表示平行四边形,例如平行四边形ABCD记作“▱ABCD”。

二、平行四边形的性质。

1. 边的性质。

- 平行四边形的对边平行且相等。

- 即若▱ABCD,则AB = CD,AD = BC;AB∥CD,AD∥BC。

2. 角的性质。

- 平行四边形的对角相等,邻角互补。

- 在▱ABCD中,∠A = ∠C,∠B = ∠D;∠A+∠B = 180°,∠B + ∠C=180°等。

3. 对角线的性质。

- 平行四边形的对角线互相平分。

- 若▱ABCD,对角线AC、BD相交于点O,则AO = CO,BO = DO。

三、平行四边形的判定。

1. 边的判定。

- 两组对边分别平行的四边形是平行四边形(定义判定)。

- 两组对边分别相等的四边形是平行四边形。

- 一组对边平行且相等的四边形是平行四边形。

2. 角的判定。

- 两组对角分别相等的四边形是平行四边形。

3. 对角线的判定。

- 对角线互相平分的四边形是平行四边形。

四、平行四边形的面积。

1. 平行四边形的面积等于底乘以高。

- 若平行四边形的底为a,这条底边上的高为h,则面积S = ah。

- 同底(等底)等高的平行四边形面积相等。

初三数学-平行四边形知识点总结

初三数学-平行四边形知识点总结

初三数学
平行四边形知识点总结
一.正确理解定义
(1)定义:两组对边分别平行的四边形是平行四边形.
平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.
(2)表示方法:ABCD记
作ABCD,读作“平行四边形ABCD”.
2.熟练掌握性质
平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.
(1)角:平行四边形的邻角互补,对角相等;
(2)边:平行四边形两组对边分别平行且相等;
(3)对角线:平行四边形的对角线互相平分;
(4)面积:①S=
底高ah;
=⨯
②平行四边形的对角线将四边形分成4个面积相等的三角形.
3.平行四边形的判别方法
①定义:两组对边分别平行的四边形是平行四边形
②方法1:两组对角分别相等的四边形是平行四边形
③方法2:两组对边分别相等的四边形是平行四边形
④方法3:对角线互相平分的四边形是平行四边形
⑤方法4:一组平行且相等的四边形是平行四边形。

中心对称图形—平行四边形知识点复习

中心对称图形—平行四边形知识点复习

平行四边形知识点复习:一、旋转1、图形旋转的概念:在平面内,将一个图形绕一个转动一定的,这样的图形运动称为,这个定点称为,旋转的角度称为 .2、图形旋转的性质:(1)旋转前后的图形 .(2)对应点到旋转中心的距离 .(3)每一对对应点与旋转中心的连线所成的角 .3、中心对称:概念:把一个图形绕着某一点旋转,如果它能够与另一个图形,那么称这两个图形关于这点,也称这两个图形成.这个点叫做.性质:成中心对称的两个图形中,对应点的连线经过,且被对称中心.4、中心对称图形:定义:把一个图形绕旋转,如果旋转后的图形能够与,那么这个图形叫做,这个点就是 .二、平行四边形:1、平四边形的概念:2、平行四边形的性质:边:角:对角线:对称性:平行四边形的面积:3、平四边形的判定方法:(1)(2)(3)(4)三、矩形:1、矩形的概念:2、矩形的性质:矩形具有的所有性质,也有平行四边形没有的性质.边:角:对角线:对称性:3、直角三角形斜边上的等于斜边的一半.直角三角形中30°角所对的等于斜边的一半.4、矩形的判定:(1)(2)(3)四、菱形:1、菱形的概念:2、菱形的性质:菱形具有的所有性质,也有平行四边形没有的性质.边:角:对角线:对称性:菱形的面积= =四、正方形:1、正方形的概念:2、正方形的性质:正方形具有、、的所有性质.边:角:对角线:对称性:正方形的面积= =3、正方形的判定:(1)(2)六、中位线:1、中位线的概念:2、中位线的性质:。

初中数学知识归纳平行四边形的性质及面积计算

初中数学知识归纳平行四边形的性质及面积计算

初中数学知识归纳平行四边形的性质及面积计算初中数学知识归纳:平行四边形的性质及面积计算平行四边形是初中数学中的一个重要几何图形,具有独特的性质和计算方法。

本文将对平行四边形的性质和面积计算进行归纳总结。

一、平行四边形的性质1. 定义:平行四边形是具有两对对边分别平行的四边形。

2. 对角线性质:平行四边形的对角线相交于一点,并且该点将对角线等分。

3. 对边性质:a. 对边平行:平行四边形的对边互相平行。

b. 对边相等:平行四边形的对边互相相等。

4. 角性质:a. 互补角:平行四边形的内角互补,即相邻内角之和为180°。

b. 同位角:平行四边形的同位角互相相等。

5. 邻补角性质:平行四边形的邻补角之和为180°。

6. 对角线比例性质:平行四边形的对角线按照相等比例分割两对角。

7. 面对角关系:a. 面积相等:平行四边形具有相等的面积。

b. 对角线中点连线关系:平行四边形对角线中点连线是平行四边形的一个角平分线。

二、平行四边形的面积计算平行四边形的面积可以通过以下两种常用方法计算:1. 公式法:平行四边形的面积 = 底边长 ×高举例说明:设平行四边形的底边长为a,高为h,则平行四边形的面积为S = a × h。

2. 已知边长法:已知平行四边形的两条邻边长(a和b)及它们之间的夹角(θ),可以采用三角函数来计算面积。

具体计算公式为:平行四边形的面积= a × b × sin(θ)举例说明:设平行四边形的两条邻边长分别为a = 5cm,b = 8cm,夹角为θ = 60°,则平行四边形的面积为S = 5 × 8 × sin(60°)。

三、例题解析例题1:已知平行四边形的一边长为6cm,高为4cm,求其面积。

解析:根据公式法,已知底边长为6cm,高为4cm,代入公式S = a × h,得到S = 6 × 4 = 24。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、先证明是菱形再证一个角是直角。
1、定义:先判断是梯形在证明两腰相等。
2、同一底上的两个角相等的梯形是等腰梯形。
3、对角线相等的梯形是等腰梯形。
对称性
轴对称图形
轴对称图形
轴对称图形
轴对称图形
二、直角三角形性质
1、三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。
2、由矩形的性质得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。
初三数学
平行四边形
一、基础知识平行四边形
平行四边形
矩形
菱形
正方形
等腰梯形


有两组对边分别平行的四边形是平行四边形。
有一个角是直角的平行四边形是矩形。
有一组邻边相等的平行四边形是菱形。
有一组邻边相等且有一个角是直角的平行四边形。
两腰相等的梯形是等腰梯形。


1、对边平行且相等。
2、对角相等,邻角互补。
3、对角线互相平分
1、四个角都是直角。
2、对角线相等。
1、四条边都相等。
2、两条对角线互相垂直,并且每一条对角线平分一组对角。
具有平行四边形、矩形、菱形的所有特征。
1、两腰相等两底平行
2、同一底上的两角相等
3、两条对角线相等


1、定义:
2、判定定理:
(1)两组对边分别相等的四(3)一组对边平行且相等的四边形是平行四边形。
(4)对角线互相平分的四边形是平行四边形。
1、定义:
2、判定定理:
(1)对角线相等的平行四边形是矩形。
(2)有三个角是直角的四边形是矩形。
1、定义:
2、判定定理:
(1)一组邻边相等的平行四边形是菱形。
(2)对角线互相垂直的四边形是菱形。
1、先证明是矩形再证明一组邻边相等。
相关文档
最新文档