北京大学1996年高等代数与解析几何试题及解答
北大版高等数学第五章 向量代数与空间解析几何答案 习题5.1

习题5.11.,,,,,().11,,().22ABCDAB AD AC DB MA M AC DB MA AM AC ===+=-=-=-=-+ 设为一平行四边形试用表示为平行四边形对角线的交点解a b.a b a b a b a b()2.,1().211221().2M AB O OM OA OB OM OA AM OA AB OA OB OA OA OB =+=+=+=+-=+设为线段的中点,为空间中的任意一点证明证3.,,1().3221()3321(),31(),3M ABC O OM OA OB OC OM OA AM OA AD OA AB AC OA AB AC OM OB BA BC OM OC =++=+=+=+⨯+=++=++=设为三角形的重心为空间中任意一点证明证1().313,().3CA CB OM OA OB OC OM OA OB OC ++=++=++4.,1,().41(),211(),(),221().24ABCD M O OM OA OB OC OD OM OA AM OA AB AD OM OB BA AD OM OC BA DA OM OD AB DA OM OA OB OC OD =+++=+=++=++=++=++=+++ 设平行四边形的对角线交点为为空间中的任意一点证明证1,().4OM OA OB OC OD =+++2222225.?(1)()();(2)();(3)()().(1).:()().(2).:()0, 1.(3),6.==⨯=⨯======0 对于任意三个向量与判断下列各式是否成立不成立例如,不成立例如,成立都是与组成的平行六面体的有向体积利用向量证明三角形两边中点的连线平行解a,b c,a b c b c a a b a b a b c c a b a b i c =j.a b c =j,b c a =a i b j,a b a b a,b c .,112211().22DE DA AE BA ACBA AC BC =+=+=+=于第三边并且等于第三边长度之半.证2227.:(1),;(2).(1)()()()()||||0.()cos |||||||||||||AC BD AB BC BC CD AB BC BC CD BC CD AB AC AB AB AD AB AB AB AD a AB ADAB AC AB AC AB AC α=++=+-=-=+++===利用向量证明菱形的对角线互相垂直且平分顶角勾股弦定理证2,||()cos cos .|||||||||||,.a AC AD AB AD AD AB AD AD a AB ADAB AC AB AC a AC βααβαβ+++===== 与都是锐角故 22222(2)||()()||||2||||.ACAC AC AB BC AB BC AB BC AB BC AB BC ==++=++=+2222222222222222228.()()||||.()()||||cos ||||sin ||||(cos sin )||||.9..||.AB AC ABC ABC ABDC AB AC αααα⨯+=⨯+=+=+=∆=⨯证明恒等式试用向量与表示三角形的面积11的面积=的面积22证解a b a b a b a b a b a b a b a b a b222222222210.,,,()()2().()()()()()()222().=++-=+++-=+++--=-+ 给定向量记为即现设为任意向量证明证a a a a a a a.a b , :a b a b a b a b a b a b a b a b a b a a +b b +a b +a a +b b a b =a b2222222222211.,,:().:()||(||sin )||sin ||.,αα⨯≤⨯=⨯==≤=对于任意向量证明问等号成立的充分必要条件是什么?等号成立的充分必要条件是正交证22a b a b a b a b a b a ||b a ||b a ||b a b a b .。
高等代数北大版习题参考答案

高等代数北大版习题参考答案The pony was revised in January 2021第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且(1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。
1999-2000,2,5-8,10北京大学高等代数考研真题

1. 在直角坐标系中,求直线⎩⎨⎧=++=-+1202:z y x z y x l 到平面03:=++z By x π的正交投影轨迹的方程。
