浙教版七年级数学下册第3章单元测试卷
浙教版七年级数学下册第3章综合素质评价 附答案

浙教版七年级数学下册第3章综合素质评价第Ⅰ卷 (选择题)一、单选题(本题有10小题,每小题3分,共30分) 1.下列各式的运算,结果正确的是( )A .a 2+a 3=a 5B .a 2·a 3=a 6C .a 3-a 2=aD .(2a )2=4a 2 2.计算⎝ ⎛⎭⎪⎫23 2 025×1.52 024×(-1)2 024的结果是( )A .23B .32C .-23D .-32 3.下列计算正确的是( )A .(x +2y )(x -2y )=x 2-2y 2B .(x -y )(-x -y )=-x 2-y 2C .(x -y )2=x 2-2xy +y 2D .(x +y )2=x 2+y 24.已知x 2-x =3,则代数式(3x +2)(3x -2)+x (x -10)的值为( )A .34B .14C .26D .75.已知(a +b )2=8,(a -b )2=2,则a 2+b 2的值是( )A .3B .5C .6D .106.一个长方体模型的长、宽、高分别是4a cm ,3a cm ,a cm ,某种油漆每千克可漆的面积为12a cm 2,则漆这个模型表面需要这种油漆的质量是( )A .76a 千克B .38a 千克C .76a 2千克D .38a 2千克7.一个长方形的面积为2xy 3-6x 2y 2+3xy ,长为2xy ,则这个长方形的宽为( )A .y 2-3xy +32B .2y 2-2xy +3C.2y2-6xy+3 D.2y2-xy+3 28.已知无论x取何值,等式(x+a)(x+b)=x2+2x+n恒成立,则关于代数式a3b+ab3-2的值有下列结论:①交换a,b的位置,代数式的值不变;②该代数式的值是非正数;③该代数式的值不会小于-2,上述结论正确的是( )A.①② B.①③ C.②③ D.①②③9.已知x2+4y2=13,xy=3,求x+2y的值,这个问题我们可以用边长分别为x和y的两种正方形组成一个图形来解决(其中x>y),能较为简单地解决这个问题的图形是( )10.【2022·宁波改编】将两张完全相同的长方形纸片和另两张完全相同的正方形纸片按如图方式不重叠地放置在长方形ABCD内,其中长方形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出( )A.正方形纸片的面积 B.四边形EFGH的面积C.三角形BEF的面积 D.三角形AEH的面积第Ⅱ卷(非选择题)二、填空题(本题有6小题,每小题4分,共24分)11.已知a x=2,a y=4,则a3x-y=________.12.若x2+mx+4是完全平方式,则m=________.13.已知3a =4,3b =10,3c =25,则a ,b ,c 之间满足的等量关系是______________.14.计算2 0222-2 025×2 019=________.15.已知a 2+b 2=7,a +b =3,则(a -2)(b -2)=________.16.有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为4和96,则正方形A ,B 的面积之和为________;周长之和为________. 三、解答题(本题有8小题,共66分) 17.(6分)计算:(1)2a 2b ·(-3b 2c )÷(4ab 3)(2)(-1)2 024-(3)0+⎝ ⎛⎭⎪⎫15-2.18.(6分)先化简,再求值:(2a -b )(2a +b )+(a -b )2-a (5a -3b ),其中a=1,b =-12.19.(8分)亮亮计算一道整式乘法的题(3x -m )(2x -5)时,由于抄错了第一个多项式中m 前面的符号,把“-”写成了“+”,得到的结果为6x 2-5x -25.(1)求m的值;(2)计算这道整式乘法的正确结果.20.(8分)如图,有一块长方形板材ABCD,长AD为2a cm(a>2),宽AB比长AD少4 cm,若扩大板材,将其长和宽都增加2 cm.(1)板材原来的面积(即长方形ABCD的面积)是多少平方厘米?(2)板材扩大后面积比原来多多少平方厘米?21.(8分)乘法公式的探究及应用.(1)如图①,是将图②阴影部分裁剪下来,重新拼成的一个长方形,面积是______________;如图②,阴影部分的面积是 ____________;比较图①,图②阴影部分的面积,可以得到乘法公式________________.(2)运用你所得到的公式,计算下列各题:①103×97;②(2x+y-3)(2x-y+3).22.(8分)两个边长分别为a和b的正方形如图放置(图①),其未叠合部分(阴影)面积为S1;若再在图①中大正方形的右下角摆放一个边长为b的小正方形(如图②),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1,S2;(2)若a+b=10,ab=20,求S1+S2的值.23.(10分)观察下列各式的计算结果:1-122=1-14=34=12×32; 1-132=1-19=89=23×43; 1-142=1-116=1516=34×54; 1-152=1-125=2425=45×65… (1)用你发现的规律填写下列式子的结果:1-162=______×______;1-1102=______×________. (2)用你发现的规律计算:⎝⎛⎭⎪⎫1-122×⎝ ⎛⎭⎪⎫1-132×⎝ ⎛⎭⎪⎫1-142×…×⎝ ⎛⎭⎪⎫1-12 0222×⎝ ⎛⎭⎪⎫1-12 0232.24.(12分)先阅读下面材料,再解决问题:在求多项式的值时,有时可以通过“降次”的方法,把字母的次数从“高次”降为“低次”.一般有“逐步降次法”和“整体代入法”两种做法.例如:已知x2+2x-1=0,求多项式2x2+4x+2 023的值.方法一:∵x2+2x-1=0,∴x2=-2x+1,∴原式=2(-2x+1)+4x+2 023=-4x+2+4x+2 023=2 025.方法二:∵x2+2x-1=0,∴x2+2x=1,∴原式=2(x2+2x)+2 023=2+2 023=2 025.(1)应用:已知2x2+6x-3=0,求多项式-3x2-9x+4的值(只需用一种方法即可);(2)拓展:已知x2+3x-2=0,求多项式3x4+12x3+3x2-6x+5的值(只需用一种方法即可).答案一、1.D 2.A 3.C4.C 提示:(3x +2)(3x -2)+x (x -10)=9x 2-4+x 2-10x =10x 2-10x -4. 当x 2-x =3时,原式=10(x 2-x )-4=10×3-4=30-4=26.故选C .5.B6.A 提示:由题意知,长方体模型的表面积为4a ×3a ×2+4a ×a ×2+3a×a ×2=38a 2(cm 2),∴需要油漆38a 2÷⎝ ⎛⎭⎪⎫12a =76a (千克),故选A.7.A8.A 提示:∵等式(x +a )(x +b )=x 2+2x +n 恒成立,即x 2+(a +b )x +ab=x 2+2x +n 恒成立,∴⎩⎨⎧a +b =2,ab =n ,∴a 3b +ab 3-2=ab (a 2+b 2)-2=ab [(a +b )2-2ab ]-2=n [22-2n ]-2=4n -2n 2-2=-2n 2+4n -2=-2(n -1)2, ∵-2(n -1)2只与n 有关,故①正确;根据偶次幂为非负数得-2(n -1)2≤0,故②正确,③错误.故选A.9.B10.C 提示:设正方形纸片的边长为x,正方形EFGH的边长为y,则长方形纸片的宽为x-y,所以图中阴影部分的面积=S正方形EFGH+2S三角形AEH+2S三角形DHG=y2+2×12y·(x-y)+2×12xy=2xy,所以根据题意可知xy的值,A选项中正方形纸片的面积=x2,根据条件无法求出,不符合题意;B选项中四边形EFGH的面积=y2, 根据条件无法求出,不符合题意;C选项中三角形BEF的面积=12 xy,根据条件可以求出,符合题意;D选项中三角形AEH的面积=12y(x-y)=xy-y22,根据条件无法求出,不符合题意.故选 C.二、11.2 12.±413.a+c=2b提示:∵4×25=100,3a=4,3b=10,3c=25,∴3a×3c=3b×3b,∴3a+c=32b,∴a+c=2b.14.9 提示:原式=2 0222-(2 022+3)×(2 022-3)=2 0222-2 0222+9=9.15.-1 提示:∵a2+b2=7,a+b=3,∴(a+b)2-2ab=7,∴2ab=2,∴ab=1.∴(a-2)(b-2)=ab-2a-2b+4=ab-2(a+b)+4=1-2×3+4=-1.16.100;56 提示:设正方形A的边长为a,正方形B的边长为b,由图甲得a2-b2-2b(a-b)=4,∴a2+b2-2ab=4,∴a2+b2=4+2ab.由图乙得(a+b)2-a2-b2=96.∴2ab=96,∴正方形A,B的面积之和为a2+b2=4+2ab=4+96=100. 又∵a2+b2-2ab=4,∴a2+2ab+b2-4ab=(a+b)2-4ab=4,∴(a+b)2=4+4ab=4+96×2=196.∴a+b=14(取正值,负值舍去),∴正方形A,B的周长之和为4a+4b=4(a+b)=4×14=56.三、17.解:(1)原式=-6a2b3c÷(4ab3)=-32 ac.(2)原式=1-1+25=25.18.解:原式=(4a2-b2)+(a2-2ab+b2)-(5a2-3ab)=ab.当a=1,b=-12时,原式=-12.19.解:(1)根据题意可得(3x+m)(2x-5)=6x2-15x+2mx-5m=6x2-(15-2m)x-5m=6x2-5x-25,∴-5m=-25,解得m=5.(2)(3x-5)(2x-5)=6x2-15x-10x+25=6x2-25x+25.20.解:(1)由题意得AB=(2a-4)cm,∴板材原来的面积(即长方形ABCD的面积)是AD·AB=2a·(2a-4)=(4a2-8a)cm2.(2)扩大板材后,长为(2a+2)cm,宽为(2a-2)cm.扩大后的板材面积为(2a+2)(2a-2)=(4a2-4)cm2.板材扩大后面积比原来多的面积为4a2-4-(4a2-8a)=(8a-4)cm2.21.解:(1)(a+b)(a-b);a2-b2;(a+b)(a-b)=a2-b2(2)①103×97=(100+3)×(100-3)=1002-32=10 000-9=9 991.②原式=[2x+(y-3)][2x-(y-3)]=(2x)2-(y-3)2=4x2-(y2-6y+9)=4x2-y2+6y-9.22.解:(1)S1=a2-b2,S2=2b2-ab.(2)S1+S2=a2-b2+2b2-ab=a2+b2-ab,∵a+b=10,ab=20,∴S1+S2=a2+b2-ab=(a+b)2-3ab=100-3×20=40.23.解:(1)56;76;910;1110(2)原式=12×32×23×43×34×54×…×2 0212 022×2 0232 022×2 0222 023×2 0242 023=12×2 0242 023=1 0122 023.24.解:(1) ∵2x2+6x-3=0,∴x2+3x=3 2,∴原式=-3()x2+3x+4=-3×32+4=-12 .(2) ∵x2+3x-2=0,∴x2=-3x+2,∴原式=3(-3x+2)2+12x(-3x+2)+3(-3x+2)-6x+5 =27x2-36x+12-36x2+24x-9x+6-6x+5=-9x2-27x+23=-9(-3x+2)-27x+23=27x-18-27x+23=5.。
浙教版七年级数学下册试题第3章《整式的乘除》单元培优测试题.docx

浙教版七年级数学下册试题第3章《整式的乘除》单元培优测试题.docx浙教版七下数学第3章《整式的乘除》单元培优测试题班级_________ 姓名_____________ 得分_____________注意事项:本卷共有三⼤题23⼩题,满分120分,考试时间120分钟.⼀、选择题(本题有10⼩题,每⼩题3分,共30分)下⾯每⼩题给出的四个选项中,只有⼀个是正确的.1﹒已知x a=2,x b=3,则x3a+2b等于()A﹒17 B﹒72 C﹒24 D﹒362﹒下列计算正确的是()A﹒(a2)3=a5B﹒(-2a)2=-4a2C﹒m3·m2=m6D﹒a6÷a2=a43﹒科学家在实验中测出某微⽣物约为0.0000035⽶,将0.0000035⽤科学记数法表⽰为()A﹒3.5×10-6B﹒3.5×106C﹒3.5×10-5D﹒35×10-54﹒下列计算不正确的是()A﹒(-2)3÷(-25)=14B﹒(-2×102)(-8×10-3)=1.6C﹒23×(12)-3=1D﹒(5)2×(-5)-2=15﹒下列计算正确的是()A﹒5x6·(-x3)2=-5x12B﹒(x2+3y)(3y-x2)=9y2-x4C﹒8x5÷2x5=4x5D﹒(x-2y)2=x2-4y26﹒已知M=20162,N=2015×2017,则M与N的⼤⼩是()A﹒M>N B﹒M<N C﹒M=N D﹒不能确定7﹒当x取任意实数时,等式(x+2)(x-1)=x2+mx+n恒成⽴,则m+n的值为()A﹒1 B﹒2 C﹒-1 D﹒-28﹒已知x2-4x-1=0,则代数式2x(x-3)-(x-1)2+3的值为()A﹒3 B﹒2 C﹒1D﹒-19﹒若x a÷y a=a2,()x yb=b3,则(x+y)2的平⽅根是()A﹒4B﹒±4C﹒±6D﹒1610.若代数式[2x3(2x+1)-x2]÷2x2与x(1-2x)的值互为相反数,则x的值是()A﹒0B﹒12C﹒4D﹒14⼆、填空题(本题有6⼩题,每⼩题4分,共24分)要注意认真看清题⽬的条件和要填写的内容,尽量完整地填写答案.11.计算:(-2ab2)3=_________.12.若ax3m y12÷3x3y2n=4x6y8,则(2m+n-a)n=____________﹒13.若(2x +3y )(mx -ny )=4x 2-9y 2,则mn =___________. 14.如图,在长为2a +3,宽为a +1的长⽅形铁⽚上剪去两个边长均为a -1(a >1)的正⽅形,则剩余部分的⾯积是______________ (⽤含a 的代数式表⽰). 15. 已知a +b =8,a 2b 2=4,则12(a 2+b 2)-ab =____________. 16.若2x 3-ax 2-5x +5=(2x 2+ax -1)(x -b )+3,其中a ,b 为整数,则1()ab -=_________. 三、解答题(本题有7⼩题,共66分)解答应写出⽂字说明,证明过程或推演步骤. 17.(8分)计算:(1)2-+11()3--×(3-2)0-9+2017(1)-﹒(2)(4ab 3+8a 2b 2)÷4ab + (a -b )(3a +b )﹒18.(10分)先化简,再求值:(1)[2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y ,其中x =2017,y =2016﹒(2)(2m -12n )2+(2m -12n )(-2m -12n ),其中m ,n 满⾜⽅程组213211m n m n +=??-=?﹒19.(8分)⼩明与⼩亮在做游戏,两⼈各报⼀个整式,⼩明报的整式作被除式,⼩亮报的整式作除式,要求商式必须为2xy﹒若⼩明报的是x3y-2xy2,⼩亮应报什么整式?若⼩亮也报x3y-2xy2,那么⼩明能报⼀个整式吗?说说你的理由﹒20.(8分)观察下列关于⾃然数的等式:22﹣9×12=-5 ①52﹣9×22=-11 ②82﹣9×32=-17 ③…根据上述规律,解决下列问题:(1)完成第四个等式:112﹣9×_______=___________.(2)根据上⾯的规律,写出你猜想的第n个等式(等含n的等式表⽰),并验证其正确性.21.(10分)阅读下列材料,解答问题:在(x2+ax+b)(2x2-3x-1)的积中,x3项的系数为-5,x2的系数为-6,求a,b的值.解:(x2+ax+b)(2x2-3x-1)=2x4-3x3+2ax3-3ax2+2bx2-3bx6……①=2x4-(3-2a)x3-(3a-2b)x2-3bx……②根据对应项系数相等有325326aa b-=--=-,解得49ab==,……③(1)上述解答过程是否正确?(2)若不正确,从第⼏步开始出现错误?其它步骤是否还有错误?(3)请你写出正确的解答过程.22.(10分)⼀张如图1的长⽅形铁⽪,四个⾓都剪去边长为30cm 的正⽅形,再将四周折起,做成⼀个有底⽆盖的铁盒如图2,铁盒底⾯长⽅形的长为4a (cm ),宽为3a (cm ),这个⽆盖铁盒的各个⾯的⾯积之和称为铁盒的全⾯积. (1)请⽤含a 的代数式表⽰图1中原长⽅形铁⽪的⾯积. (2)若要在铁盒的各个⾯漆上某种油漆,每元钱可漆的⾯积为50a(cm 2),则油漆这个铁盒需要多少钱(⽤含a 的代数式表⽰)?(3)是否存在⼀个正整数a ,使得铁盒的全⾯积是底⾯积的正整数倍?若存在,请求出这个a 的值;若不存在,请说明理由.23.(12分)如果⼀个正整数能表⽰为两个连续偶数的平⽅差,那么称这个正整数为“神秘数”﹒如:4=22-02;12=42-22;20=62-42,因此4,12,20这三个数都是神秘数. (1)28和2016这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k +2和2k (其中k 取⾮负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平⽅差(k 取正数)是神秘数吗?为什么?浙教版七下数学第3章《整式的乘除》单元培优测试题参考答案Ⅰ﹒答案部分:⼀、选择题题号 1 2 3 4 5 6 7 8 9 10 答案BDACBACABD⼆、填空题11﹒-8a 3b 6﹒ 12﹒ 16﹒ 13﹒ 6﹒ 14﹒9a +1﹒ 15﹒ 0或8﹒ 16﹒14﹒三、解答题17.解答:(1)2-+11()3--×(3-2)0-9+2017(1)- =2+(-3)×1-3+(-1)=2-3-3-1 =-5﹒(2)(4ab 3+8a 2b 2)÷4ab + (a -b )(3a +b ) =b 2+2ab +3a 2+ab -3ab -b 2=3a 2﹒ 18.解答:(1)[2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y =[2x 3y -2x 2y 2+x 2y 2-x 3y ] ÷x 2y =[x 3y -x 2y 2] ÷x 2y =x -y 当x =2017,y =2016时,原式=2017-2016=1﹒(2)解⽅程组213211m n m n +=??-=?,得31m n =??=-?,(2m -12n )2+(2m -12n )(-2m -12n ) =4m 2-2mn +14n 2-(2m -12n )(2m +12n )=4m 2-2mn +14n 2-4m 2+14n 2=-2mn +12n 2当m =3,n =-1时,原式=-2×3×(-1)+12×(-1)2=-512﹒ 19.