其中B 是常数2. 在直角坐标系中对于参数λ的不同取值,判断下面平面二次曲线的形状:0222=+++λλxy y x .对于中心型曲线,写出对称中心的坐标;对于线心型曲线,写出对称直线的方程。
3. 设数域K 上的n 级矩阵A 的),(j i 元为ji b a -(1).求A ;(2).当2≥n 时,2121,b b a a ≠≠.求齐次线性方程组0=AX 的解空间的维数和一个基。
4.(1)设数域K 上n 级矩阵,对任意正整数m ,求mC (2)用)(K M n 表示数域K 上所有n 级矩阵组成的集合,它对于矩阵的加法和数量乘法成为K 上的线性空间。
数域K 上n 级矩阵1432121321a a a a a a a a a a a a A n n n-=称为循环矩阵。
用U 表示K 上所有n 级循环矩阵组成的集合。
证明:U 是)(K M n 的一个子空间,并求U 的一个基和维数。
5.(1)设实数域R 上n 级矩阵H 的),(j i 元为11-+j i (1>n )。
在实数域上n 维线性空间n R 中,对于nR ∈βα,,令βαβαH f '=),(。
试问:f 是不是n R 上的一个内积,写出理由。
(2)设A 是n 级正定矩阵(1>n )nR ∈α,且α是非零列向量。
令αα'=A B ,求B的最大特征值以及B 的属于这个特征值的特征子空间的维数和一个基6.设A 是数域R 上n 维线性空间V 上的一个线性变换,用I 表示V 上的恒等变换,证明: n r a n k r a n k =+++-⇔=)()(23A A I A I I A2006年北京大学研究生考试高等代数与解析几何试题 本试卷满分150分 考试时间 3小时 日期:2006年1月15日下午高等代数部分(100分)1.(16分)(1) 设,A B 分别是数域K 上,s n s m ××矩阵,叙述矩阵方程AX B =有解的充要条件,并且给予证明。
北京大学高等代数和解析几何真题1983——1984年汇总

北京大学数学考研题目1983年 基础数学、应用数学、计算数学、概率统计专业2222022200Ax By C z D yz Ezx Fxy A B C +++++=++=一、(分)证明:在直角坐标系中,顶点在原点的二次锥面有三条互相垂直的直母线的充要条件是.1223112220...1,...2, (1)n n n n n x x x x x x xx x n ++++++=⎧⎪+++=⎪⎨⎪⎪+++=+⎩二、(分)用导出组的基础解系表出线性方程组的一般解。
121220,,...,()()...()1n n a a a x a x a x a ----三、(分)设是相异整数。
证明:多项式在有理数域上不可约。
20000120231001011A ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭四、(分)用V 表示数域P 上全部4阶矩阵所成的线性空间,A 是V 中的一个矩阵,已知-10,,及10分别是的属于特征值, , ,-1的特征向量。
(1)求A;(2)求V 中与A 可交换的矩阵全体所成的子空间的维数及一组基。
20,A B 五、(分)设是两个n 级正定矩阵。
证明:AB 是正定矩阵的充要条件是A 与B 可交换。
1984年 数学各专业132110::23100363x y l z x y z π--==-++-=一、(分)求直线与平面的交点。
10,,,,a b c a b b c c a ⨯⨯⨯二、(分)设向量不共面。
试证:向量不共面。
15K K K K K K 三、(分)设和为平面上同心的单位(半径=1)开圆域和闭圆域。
(1)取定适当的坐标系,写出和的解析表示式;(2)试在和的点之间建立一个一一对应关系。
{}{}{}{}23231231251,,.2,,V R V T V V T T T T T T TT T T εεεεεεεεεεεεεεεεεεεεε--→==+=++111212312311113四、(分)设是实数域上的三维向量空间,,,是的一组基。
[专题]北大版高等数学第五章向量代数与空间解析几何答案习题53.docx
![[专题]北大版高等数学第五章向量代数与空间解析几何答案习题53.docx](https://img.taocdn.com/s3/m/8dbfc7a2aa00b52acfc7cad3.png)