解答:当⼩明报x 3y -2xy 2时,(x 3y -2xy 2)÷2xy =x 3y ÷2xy -2xy 2÷2xy =12x 2-y ,所以⼩亮报的整式是12x 2-y ;⼩明也能报⼀个整式,理由如下:∵(x 3y -2xy 2)·2xy =x 3y ·2xy -2xy 2·2xy =2x 4y 2-4x 2y 3,∴⼩明报的整式是2x 4y 2-4x 2y 3. 20.解答:(1)由①②③三个等式的规律,可得出第四个等式:112﹣9×42=-23,故答案为:42,-23.(2)猜想:第n 个等式为(3n -1)2-9n 2=-6n +1;验证:∵左边=(3n -1)2-9n 2=9n 2-6n +1-9n 2=-6n +1,右边=-6n +1,∴左边=右边,即(3n -1)2-9n 2=-6n +1﹒ 21.解答:(1)不正确,(2)从第①步开始出现错误,还有第③步也出现错误,(3)正确的解答过程如下:∵(x 2+ax +b )(2x 2-3x -1)=2x 4-3x 3-x 2+2ax 3-3ax 2-ax +2bx 2-3bx -b=2x 4+(2a -3)x 3+(-3a +2b -1)x 2+(-a -3b )x -b ,∴展开式中含x 3的项为(2a -3)x 3,含x 2的项为(-3a +2b -1)x 2,由题意,得2353216a a b -=-??-+-=-?,解得14a b =-??=-?﹒22.解答:(1)原长⽅形铁⽪的⾯积为(4a +60)(3a +60)=12a 2+420a +3600(cm 2);(2)油漆这个铁盒的全⾯积是:12a 2+2×30×4a +2×30×3a =12a 2+420a (cm 2),则油漆这个铁盒需要的钱数是:(12a 2+420a )÷50a =(12a 2+420a )×50a=600a +21000(元);(3)铁盒的全⾯积是:4a ×3a +4a ×30×2+3a ×30×2=12a 2+420a (cm 2),底⾯积是:4a ×3a =12a (cm 2),假设存在正整数n ,使12a 2+420a =n (12a 2),∵a 是正整数,∴(n -1)a =35,则a =35,n =2或a =7,n =6或a =1,n =36,所以存在铁盒的全⾯积是底⾯积的正整数倍,这时a =35或7或1. 23. 解答:(1)∵28=4×7=82-62,2016=4×504=5052-5032,∴28和2016这两个数是神秘数;(2)是4的倍数,理由如下:∵(2k +2)2-(2k )2=4k 2+8k +4-4k 2=8k +4=4(2k +1),⼜k 是⾮负整数,∴由这两个连续偶数2k +2和2k 构造的神秘数是4的倍数;(3)两个连续奇数的平⽅差不是神秘数,理由如下:设这两个连续奇数为2k +1,2k -1,则(2k +1)2-(2k -1)2=4k 2+4k +1-(4k 2-4k +1)=4k 2+4k +1-4k 2+4k -1=8k =4×2k ,由(2)知神秘数应为4的奇数倍,故两个连续奇数的平⽅差不是神秘数﹒Ⅱ﹒解答部分:⼀、选择题1﹒已知x a=2,x b=3,则x3a+2b等于()A﹒17 B﹒72 C﹒24 D﹒36解答:∵x a=2,x b=3,∴x3a+2b=(x a)3·(x b)2=8×9=72.故选:B.2﹒下列计算正确的是()A﹒(a2)3=a5B﹒(-2a)2=-4a2C﹒m3·m2=m6D﹒a6÷a2=a4解答:A﹒(a2)3=a6,故此项错误;B﹒(-2a)2=4a2,故此项错误;C﹒m3·m2=m5,故此项错误;D﹒a6÷a2=a4,故此项正确.故选:D.3﹒科学家在实验中测出某微⽣物约为0.0000035⽶,将0.0000035⽤科学记数法表⽰为()A﹒3.5×10-6B﹒3.5×106C﹒3.5×10-5D﹒35×10-5解答:0.0000035=3.5×10-6.故选:A.4﹒下列计算不正确的是()A﹒(-2)3÷(-25)=14B﹒(-2×102)(-8×10-3)=1.6C﹒23×(12)-3=1D﹒(5)2×(-5)-2=1解答:A﹒(-2)3÷(-25)=(-2)3÷(-2)5=(-2)-2=14,故此项正确;B﹒(-2×102)(-8×10-3)=[(-2)×(-8)]×(102×10-3)=16×110=1.6,故此项正确;C﹒23×(12)-3=23×23=8×8=64,故此项错误;D﹒(5)2×(-5)-2=(5)2×(5)-2=(5)0=1,故此项正确.故选:C.5﹒下列计算正确的是()A﹒5x6·(-x3)2=-5x12B﹒(x2+3y)(3y-x2)=9y2-x4C﹒8x5÷2x5=4x5D﹒(x-2y)2=x2-4y2解答:A﹒5x6·(-x3)2=5x6·x6=5x12,故此项错误;B﹒(x2+3y)(3y-x2)=9y2-x4,故此项正确;C﹒8x5÷2x5=4,故此项错误;D﹒(x-2y)2=x2-4xy+4y2,故此项错误.故选:B.6﹒已知M=20162,N=2015×2017,则M与N的⼤⼩是()A﹒M>N B﹒M<N C﹒M=N D﹒不能确定解答:∵N=2015×2017=(2016-1)(2016+1)=20162-1,M=20162,∴M>N﹒故选:A.7﹒当x取任意实数时,等式(x+2)(x-1)=x2+mx+n恒成⽴,则m+n的值为()A﹒1 B﹒2 C﹒-1 D﹒-2解答:∵(x+2)(x-1)=x2+x-2,⼜等式(x+2)(x-1)=x2+mx+n恒成⽴,∴m=1,n=-2,∴m+n=-1.故选:C.8﹒已知x2-4x-1=0,则代数式2x(x-3)-(x-1)2+3的值为()A﹒3 B﹒2 C﹒1D﹒-1解答:∵x2-4x-1=0,∴x2-4x=1,∴2x(x-3)-(x-1)2+3=2x2-6x-(x2-2x+1)+3=2x2-6x-x2+2x-1+3=x2-4x+2=3﹒故选:A﹒9﹒若x a÷y a=a2,()x yb=b3,则(x+y)2的平⽅根是()A﹒4B﹒±4C﹒±6D﹒16解答:由x a÷y a=a2,得x-y=2,由()x yb=b3,得xy=3,把x-y=2两边平⽅,得x2-2xy+y2=4,则x2+y2=4+2xy=10,∴(x+y)2=x2+y2+2xy=10+6=16﹒∴(x+y)2的平⽅根是±4﹒故选:B.10.若代数式[2x3(2x+1)-x2]÷2x2与x(1-2x)的值互为相反数,则x的值是()A﹒0B﹒12C﹒4D﹒14解答:∵代数式[2x3(2x+1)-x2]÷2x2与x(1-2x)的值互为相反数,∴[2x3(2x+1)-x2]÷2x2+x(1-2x)=0,(4x4+2x3-x2)÷2x2+x-2x2=02x2+x-12+x-2x2=02x-12=0,x=14,故选:D.⼆、填空题11.计算:(-2ab2)3=_________.解答:原式=-8a3b6·故答案为:-8a3b6﹒12.若ax3m y12÷3x3y2n=4x6y8,则(2m+n-a)n=____________﹒解答:∵ax3m y12÷3x3y2n=(a÷3)x3m-3y12-2n=4x6y8,∴a÷3=4,3m-3=6,12-2n=8,∴a=12,m=3,n=2,∴(2m+n-a)n=(6+2-12)2=16﹒故答案为:16﹒13.若(2x +3y )(mx -ny )=4x 2-9y 2,则mn =___________. 解答:∵(2x +3y )(2x -3y )=4x 2-9y 2,∴m =2,n =3,∴mn =6﹒故答案为:6﹒14.如图,在长为2a +3,宽为a +1的长⽅形铁⽚上剪去两个边长均为a -1(a >1)的正⽅形,则剩余部分的⾯积是______________(⽤含a 的代数式表⽰).解答:由题意,知:剩余部分的⾯积是(2a +3)(a +1)-2(a -1)2=2a 2+2a +3a +3-2(a 2-2a +1)=2a 2+5a +3-2a 2+4a -2=9a +1﹒故答案为:9a +1﹒15. 已知a +b =8,a 2b 2=4,则12(a 2+b 2)-ab =____________. 解答:∵a 2b 2=4,∴ab =±2,当ab =2时,a 2+b 2=(a +b )2-2ab =8-4=4,则12(a 2+b 2)-ab =12×4-2=0,当ab =-2时,a 2+b 2=(a +b )2-2ab =8+4=12,则12(a 2+b 2)-ab =1×12+2=8﹒故答案为:0或8﹒16.若2x 3-ax 2-5x +5=(2x 2+ax -1)(x -b )+3,其中a ,b 为整数,则1()ab -=_________. 解答:∵(2x 2+ax -1)(x -b )+3=2x 3+ax 2-x -2bx 2-abx +b +3 =2x 3-(2b -a )x 2-(ab +1)x +b +3,∴235b a a b -=??+=?,解得22a b =??=?,∴1()ab -=14-=14,故答案为:14﹒三、解答题17.(8分)计算:(1)2-+11()3--×(3-2)0-9+2017(1)-﹒解答:2-+11()3--×(3-2)0-9+2017(1)-=2+(-3)×1-3+(-1) =2-3-3-1=-5﹒(2)(4ab3+8a2b2)÷4ab+(a-b)(3a+b)解答:(4ab3+8a2b2)÷4ab+(a-b)(3a+b)=b2+2ab+3a2+ab-3ab-b2=3a2﹒18.(10分)先化简,再求值:(1)[2x(x2y-xy2)+xy(xy-x2)]÷x2y,其中x=2017,y=2016. 解答:[2x(x2y-xy2)+xy(xy-x2)]÷x2y=[2x3y-2x2y2+x2y2-x3y]÷x2y=[x3y-x2y2]÷x2y=x-y当x=2017,y=2016时,原式=2017-2016=1﹒(2)(2m-12n)2+(2m-12n)(-2m-1n),其中m,n满⾜⽅程组213211m nm n+=-=﹒解答:解⽅程组213211m nm n+=-=,得31mn==-,(2m-12n)2+(2m-12n)(-2m-12n)=4m2-2mn+14n2-(2m-12n)(2m+12n)=4m2-2mn+14n2-4m2+14n2=-2mn+1 2 n2当m=3,n=-1时,原式=-2×3×(-1)+ 12×(-1)2=-512﹒19.(8分)⼩明与⼩亮在做游戏,两⼈各报⼀个整式,⼩明报的整式作被除式,⼩亮报的整式作除式,要求商式必须为2xy﹒若⼩明报的是x3y-2xy2,⼩亮应报什么整式?若⼩亮也报x3y-2xy2,那么⼩明能报⼀个整式吗?说说你的理由﹒解答:当⼩明报x3y-2xy2时,(x3y-2xy2)÷2xy=x3y÷2xy-2xy2÷2xy=12x2-y,所以⼩亮报的整式是12x2-y;⼩明也能报⼀个整式,理由如下:∵(x3y-2xy2)·2xy=x3y·2xy-2xy2·2xy=2x4y2-4x2y3,∴⼩明报的整式是2x4y2-4x2y3.20.(8分)观察下列关于⾃然数的等式:22﹣9×12=-5 ①52﹣9×22=-11 ②82﹣9×32=-17 ③…根据上述规律,解决下列问题:(1)完成第四个等式:112﹣9×_______=___________. (2)根据上⾯的规律,写出你猜想的第n 个等式(等含n 的等式表⽰),并验证其正确性.解答:(1)由①②③三个等式的规律,可得出第四个等式:112﹣9×42=-23,故答案为:42,-23.(2)猜想:第n 个等式为(3n -1)2-9n 2=-6n +1;验证:∵左边=(3n -1)2-9n 2=9n 2-6n +1-9n 2=-6n +1,右边=-6n +1,∴左边=右边,即(3n -1)2-9n 2=-6n +1﹒21.(10分)阅读下列材料,解答问题:在(x 2+ax +b )(2x 2-3x -1)的积中,x 3项的系数为-5,x 2的系数为-6,求a ,b 的值. 解:(x 2+ax +b )(2x 2-3x -1)=2x 4-3x 3+2ax 3-3ax 2+2bx 2-3bx 6……①=2x 4-(3-2a )x 3-(3a -2b )x 2-3bx ……②根据对应项系数相等有325326a a b -=-??-=-?,解得49a b =??=?,……③(1)上述解答过程是否正确?(2)若不正确,从第⼏步开始出现错误?其它步骤是否还有错误?(3)请你写出正确的解答过程. 解答:(1)不正确,(2)从第①步开始出现错误,还有第③步也出现错误,(3)正确的解答过程如下:∵(x 2+ax +b )(2x 2-3x -1)=2x 4-3x 3-x 2+2ax 3-3ax 2-ax +2bx 2-3bx -b=2x 4+(2a -3)x 3+(-3a +2b -1)x 2+(-a -3b )x -b ,∴展开式中含x 3的项为(2a -3)x 3,含x 2的项为(-3a +2b -1)x 2,由题意,得2353216a a b -=-??-+-=-?,解得14a b =-??=-?﹒22.(10分)⼀张如图1的长⽅形铁⽪,四个⾓都剪去边长为30cm 的正⽅形,再将四周折起,做成⼀个有底⽆盖的铁盒如图2,铁盒底⾯长⽅形的长为4a (cm ),宽为3a (cm ),这个⽆盖铁盒的各个⾯的⾯积之和称为铁盒的全⾯积. (1)请⽤含a 的代数式表⽰图1中原长⽅形铁⽪的⾯积. (2)若要在铁盒的各个⾯漆上某种油漆,每元钱可漆的⾯积为50a(cm 2),则油漆这个铁盒需要多少钱(⽤含a 的代数式表⽰)?(3)是否存在⼀个正整数a ,使得铁盒的全⾯积是底⾯积的正整数倍?若存在,请求出这个a 的值;若不存在,请说明理由.解答:(1)原长⽅形铁⽪的⾯积为(4a +60)(3a +60)=12a 2+420a +3600(cm 2);(2)油漆这个铁盒的全⾯积是:12a2+2×30×4a +2×30×3a =12a 2+420a (cm 2),则油漆这个铁盒需要的钱数是:(12a 2+420a )÷50a =(12a 2+420a )×50a=600a +21000(元);(3)铁盒的全⾯积是:4a ×3a +4a ×30×2+3a ×30×2=12a 2+420a (cm 2),底⾯积是:4a ×3a =12a (cm 2),假设存在正整数n ,使12a 2+420a =n (12a 2),∵a 是正整数,∴(n -1)a =35,则a =35,n =2或a =7,n =6或a =1,n =36,所以存在铁盒的全⾯积是底⾯积的正整数倍,这时a =35或7或1.23.(12分)如果⼀个正整数能表⽰为两个连续偶数的平⽅差,那么称这个正整数为“神秘数”.如:4=22-02;12=42-22;20=62-42,因此4,12,20这三个数都是神秘数. (1)28和2016这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k +2和2k (其中k 取⾮负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平⽅差(k 取正数)是神秘数吗?为什么?解答:(1)∵28=4×7=82-62,2016=4×504=5052-5032,∴28和2016这两个数是神秘数;(2)是4的倍数,理由如下:∵(2k +2)2-(2k )2=4k 2+8k +4-4k 2=8k +4=4(2k +1),⼜k 是⾮负整数,∴由这两个连续偶数2k +2和2k 构造的神秘数是4的倍数;(3)两个连续奇数的平⽅差不是神秘数,理由如下:设这两个连续奇数为2k +1,2k -1,则(2k +1)2-(2k -1)2=4k 2+4k +1-(4k 2-4k +1)=4k 2+4k +1-4k 2+4k -1=8k =4×2k ,由(2)知神秘数应为4的奇数倍,故两个连续奇数的平⽅差不是神秘数.初中数学试卷⿍尚图⽂**整理制作。
浙教版七年级数学下册第3章检测卷附答案

浙教版七年级数学下册第3章检测卷一、选择题(每题3分,共30分) 1.计算(-x 3)2的结果是( )A .x 5B .-x 5C .x 6D .-x 62.下列计算正确的是( )A .2a -2=12aB .(2a +b )(2a -b )=2a 2-b 2C .2a ·3b =5abD .3a 4÷(2a 4)=323.花粉的质量很小,一粒某种植物花粉的质量约为0.000 037 mg ,已知1 g =1 000 mg ,那么0.000 037 mg 用科学记数法表示为( ) A .3.7×10-5 g B .3.7×10-6 g C .3.7×10-7 gD .3.7×10-8 g4.在下列计算中,不能用平方差公式计算的是( )A .(m -n )(-m +n )B .()x 3-y 3()x 3+y 3C .(-a -b )(a -b )D .()c 2-d 2()d 2+c 25.已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是( )A .6B .2m -8C .2mD .-2m6.若3x =4,9y =7,则3x -2y 的值为( )A .47B .74C .-3D .277.如果x +m 与x +3的乘积中不含x 的一次项,则m 的值为( )A .-3B .3C .0D .18.若a =-0.32,b =(-3)-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则( )A .a <b <c <dB .a <b <d <cC .a <d <c <bD .c <a <d <b9.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形,把余下的部分剪成两个直角梯形后,再拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,这个等式是( )(第9题)A .a 2-b 2=(a +b )(a -b )B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-ab =a (a -b )10.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .8二、填空题(每题3分,共24分) 11.已知x n =4,则x 3n =________. 12.计算:(2a )3·(-3a 2)=________.13.若x +y =5,x -y =1,则式子x 2-y 2的值是________. 14.若(a 2-1)0=1,则a 的取值范围是________.15.已知x 2-x -1=0,则代数式-x 3+2x 2+2 018的值为__________. 16.如果(3m +3n +2)(3m +3n -2)=77,那么m +n 的值为________. 17.对实数a ,b 定义运算☆如下:a ☆b =⎩⎨⎧a b(a >b ,a ≠0),a -b (a ≤b ,a ≠0),如2☆3=2-3=18.