习题5・31•指出下列平面位置的特点:(1)5x - 3z +1 = 0(2)x + 2y - 7z = 0(3)y + 5 = 0(4)2),- 9z = 0(5)x-y-5 = 0(6)x = 0. 解⑴平行于屛由.⑵过原点.⑶平行于平面.⑷ 过兀轴.(5)平行于z轴•⑹0〃平面.2.求下列各平面的方程:⑴平行于y轴且通过点(1,-5,1)和(3,2,-2);(2)平行于O私平面且通过点(5,2,-8);(3)垂直于平面兀-4y + 5z = 1且通过点(-2,7,3)及(0,0,0);⑷垂直于Oyz平面且通过点(5,-4,3)及(-2,1,8).1j k解⑴—(0 ,l,0),* = (2,7,-3),n= 0 1 0 =(-3,0,-2).27-3_3O_1)_2(Z_1)=0,3JC +2Z_5=0.⑵y = 2.i j k(3)a = (1,-4,5), 6 = (-2,7,3),n = 1 -4 5 = (-47,-13,-1).-2 7 347x+13y+ 1 = 0.i j k(4)“ = (1,0,0),〃 = (-7,5,5),〃= 1 0 0 =(0,-5,5) = 5(0, -1,1).-7 5 5_(y + 4) + (z_3) = 0,y_z + 7 = 0.3.求通过点A(2,4,8), B(-3,1,5)及C(6,—2,7)的平面方程.解 a = (一5, —3,—3),〃 = (4,-6,-1).i j kn= -5 -3 -3 =(-15,-17,42),4 -6 -1一15(兀一2) —17(y — 4) + 42(z — 8) = 0,15x + 17y —42z + 238 = 0.4.设一平而在各坐标轴上的截距都不等于零并相等,且过点(5, -7, 4),求此平而的方程.解—+ —+ — = 1, —H—+ — = l,a = 2, x + y + z — 2 = 0.a, a a a a a5已知两点4(2,-1,-2)及〃(8,7,5),求过B且与线段AB垂直的平面.解〃 =(6, & 7).6(x-8) + 8(y-7) + 7(z-5) = 0,6x + 8y + 7z-139 = 0.6.求过点(2,0, -3)且与2兀-2y + 4z + 7 = 0,3x+y-2z + 5二0垂直的平面方程.i j k解 n= 2 -24 =(0,16,8) = 8(0,2,l).2y + (z + 3) = 0,y + z + 3 = 0. 3 1 -27.求通过兀轴且与平面9兀-4y-2z + 3 = 0垂直的平面方程. 解 By + Cz=0,—4B —2C = 0,取B = 1,C = —2,y —2z = 0.8•求通过直纟划:{;;工:二5地:仁鳥平行的平面方程. i j ki j k 解a = 1 0 2 = (-6,1,3), 6 = 1 -1 0= (1,1,1), 0 3-10 1 -1 i j kn - -6 13 =(-2,9,-7).用z ()= 0代入厶的方程,得x° =4,>\} =-8/3.1 1 1 -2(x-4) + 9(^ + 8/3)-7(z) = 0,-2x + 9y-7z + 32 = 0.x = 3r + 89.求直线厶:* +彳=•' +1 = __与直线/ :< y = f + l 的交点坐标,3 24 _ 小, z = + 6并求通过此两直线的平面方程.解求两条直线交点坐标:3r + 8 + 3 / + 1 + 1 2/ + 6 —2 \\ t t A 163 24 3 2 23 i j kn= 3 2 4 = (0,6, -3) = 3(0,2, -l).2(y +1) - (z - 2) = 0,2y - z + 4 = 0.3 1 2 10•求通过两直线厶=^ = 凹和厶:土 = □=三的平面方程. 1 2 -1 1 -4 2 -2i j k解 两直线平行•平面过点(1,-1,-1)和(-2,2,0).川=2 — 1 1 = (—4,—5,3).-33 1一4(兀一 l)-5(y + l) + 3(z + l) = 0,-4x — 5y + 3z + 2 = 0.11证明两直线厶:口和是异面直线*-121 - 0 1 -2证首先,两直线的方向向量(-1,2,1)和(0,1,-2)不平行.x 二 _2l 2< y 二1+t —―二匕〜 力+ 3J = 5』= 0,矛盾.故两直线无公共点.-1 2 1 X Q = 一& 儿=一一牛交点(一8占弓)两-直线不平行,又无交点,故是异面直线. 12.将下列直线方程化为标准方程及参数方程:[2x+y-z + l = 0 [x-3z + 5 = 0(1* ⑵彳[3x - y + 2z - 8 = 0; [y - 2z + 8 = 0.i j k解(1)〃= 2 1 -1 =(1,-7,-5).3-12V — 7 + 1 = 0⑴中令兀0=0,{ 解Z得儿=6,Zo=7・-y+ 2z-8 = 0;标准方程—q・1 -7 -5x = t参数方程:< y = 6-lt,-oo <t < +oo.z = l-5ti j k(2)(1加=1 0 -3 =(3,2,1).0 1 -2⑵中令z° = 0,直接得x° = -5, y Q = -8.