计算[2☆(-4)]÷[(-4)☆2]=________.18.已知a +1a =5,则a 2+1a2的结果是________.三、解答题(20题4分,19,21,22,23题每题8分,24题10分,共46分) 19.计算:(1)-23+13(2 018+3)0-⎝ ⎛⎭⎪⎫-13-2;(2)⎝ ⎛⎭⎪⎫52x 3y 3+4x 2y 2-3xy ÷(-3xy );(3)(-2+x)(-2-x); (4)(a+b-c)(a-b+c).20.先化简,再求值:[(x2+y2)-(x+y)2+2x(x-y)]÷(4x),其中x-2y=2.21.(1)已知a+b=7,ab=12.求下列各式的值:①a2-ab+b2;②(a-b)2.(2)已知a=275,b=450,c=826,d=1615,比较a,b,c,d的大小.22.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀把它均分成四个小长方形,然后按图②的形状拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图②中阴影部分的面积.(3)观察图②你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.(4)根据(3)题中的等量关系,解决如下问题:已知a+b=7,ab=5,求(a-b)2的值.(写出过程)(第22题)23.已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.24.王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?(第24题)答案一、1.C 2.D3.D 提示:1 mg=10-3 g,将0.000 037 mg用科学记数法表示为3.7×10-5×10-3=3.7×10-8(g).故选D.4.A 提示:A中m和-m符号相反,n和-n符号相反,而平方差公式中需要有一项是相同的,另一项互为相反数.5.D 提示:因为a+b=m,ab=-4,所以(a-2)(b-2)=ab+4-2(a+b)=-4+4-2m=-2m.故选D.6.A 提示:3x-2y=3x÷32y=3x÷9y=47.故选A.7.A 提示:(x+m)(x+3)=x2+(3+m)x+3m,因为乘积中不含x的一次项,所以m+3=0,所以m=-3.故选A.8.B9.A10.C 提示:(2+1)(22+1)(24+1)(28+1)+1=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216-1+1=216.因为216的末位数字是6,所以A的末位数字是6.二、11.6412.-24a513.514.a≠±115. 2 019 提示:由已知得x2-x=1,所以-x3+2x2+2 018=-x(x2-x)+x2+2018=-x+x2+2 018=2 019.16.±317.118.23 提示:由题意知⎝ ⎛⎭⎪⎫a +1a 2=25,即a 2+1a 2+2=25,所以a 2+1a 2=23.三、19.解 :(1)原式=-8+13-9=-17+13=-1623.(2)原式=-56x 2y 2-43xy +1.(3)原式=(-2)2-x 2=4-x 2.(4)原式=a 2-()b -c 2=a 2-b 2-c 2+2bc .20.解:原式=(x 2+y 2-x 2-2xy -y 2+2x 2-2xy )÷(4x )=(2x 2-4xy )÷(4x )=12x-y .因为x -2y =2,所以12x -y =1.所以原式=1.21.解:(1) ①a 2-ab +b 2=a 2+b 2-ab =(a +b )2-3ab =72-3×12=13.②(a -b )2=(a +b )2-4ab =72-4×12=1.提示:完全平方公式常见的变形:①(a +b )2-(a -b )2=4ab ;②a 2+b 2=(a +b )2-2ab =(a -b )2+2ab .解答本题关键是不求出a ,b 的值,主要利用完全平方公式的整体变换求式子的值. (2)因为a =275,b =450=(22)50=2100,c =826=(23)26=278,d =1615=(24)15=260,100>78>75>60,所以2100>278>275>260, 所以b >c >a >d . 22.解:(1)m -n .(2)方法一:(m -n )2;方法二:(m +n )2-4mn .(3)(m+n)2-4mn=(m-n)2,即(m+n)2-(m-n)24=mn.(4)由(3)可知(a-b)2=(a+b)2-4ab,∵a+b=7,ab=5,∴(a-b)2=49-20=29.23.解:(x2+px+8)(x2-3x+q)=x4-3x3+qx2+px3-3px2+pqx+8x2-24x+8q=x4+(p-3)x3+(q-3p+8)x2+(pq-24)x+8q.因为展开式中不含x2和x3项,所以p-3=0,q-3p+8=0,解得p=3,q=1.24.解:(1)卧室的面积是2b(4a-2a)=4ab(平方米).厨房、卫生间、客厅的面积和是b·(4a-2a-a)+a·(4b-2b)+2a·4b=ab+2ab+8ab=11ab(平方米),即木地板需要4ab平方米,地砖需要11ab 平方米.(2)11ab·x+4ab·3x=11abx+12abx=23abx(元).即王老师需要花23abx元.七年及数学下册计算专项练习1.计算:(1)16+38-(-5)2; (2)(-2)3+|1-2|×(-1)2 023-3125.(3)-32+4×327; (4)16+|2-3 3|-3-64-(-6)2+ 3.(5)16+38-(-5)2; (6)(-2)3+|1-2|×(-1)2 021-3125.(7)35+23-|35-23|; (8)(-2)2-327+|3-2|+ 3. (9) 214+0.01-3-8;(10) (10)3-0.125+|3-2|-3-34+|3|-(-2)2.2.求下列各式中x 的值:(1)x 2-81=0; (2)x 3-3=38.(3)⎩⎨⎧6x +5y =31,①3x +2y =13;②(4)⎩⎨⎧3(x +2)+5(x -4)<2,①2(x +2)≥5x +63+1.②(5)解方程组:⎩⎨⎧x 2-y +13=1,3x +2y =10; (6)解不等式:x -52+1>x -3;(7)解不等式组:⎩⎨⎧x +5≤0,3x -12≥2x +1,并写出它的最大负整数解.(8)⎩⎨⎧3x -2y =-1,3x -4y =-5; (9)⎩⎨⎧x -2≤14-3x ,5x +2≥3(x -1). 参考答案1.解:(1)原式=4+2-5=1.(2)原式=-8+(2-1)×(-1)-5=-8+1-2-5=-12- 2. (3)原式=-9+2×3=-3.(4)原式=4+3 3-2+4-6+3=4 3. (5)原式=4+2-5=1;(6)原式=-8+(2-1)×(-1)-5=-8+1-2-5=-12- 2. (7)原式=35+23-35+23=4 3. (8)原式=2-3+2-3+3=1.解:(9)原式=32+0.1+2=3.6. (10)原式=-0.5+2-3-32+3-2=-2.2.解:(1)依题意,得x 2=81,根据平方根的定义,得x =±9.(2)依题意,得x 3=278,根据立方根的定义,得x =32. 解:(3)②×2得,6x +4y =26,③①-③得,y =5.将y =5代入①得,6x +25=31,则x =1.所以方程组的解为⎩⎨⎧x =1,y =5.(4)解不等式①得,x <2;解不等式②得,x ≥-3.所以不等式组的解集为-3≤x <2.解:(5)整理,得⎩⎨⎧3x -2y =8,①3x +2y =10.②①+②,得6x =18,解得x =3.②-①,得4y =2,解得y =12.所以原方程组的解为⎩⎨⎧x =3,y =12.(6)去分母,得(x -5)+2>2(x -3),去括号,得x -5+2>2x -6,移项,得x -2x >-6+5-2,合并同类项,得-x >-3,系数化为1,得x <3.(7)解不等式x +5≤0,得x ≤-5.解不等式3x -12≥2x +1,得x ≤-3.所以不等式组的解集为x ≤-5.所以它的最大负整数解为-5.解:(8)⎩⎨⎧3x -2y =-1,①3x -4y =-5,②①-②,得2y =4,解得y =2.把y =2代入①,得x =1.所以这个方程组的解是⎩⎨⎧x =1,y =2.(9)⎩⎨⎧x -2≤14-3x ,①5x +2≥3(x -1),②由①,得x ≤4,由②,得x ≥-52, 所以原不等式组的解集为-52≤x ≤4.。
浙教版七年级数学下册试题第3章 单元测试.docx