标准方程出二凹二工3 2 1x ——5 + 3t参数方程:* >' = -8 + 2r,-co<t < +oo.z = t13•求通过点(32-5)及乂轴的平面与平面3x-y-7z + 9 = 0的交线方程・ ■I j k解地第一个平面的法向量〃二1 0 0 =(0,5,2), 3 2 -5平面方程5y + 2z = 0.直线方程严+ 2*°[3 兀-y-7z + 9 = 0.i j k直线的方向向量a =0 5 2 =(一336-15) = 3(-112-5)・3 -1 -7直线方程:r 匕14 •当D 为何值时,直线产? £弓与0z 轴相交?[x + 4y-z + D = 0解直线F :y + 2z-6弓与Oz 轴相交O 存在(0,0,勺)在此直线上,[x + 4y-z + £> = 0f2z o -6 = O <=> < u> £> =知=3. Ho+o=o15.试求通过直线人:£一2":弓并与直线Z. = 2平行的平面方程.[3y — z + 8 = 0 *•匕 _y + 6 = 0i J k解厶的方向向&a = 1 0 -2 =(6丄3).0 3-1i J 平面的法向量/i =6 1 1 1 Q 在的方程中令z ()二0得X 。
高等代数(北大版)第9章习题参考答案

第九章欧氏空间1.设a ij是一个n阶正定矩阵,而(x1,x2,,x n),(y1,y2,,y n),在nR中定义内积(,),1)证明在这个定义之下,nR成一欧氏空间;2)求单位向量1(1,0,,0),(0,1,,0)2,⋯,(0,0,,1)n,的度量矩阵;3)具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解1)易见(,)是nR上的一个二元实函数,且(1)(,)()(,),(2)(k,)(k)k()k(,),(3)(,)()(,)(,),(4) (,)aij xy,iji,j由于A是正定矩阵,因此i,j a ij xyij是正定而次型,从而(,)0,且仅当0时有(。
,)02)设单位向量11,00),(0,1,,0)(,,2,⋯,(0,0,,1)n,的度量矩阵为()Bb,则ija 11 a12a1nbij (,)(0,,ij1,(i)0)a22a22a2n 1 ( j)=a ij,(i,j1,2,,n),an1an2ann 0因此有BA。
4)由定义,知(,) a ij xy(,)a ij x i x jij (,)a ij y i y ji,j,i,ji,j,,故柯西—布湿柯夫斯基不等式为axyaxxayyijijijijijiji,ji,ji,j2.在4R中,求,之间,(内积按通常定义),设:1)(2,1,3,2),(1,2,2,1),2)(1,2,2,3),(3,1,5,1),3)(1,1,1,2),(3,2,1,0)。
解1)由定义,得(,)21123(1)210,所以,2。
2)因为(,,)1321253118(,)11222233 18,(,,)3311223336cos,1818 36 2 2,所以,。
4 3)同理可得(,(,)17,(,)3, ,)33 cos,,7731,cos所以77。
3.d(,)通常为,的距离,证明;d。
(,)d(,)d(,)证由距离的定义及三角不等式可得d(,)()()d(,)d(,)。
高等代数(北大版第三版)习题答案II

高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章—矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A为一个n级实对称矩阵,且,证明:必存在实n维向量,使。
证因为,于是,所以,且A不是正定矩阵。
故必存在非退化线性替换使,且在规范形中必含带负号的平方项。
于是只要在中,令则可得一线性方程组,由于,故可得唯一组非零解使,Xs即证存在,使。
13.如果A,B都是n阶正定矩阵,证明:也是正定矩阵。
证因为A,B为正定矩阵,所以BX为正定二次型,且,,因此,于是必为正定二次型,从而为正定矩阵。
14.证明:二次型是半正定的充分必要条件是它的正惯性指数与秩相等。
证必要性。
采用反证法。
若正惯性指数秩r,则。
即,22222 若令,y,则可得非零解使。
这与所给条件矛盾,故。
充分性。
由,知,222故有,即证二次型半正定。
.证明:是半正定的。
证()可见:。
21)当不全相等时2)当时f。
2故原二次型是半正定的。
AX是一实二次型,若有实n维向量X1,X2使16.设,。
X1。
证明:必存在实n维向量使X0设A的秩为r,作非退化线性替换将原二次型化为标准型,其中dr为1或-1。