第3章 单元测试一、选择题(每题2分,共20分)1.计算32a (-2)的结果是 ( ) A .58a - B .68a - C .64a D .664a2.下列计算正确的是 ( )A .x 2+x 3=x 5B .x 2·x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 23.用科学记数方法表示0000907.0,得 ( )A . 41007.9-⨯B . 51007.9-⨯C . 6107.90-⨯D . 7107.90-⨯4.下列运算中正确的是 ( )A .x 3·y 3=x 6B .(m 2)3=m 5C .2x -2=12x 2 D .(-a )6÷(-a )3=-a 35.计算20132012)2()2(-+-所得结果 ( )A. 20122B. 20122-C. 1D. 26. 已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19-7.一个正方形的边长增加了2cm ,面积相应增加了322c m ,则原正方形的边长为 ( )A 、5cmB 、6cmC 、7cmD 、8cm8.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为 ( )A 、 –3B 、3C 、0D 、19. 若x y 3=4,9=7 ,则x 2y 3-的值为 ( )A .47B .74C .3-D .2710.如果整式29x mx ++ 恰好是一个整式的平方,那么 m 的值是 ( ) A 、±3 B 、±4.5 C 、±6 D 、9 二、填空题(每题3分,共30分) 11.化简:6a 6÷3a 3= .12.已知x n =4,则x 3n =__ __. 13.若8a 3b 2÷M =2ab 2,则M =__ __. 14. (__ __)2=9a 2-__ __+16b 2. 15.若622=-n m ,且3=-n m ,则=+n m . 16. 若2a +2a=1,则22a +4a 1=- . 17.若(1)1m m -= ,则m = . 18.若5320x y --= ,则528x y ÷= .19.若代数式232x x ++ 可以表示为2(x 1)(x 1)b a -+-+ 的形式,则a b += ________.20.定义新运算“⊗”规定:2143a b a ab ⊗=-- 则3(1)⊗-= ___________.三、解答题(共50分) 21.计算:(本题9分)(1)()()02201314.3211π--⎪⎭⎫⎝⎛-+-- (2)()()222223366m m n m n m -÷--(3)()()()()233232222x y x xy y x ÷-+-⋅22.(本题10分)(1)先化简,再求值:()()()222b +a+b a b a b ---,其中a=﹣3,b=12.(2)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中12-=a .23.(本题6分)已知A =2x +y ,B =2x -y ,计算A 2-B 2.24.(本题8分)说明代数式2(x y)(x y)(x y)(2)y y ⎡⎤--+-÷-+⎣⎦ 的值与y 的值无关。
浙教版七年级数学下册第3章单元测试卷

整式的乘除单元自我评价1 n+1 n+2633=・一 a b , (4)a + a = a正确的有()3A.0个B.1 个C.2 个D.3 个.7 5 331 2 、 1 432 5.4a b c (-16a be) — 1a b c 等于() 8A.aB.1C.-2D.-14 26.(m+n-p)(p-m-n)(m-p-n)(p+n-m)等于()7. 已知a v 0,若-3a n • a 3的值大于零,则n 的值只能是() A.n 为奇数 B.n 为偶数 C.n为正整数D.n 为整数8. 若(x-1)(x+3) = x 2+mx+n,那么 m,n 的值分别是() A.m=1, n=3B.m=4 , n=5C.m=2 , n=-3D.m=-2 , n=3229. 已知a +b=3, a-b = 2,那么ab 的值是() A -0.5 B. 0.5C.-2D.22 210.如果整式x + mx +3恰好是一个整式的平方,那么常数 m 的值是( )A 、6B 、3C 、土 3D 、土 62 211. 化简(x+y+z) -(x+y-z)的结果是()A.4yzB.8xyC.4yz+4xzD.8xz2 2 212. 如果 a , b , e 满足 a +2b +2e -2ab-2be-6e+9=0,贝U abe 等于() A.9B.27C.54D.81班级: ____________ 姓名: ___________ 学号: ____________一、选择题(12X 3=36)1、化简2a 3 + a 2 • a 的结果等于() A 、3 a 3B 2 a 3C 、3 a2、下列算式正确的是( )A 、一 3 =1B 、( 一 3) =—C 、3 =——333、用科学记数法表示 0. 000 45 ,正确的是()4— 4—5A 、4.5 X 10B 、4.5 X 10C 、4.5 X 10D 、(n — 2) =15D 、4.5 X 10m nmn4.下列计算中,(1)a - a = a⑵(am+n )2= a 2m+n (3)(2a n b 3) •(-訓J2 6A.-(m+n-p) (p+n-m)B.(m+n-p)2(m-n-p)C.(-m+n+p)D.-(m+n+p)二、填空题(10X 3=30)1、计算:3a + 2a =;3a • 2a =;3a 十2a =3 2a ・a =3 2;a + a =;(—3ab2) 2 =22. 计算:(2x + y ) (2x —y ) = _____________ ; ( 2a —1) = _________________ 。
浙教版七年级数学下册试题第3章检测题.docx

第3章检测题(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列计算正确的是( D )A .a 3+a 3=a 6B .3a -a =3C .(a 3)2=a 5D .a ·a 2=a 32.下列计算:①a 9÷(a 7÷a)=a 3;②3x 2yz ÷(-xy)=-3xz ;③(10x 3-16x 2+2x)÷2x =5x 2-8x ;④(a -b)6÷(a -b)3=a 3-b 3,其中运算结果错误的是( B )A .①②B .③④C .①④D .②③3.20a 7b 6c ÷(-4a 3·b 2)÷ab 的值( D )A .-5a 5b 2B .-5a 5b 5C .5a 5b 2D .-5a 3b 3c4.下列计算错误的有( D )①(-12)-3=8;②(3-π)0=1;③39÷3-3=3-3;④9a -3·4a 5=36a 2;⑤5x 2÷(3x )×13x=5x 2. A .①③④ B .②③④ C .①②③ D .①③⑤5.下列计算正确的是( B )A .(2x +y )(3x -y )=x 2y 2B .(-x +2y )2=x 2-4xy +4y 2C .(2x -12y )2=4x 2-xy +14y 2 D .(-4x 2+2x )·(-7x )=28x 3-14x 2+7x 6.若a =2b -2,则(a -2b +1)999+(2b -a)0的值为( B )A .-1B .0C .1D .无法确定7.若(-5a m +1b 2n -1)·(2a n b m )=-10a 4b 4,则m -n 的值为( A )A .-1B .1C .-3D .38.要使多项式(x 2-px +2)(x -q)不含x 的二次项,则p 与q 的关系是( B )A .相等B .互为相反数C .互为倒数D .乘积为-19.若a +b =3,a -b =7,则ab 的值是( A )A .-10B .-40C .10D .4010.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( B )A .y =2n +1B .y =2n +nC .y =2n +1+nD .y =2n +n +1二、填空题(每小题3分,共24分)11.如果(-3x m +n y n )3=-27x 15y 9,那么(-2m)n 的值是__-64__.12.已知A =813,B =274,比较A 与B 的大小,则A__=__B .(填“>”“=”“<”)13.已知x 2+2x -1=0,则3x 2+6x -2=__1__.14.630 700 000用科学记数法表示为__6.307×108__;0.000 000 203 8用科学记数法表示为__2.038×10-7__;-5.19×10-5用小数表示为__-0.000_051_9__.15.计算:(-5)0×(43)-1+0.5-100×(-2)-102=__1__. 16.已知x m =9-4,x n =3-2,则计算式子x m -3n 的值为__19__.17.如图是四张形状、大小完全相同的长方形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式__(a +b )2-4ab =(a -b )2__.18.小亮在计算(5m +2n)(5m -2n)+(3m +2n)2-3m(11m +4n)的值时,把n 的值看错了,其结果等于25,细心的小敏把正确的n 的值代入计算,其结果也是25.为了探究明白,她又把n =2020代入,结果还是25.则m 的值为__±5__.三、解答题(共66分)19.(12分)计算:(1)(-3x 2y 2z)·x(x 2y)2÷(3x 2y 2)2; (2)a 2b(ab -3)-3ab(a 2b -a);解:(1)原式=-13x 3z (2)原式=-2a 3b 2 (3)(y +2x )(2x -y )+(x +y )2-2x (2x -y ); (4)-2-2-(-2)-2+(23)-1+(3-π)0. 解:(3)原式=x 2+4xy (4)原式=220.(8分)用简便方法计算:(1)99×101; (2)752+252-50×75.解:(1)原式=(100-1)(100+1)=9999 (2)原式=(75-25)2=250021.