由已知,必存在两个向量X1,X2使222和,X1故标准型中的系数不可能全为1,也不可能全为-1。
不妨设有p个1,q 个-1,且,即,这时p与q存在三种可能:,,下面仅讨论的情形,其他类似可证。
令,,,则由可求得非零向量X0使2222,X0即证。
17.A是一个实矩阵,证明:。
证由于的充分条件是与为同解方程组,故只要证明与同解即可。
事实上,即证与同解,故。
注该结论的另一证法详见本章第三部分(补充题精解)第2题的证明,此处略。
一、补充题参考解答1.用非退化线性替换化下列二次型为标准型,并用矩阵验算所得结果:1);2);3);4),其中。
n解1)作非退化线性替换,即,则原二次型的标准形为,且替换矩阵222222使,,其中2)若则。
高等代数(北大版)第10章习题参考答案

第十章双线性函数与辛空间1、设V是数域P上的一个三维线性空间,ε1,ε2,ε3是它的一组基,f是V上的一个线性函数,已知f(ε1+ε3)=1,f (ε2-2ε3)=-1,f (ε1+ε2)=-3求f (X1ε1+X2ε2+X3ε3).解因为f是V上线性函数,所以有f(ε1)+ f (ε3)=1f (ε2)-2 f (ε3)=-1f(ε1)+f (ε2)=-3解此方程组可得f(ε1)=4,f (ε2)=-7,f (ε3)=-3 于是f (X1ε1+X2ε2+X3ε3).=X1f(ε1)+X2 f (ε2)+X3 f (ε3)=4 X1-7 X2-3 X32、设V与ε1,ε2,ε3同上题,试找出一个线性函数f ,使f(ε1+ε3)=f (ε2-2ε3)=0, f (ε1+ε2)=1解设f为所求V上的线性函数,则由题设有f(ε1)+ f (ε3)=0f (ε2)-2 f (ε3)=0f(ε1)+f (ε2)=1解此方程组可得f(ε1)=-1,f (ε2)=2,f (ε3)=1于是∀a∈V,当a在V的给定基ε1,ε2,ε3下的坐标表示为a= X1ε1+X2ε2+X3ε3时,就有f (a)=f (X1ε1+X2ε2+X3ε3)= X 1 f(ε1)+X 2 f (ε2)+X 3 f (ε3)=-X 1+2 X 2+ X 3 3、 设ε1,ε2,ε3是线性空间V 的一组基,f1,f2,f3是它的对偶基,令α1=ε1-ε3,α2=ε1+ε2-ε3,α3=ε2+ε3试证:α1,α2,α3是V 的一组基,并求它的对偶基。
证: 设〔α1,α2,α3〕=〔ε1,ε2,ε3〕A由已知,得A =110011111⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦因为A ≠0,所以α1,α2,α3是V 的一组基。
设g1,g2,g3是α1,α2,α3得对偶基,则 〔g1,g2,g3〕=〔f1,f2,f3〕〔A ˊ〕1-=〔f1,f2,f3〕011112111-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦因此g1=f2-f3g2=f1-f2+f3 g3=-f1+2f2-f34.设V 是一个线性空间,f1,f2,…fs 是V *中非零向量,试证:∃α∈V ,使 fi(α)≠0 (i=1,2…,s)证:对s 采用数学归纳法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五. 令
g(x)
=
xn
−
1
=
n∏−1
( x
−
e
2πki n
)
,
k=0
则 g(A) = 0, 于是 A 的最小多项式 mA(x) 将整除 g(x), 从而 mA(x) 为 C 上互素一次因式的乘积, 从而一
定可以相似对角化.
六. W 的标准正交基是 1, 1, x, x2, x3 是 R[x]4 的一组基, 从而 ∀f (x) = a0 + a1x + a2x2 + a3x3 ∈ W ⊥,
北京大学 1996 年全国硕士研究生招生考试高代解几试题及解答
微信公众号:数学十五少 2019.05.25
一. (15 分) 在仿射坐标系中, 求过点 M0(0, 0, −2), 与平面 π1 : 3x − y + 2z − 1 = 0 平行, 且与直线
x−1 y−3 z
ℓ1 :
=
=
4
−2 −1
相交的直线 ℓ 的方程.
(1) P 是 V 上的线性变换, 并且 P2 = P;
(2) P 的核 KerP = W, P 的象 (值域)ImP = U ;
(3) V 中存在一个基, 使得 P 在这个基下的矩阵是 ( Ir
O
) O
, O
其中 Ir 表示 r 级单位矩阵, 请指出 r 等于什么.
五. (12 分) n 阶矩阵 A 称为周期矩阵, 如果存在正整数 m, 使 Am = I, 其中 I 是单位矩阵. 证明: 复数域 C 上 的周期矩阵一定可以对角化.