(6分)先化简,再求值:(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12. 解:原式=4-2ab.当ab =-12时,原式=4+1=5 22.(6分)已知实数a 满足a 2+2a -8=0,求a(a +2)2-a(a -3)(a -1)+3(5a -2)的值.解:原式=8a 2+16a -6=8(a 2+2a )-6,∵a 2+2a =8,∴原式=5823.(6分)已知x 2-x -1=0,求式子x 3-2x +1的值.解:∵x 2-x -1=0,∴x 2=x +1,∴x 3-2x +1=x ·x 2-2x +1=x (x +1)-2x +1=x 2-x +1=1+1=224.(8分)观察下列等式:①1×3-22=-1;②2×4-32=-1;③3×5-42=-1;④__4×6-52=-1__……(1)请你按以上规律写出第4个等式;(2)把这个规律用含字母n 的等式表示出来;(n 为正整数)(3)你认为(2)中所写出的等式一定成立吗?并说明理由.解:(2)n ·(n +2)-(n +1)2=-1 (3)因为左边=n 2+2n -(n 2+2n +1)=-1,所以(2)中所写的等式一定成立25.(10分)甲、乙二人共同计算2(x +a)(x +b),由于甲抄错了第一个多项式中a 的符号,得到的结果为2x 2+4x -30;由于乙漏抄了2,得到的结果为x 2+8x +15.(1)求a ,b 的值;(2)求出正确的结果.解:(1)依题意得2(x -a )(x +b )=2x 2+2(-a +b )x -2ab =2x 2+4x -30,∴2(-a +b )=4,即-a +b=2①,(x +a )(x +b )=x 2+(a +b )x +ab =x 2+8x +15,∴a +b =8②,由①,②得a =3,b =5 (2)正确结果是2(x +3)(x +5)=2x 2+16x +3026.(10分)已知21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,……(1)请你据此推测出264的个位数字是几?(2)利用上面的结论,求(2+1)(22+1)(24+1)(28+1)…(232+1)的个位数字.解:(1)∵64÷4=16,∴264的个位数字与24的个位数字相同,是6(2)原式=(2-1)(2+1)(22+1)(24+1)(28+1)…(232+1)=(22-1)(22+1)(24+1)(28+1)…(232+1)=(24-1)(24+1)(28+1)…(232+1)=…=264-1,∴此式结果的个位数字是5初中数学试卷。
第3章 整式的乘除 浙教版数学七年级下册单元测试卷(含答案)

第3章整式的乘除测试卷时间:100分钟满分:120分班级:________姓名:________一、选择题(每小题3分,共30分)1.计算a3·(-a)的结果是( )A.a2B.-a2C.a4D.-a42.下列计算正确的是( )A.3a+2b=5ab B.(a3)2=a6C.a6÷a3=a2D.(a+b)2=a2+b23.以下计算正确的是( )A.(-2ab2)3=8a3b6B.3ab+2b=5abC.(-x2)·(-2x)3=-8x5D.2m(mn2-3m2)=2m2n2-6m3 4.生活在海洋中的蓝鲸,又叫长须鲸或剃刀鲸,它的体重达到150吨,它体重的万亿分之一用科学记数法可表示为( )A.1.5×10-10B.1.5×10-11C.1.5×10-12D.1.5×10-95.若2a-3b=-1,则代数式4a2-6ab+3b的值为( ) A.-1 B.1 C.2 D.36.下列运算正确的是( )A.a2·a2=2a2B.a2+a2=a4C.(1+2a)2=1+2a+4a2D.(-a+1)(a+1)=1-a27.如果(x+4)(x-5)=x2+px+q,那么p,q的值为( )A.p=1,q=20 B.p=1,q=-20C.p=-1,q=-20 D.p=-1,q=208.已知多项式ax+b与2x2-x+2的乘积展开式中不含x的一次项,且常数项为-4,则ab的值为( )A.-2 B.2 C.-1 D.19.如图,长方形ABCD的两边之差为4,以长方形的四条边分别为边向外作四个正方形,且这四个正方形的面积和为80,则长方形ABCD的面积是( )A.12 B.21C.24 D.3210.已知P=2x2+4y+13,Q=x2-y2+6x-1,则代数式P,Q的大小关系是( )A.P≥Q B.P≤Q C.P>Q D.P<Q二、填空题(每小题4分,共24分)11.若(1-x)1-3x=1,则满足条件的x值为____.12.(1)若M÷(-4ab)=2ab2,则代数式M=____;(2)若3ab2×□=-a2b5c,则□内应填的代数式为__ __.13.阅读理解:引入新数i,新数i满足分配律、结合律、交换律.已知i2=-1,那么(1+i)(1-i)=_____.14.若(a+b)2=9,(a-b)2=4,则ab=______.15.已知2a=5,18b=20,则(a+3b-1)3的值为____.16.如图,两个正方形的边长分别为a和b,如果a-b=2,ab=26,那么阴影部分的面积是_____.三、解答题(共66分)17.(6分)计算:(1)(3.14-π)0+(13 )-2; (2)(2x 2)3-x 2·x 4.18.(6分)计算:(1)(6a 3b 3-4a 2b 2c +2ab 2)÷(2ab 2); (2)(x -1)2-x (x -2).19.(6分)用简便方法计算:(1)299×301;(2)2 0202-2×2 020+1-2 018×2 020.20.(6分)已知x 6=2,求(3x 9)2-4(x 4)6的值.21.(10分)先化简,再求值:(1)(x -2)(x +2)-x (x -1),其中x =3;(2)[(3x-2y)2-9x2]÷(-2y),其中x=1,y=-2.22.(10分)(1)解方程:3(x+5)2-2(x-3)2-(x+9)(x-9)=180.(2)已知x2-2x-1=0,求代数式(2x-1)2-(x+6)(x-2)-(x+2)(2-x)的值.23.(10分)周末,小强常常到城郊爷爷家的花圃去玩.有一次爷爷给小强出了道数学题,爷爷家的花圃呈长方形,宽为x m,长比宽多2 m.爷爷想将花圃的长和宽分别增加a m.(1)用x,a表示这个花圃的面积将增加多少平方米?(2)当x=5,a=2时,求花圃的面积将增加多少平方米?(3)当a=3时,花圃的面积将增加39 m2,求花圃原来的长和宽各是多少米?24.(12分)图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为________;(2)观察图②,三个代数式(m+n)2,(m-n)2,mn之间的等量关系是________________;(3)观察图③,你能得到怎样的等式呢?(4)试画出一个几何图形,使它的面积能表示(m+n)(m+3n).参考答案一、选择题(每小题3分,共30分)1.D2. B3. D4. A5. B6. D7. C8. B9. A10. C二、填空题(每小题4分,共24分)11. 1312.-8a 2b 3(2)-13 ab 3c13. 214. 5415.-2716. 30三、解答题(共66分)17.(6分)计算:(1) 解:原式=10; (2) 解:原式=7x 6.18.(6分)计算:(1)解:原式=3a2b-2ac+1; (2) 解:原式=1.19.(6分)用简便方法计算:(1) 解:原式=(300-1)(300+1)=90 000-1=89 999;(2)解:原式=(2 020-1)2-(2 019-1)(2 019+1)=2 0192-(2 0192-1)=2 0192-2 0192+1=1.20.解:∵x6=2,∴(3x9)2-4(x4)6=9x18-4x24=9(x6)3-4(x6)4=9×23-4×24=9×8-4×16=72-64=8.21.(1) 解:原式=x2-4-x2+x=-4+x,当x=3时,原式=-4+3=-1;(2)解:原式=(9x2-12xy+4y2-9x2)÷(-2y)=(-12xy+4y2)÷(-2y)=6x-2y,当x=1,y=-2时,原式=6×1-2×(-2)=10.22.解:去括号,得3x2+30x+75-2x2+12x-18-x2+81=180,化简,得42x=42,解得x=1.(2) 解:原式=4x2-4x+1-(x2+4x-12)-(4-x2)=4x2-4x+1-x2-4x+12-4+x2=4x2-8x+9,∵x2-2x-1=0,∴x2-2x=1,则4x2-8x=4,∴原式=4+9=13.23.解:(1)根据题意,面积将增加:(x+a)(x+2+a)-x(x+2)=x2+2x+ax+ax+2a+a2-x2-2x=2ax+2a+a2.答:花圃的面积将增加(2ax+2a+a2)m2.(2)当x=5,a=2时,2ax+2a+a2=2×2×5+2×2+22=28(m2).答:花圃面积将增加28 m2.(3)根据题意,得6x+6+9=39,解得x=4,∴x+2=6.答:花圃原来的长是6 m,宽是4 m.24.解:(1)(m-n)2;(2)(m+n)2-(m-n)2=4mn;(3)(m+n)(2m+n)=2m2+3mn+n2;(4)∵(m+n)(m+3n)=m2+3mn+mn+3n2=m2+4mn+3n2.由此可画出几何图形,答案不唯一,如图所示.。
浙教版初中数学七年级下册第三单元《整式的乘除》单元测试卷(标准难度)(含答案解析)