(1, 0, −1)T, (0, 2, −1)T. 令
xy
=
2
3
1 3
√1 2
0
0
√2 5
xy11
,
z
2 √−1 √−1
3
2
5
z1
带入原方程化简配方可得
−4
( x1
−
3 )2 8
+
5y12
+
5z12
=
1.
再令
x1
−
3 8
=
u
y1 = v z1 = w
化简得
x−0 y−0 z+2
0−0
=
7 2
−0
=
−
1 4
, +2
x y z+2
==
ห้องสมุดไป่ตู้
.
02 1
二. 二次型部分对应的矩阵为
A = −12
−2 4
−−24 .
−4 −2 1
|λE − A| = (λ − 5)2(λ + 4), λ = −4 对应的一个特征向量为 (2, 1, 1)T, λ = 5 对应的两个特征向量为
(2) α1 + α2, α2 + α3, α3 + α4 是线性无关的, 而 α4 + α1 可以由前面三个线性表出, 从而 W 的一个基为 α1 + α2, α2 + α3, α3 + α4, 并且 dim W = 3.
四. (1) ∀α = α1 + α2, β = β1 + β2 ∈ V, 其中 α1, β1 ∈ U, α2, β2 ∈ W, 则
P (k1α + k2β) = k1α1 + k2β1 = k1P(α) + k2P(β), P2(α) = P (P(α)) = P(α1) = α1 = P(α),
故 P 是 V 上的线性变换, 由 α 的任意性知 P2 = P.
(2) ∀α ∈ W, 均有 P(α) = 0, 从而 W ⊂ KerP. ∀α ∈ V, α = α1 + α2, 若 P(α) = 0, 则 α1 = 0, 从而 α = α2 ∈ W, 于是 KerP = W. 易知 ImP ⊂ U, 又由于 ∀α ∈ U, P(α) = α, 从而 U ⊂ ImP, 于是 U = ImP.
∫1 1 · f (x) dx
0
= a0 +
a1 2
+
a2 3
+
a3 4
= 0,
于是
( )(
)(
)
f (x) = a1
1 x−
2
+ a2
x2 − 1 3
+ a3
x3 − 1 4
,
由此可以看出 x − 1/2, x2 − 1/3, x3 − 1/4 为 W ⊥ 的一组基.
3
二. (25 分) 作直角坐标变换, 把下述二次曲面方程化成标准方程, 并且指出它是什么曲面: x2 + 4y2 + z2 − 4xy − 8xz − 4yz + 2x + y + 2z − 25 = 0. 16
三. (16 分) 设线性空间 V 中的向量组 α1, α2, α3, α4 线性无关.
六. (16 分) 用 R[x]4 表示实数域 R 上次数小于 4 的一元多项式组成的集合, 它是一个欧几里得空间, 其上的内
积为
∫1 (f, g) = f (x)g(x) dx.
0
设 W 是由零次多项式组成的子空间, 求 W ⊥ 以及它的一个基.
1
一. 过 M0 与 π1 平行的平面为 π2 : 3x − y + 2z + 4 = 0, ℓ1 与 π2 的交点为 (0, 7/2, −1/4), 从而直线 ℓ 的方程为
(1) 试问: 向量组 α1 + α2, α2 + α3, α3 + α4, α4 + α1 是否线性无关? 要求说明理由. (2) 求向量组 α1 + α2, α2 + α3, α3 + α4, α4 + α1 生成的线性子空间 W 的一个基以及 W 的维数.
四. (16 分) 设 V 是数域 K 上的 n 维线性空间, 并且 V = U ⊕ W. 任给 α ∈ V, 设 α = α1 + α2, 其中 α1 ∈ U, α2 ∈ W. 令 P(α) = α1. 证明:
就可以化成标准方程, 从而知道曲面为单叶双曲面.
三. (1)
1001
(α1 + α2, α2 + α3, α3 + α4, α4 + α1) = (α1, α2, α3, α4) 10
1 1
0 1
00 ,
0011
又因为 |A| = 0, 故 α1 + α2, α2 + α3, α3 + α4, α4 + α1 线性无关.
2
(3) 取 U 的一组基 ξ1, ξ2, . . . , ξs, W 的一组基 ξs+1, . . . , ξn, 则 ξ1, ξ2, . . . , ξn 是 V 的一组基, 并且
[
]
P (ξ1, ξ2, . . . , ξn) = (ξ1, ξ2, . . . , ξn) Is
O ,
OO
从而看出 r = dim U.