浙教版初中数学七年级下册第三单元《整式的乘除》单元测试卷(标准难度)(含答案解析)考试范围:第三单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知a=833,b=1625,c=3219,则有( )A. a<b<cB. c<b<aC. c<a<bD. a<c<b2. 下列等式中,错误的是( )A. (2mn)2=4m2n2B. (−2mn)2=4m2n2C. (2m2n2)3=8m6n6D. (−2m2n2)3=−8m5n53. 若(a m+1b n+2)⋅(−a2n−1b2m)=−a3b5,则m+n的值为( )A. 1B. 2C. 3D. −34. 已知一个长方形的长为3x2y,宽为2xy3,则它的面积为.( )A. 5x 3y 4B. 6x 2y 3C. 6x 3y 4D. 3xy225. 下列各式中,计算结果是x3+4x2−7x−28的是( )A. (x2+7)(x+4)B. (x2−2)(x+14)C. (x+4)(x2−7)D. (x+7)(x2−4)6. 若M=(x−3)(x−4),N=(x−1)(x−6),则M与N的大小关系为( )A. M>NB. M=NC. M<ND. 由x的取值而定7. 已知4y2+my+9是完全平方式,则m为( )A. 6B. ±6C. ±12D. 128. 如图,点C是线段BG上的一点,以BC,CG为边向两边作正方形,面积分别是S1和S2,两正方形的面积和S1+S2=40,已知BG=8,则图中阴影部分面积为( )A. 6B. 8C. 10D. 129. 若将下表从左到右在每个格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数是( )A. 3B. 2C. 0D. −110. 下列运算正确的是( )A. a6÷a2=a3B. (a2b)3=a8b3C. 3a2b−ba2=2a2bD. (1−3a)2=1−9a211. 已知25a⋅52b=56,4b÷4c=4,则代数式a2+ab+3c值是( )A. 3B. 6C. 7D. 812. 在幼发拉底河岸的古代庙宇图书馆遗址里,曾经发掘出大量的黏土板,美索不达米亚人在这些黏土板上刻出来乘法表、加法表和平方表.用这些简单的平方表,他们很快算出两数的乘积.例如:对于95×103,美索不达米亚人这样计算:第一步:(103+95)÷2=99;第二步:(103−95)÷2=4;第三步:查平方表,知99的平方是9801;第四步:查平方表,知4的平方是16;第五步:9801−16=9785=95×103.请结合以上实例,设两因数分别为a和b,写出蕴含其中道理的整式运算( )A. (a+b)2−(a−b)22=ab B. (a+b)2−(a2+b2)2=abC. (a+b2)2−(a−b2)2=ab D. (a+b2)2+(a−b2)2=ab第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 已知2m=a,16n=b,则23m+8n=____(用含a,b的式子表示).14. 一个长方体的长、宽、高分别是(3x−4)米,(2x+1)米和(x−1)米,则这个长方体的体积是.15. 已知a−b=2,ab=1,则(a−2b)2+3a(a−b)=.16. 将4个数a,b,c,d排成2行、2列,两边各加一条竖线段记成|a bc d |,定义|a bc d|=ad−bc,上述记号就叫做二阶行列式.若|x+11−x1−x x+1|=8,则x=.三、解答题(本大题共9小题,共72.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘除单元自我评价
1 n+1 n+2
633
=・一 a b , (4)a + a = a
正确的有()
3
A.0个
B.1 个
C.2 个
D.3 个
.7 5 3
31 2 、 1 432 5.4a b c (-16a be) — 1a b c 等于() 8
A.a
B.1
C.-2
D.-1
4 2
6.(m+n-p)(p-m-n)(m-p-n)
(p+n-m)等于()
7. 已知a v 0,若-3a n • a 3的值大于零,则n 的值只能是() A.n 为奇数 B.n 为偶数 C.n
为正整数
D.n 为整数
8. 若(x-1)(x+3) = x 2+mx+n,那么 m,n 的值分别是() A.m=1, n=3
B.m=4 , n=5
C.m=2 , n=-3
D.m=-2 , n=3
2
2
9. 已知a +b=3, a-b = 2,那么ab 的值是() A -0.5 B. 0.5
C.-2
D.2
2 2
10.
如果整式x + mx +3恰好是一个
整式的平方,那么常数 m 的值是( )
A 、6
B 、3
C 、土 3
D 、土 6
2 2
11. 化简(x+y+z) -(x+y-z)
的结果是()
A.4yz
B.8xy
C.4yz+4xz
D.8xz
2 2 2
12. 如果 a , b , e 满足 a +2b +2e -2ab-2be-6e+9=0,贝U abe 等于() A.9
B.27
C.54
D.81
班级: ____________ 姓名: ___________ 学号: ____________
一、选择题(12X 3=36)
1、化简2a 3 + a 2 • a 的结果等于() A 、3 a 3
B 2 a 3
C 、3 a
2、下列算式正确的是( )
A 、一 3 =1
B 、( 一 3) =—
C 、3 =——
3
3
3、用科学记数法表示 0. 000 45 ,正确的是(
)
4
— 4
—5
A 、4.5 X 10
B 、4.5 X 10
C 、4.5 X 10
D 、(n — 2) =1
5
D 、4.5 X 10
m n
mn
4.下列计算中,(1)a - a = a
⑵(a
m+n )2
= a 2m+n (3)(2a n b 3) •(-訓J
2 6
A.-(m+n-p) (p+n-m)
B.(m+n-p)
2
(m-n-p)
C.(-m+n+p)
D.-(m+n+p)
二、填空题(10X 3=30)
1、计算:3a + 2a =;3a • 2a =;3a 十2a =
3 2
a ・a =
3 2
;a + a =;(—3ab2) 2 =
2
2. 计算:(2x + y ) (2x —y ) = _____________ ; ( 2a —1) = _________________ 。
3 —3 6 2 3 0 —1
3. 计算:x • x = ___________ ; a 十a • a = _____________ ; 2 + 2 =______ 。
4. 计算:( )• 3ab2 = 9ab 5; -12a 3 be *( ) = 4a2 b ;
(4x2y- 8x 3)+ 4x 2 = ______________ 。
1 2
5. 利用平方差公式直接写出结果:501X 49 2= _____________ ;
3 3
利用完全平方公式直接写出结果:1022 = _____________
1 2 2 2
6. ________________________________________________________________ 当x = - , y =——,代数式:x —2xy + y —2的值等于____________________________________ 。
3 3
7. 若(x+y+z)(x-y+z) = (A+B)(A-B),且B=y,则A= ____________________ .
8. 若(1+x)(2x 2+mx+5)的计算结果中X2项的系数为-3,则m= ____________
9. 已知(3x-2) 0有意义,则x应满足的条件是 ___________________ .
2 4 8
10. 利用平方差人计算(2+1)(2 +1)(2 +1)(2 +1)+仁_________________
三、解答题
1、化简或计算(4 X 4=16)
1、( 2 . 3 ) 0—丄+ (-1 ) 43、4x3-( -2x ) 2—( 2x2-x )-(丄x)
12丿2
2 2
3、[ (x-y ) —( x + y ) ] -(—4xy)
5、化简求值(6分)
(2a +b )2—( a+1-b ) ( a+1 + b ) +(a+1 了,其中
2
、(a+3) -2 (a +3 ) (a-3 )+
(a-3) a =1,b = - 2
四•拓展与提高(4 X 5=20)
1 已知 x " = 5, y n = 3,求(1)(x 2
y)
2n
(2) x 3n
- y
4n
2、已知x • y 二a,用含a 的代数式表示(x • y )3
(2x 2y )3
(3x 3y )3
2 2
.已知(2-a)(3-a)=5 , 试求(a-2) +(3-a)的值
4.已知 5a =5,5b =5 -1 ,试求 27a -33b 的值
五.自我挑战(12分)
1.观察下列算式,你发现了什么规律?
1)你能用一个算式表示这个规律吗?
2)根据你发现的规律,计算下面算式的值; 12+22 + 32 + …+8 2
3
12=L^J ; 12+22=^A^ ;
6 6 12+22+32 =鼻~ ;
6
“ 2 2 2 ,
1 +
2 +
3 + 4
2
_4汉5汉
9
6
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。