ABAQUS单元选用标准
Abaqus单元类型选择 ppt课件

A1.7
Abaqus单元类型选择
ABAQUS/analysis_单元选择 标准
公式 • 用于描述单元行为的数学公式是用于单元分类的另一种方法。 • 不同单元公式的例子:
– 平面应变 – 平面应力 – 杂交单元 – 非协调元 – 小应变壳 – 有限应变壳 – 厚壳 – 薄壳
构尺寸的1/10,比如: – 支撑或点载荷之间的距离 – 尺寸变化很大的横截面之间的距离 – 最高振动模态的波长
A1.14
Abaqus单元类型选择
• 壳单元 – 使用表面模型构成的壳单元近似 模拟三维实体连续体单元。
• 可以有效的模拟弯曲和面内 变形。
– 如果需要分析某个区域的细节, 使用多点约束或子模型的办法可 以将局部的三维实体模型加入到 壳单元模型中。
– 对于具有线弹性材料属性的、 未扭转的单元,精确积分应变 能所需的最小积分阶数。
• 减缩积分:
– 积分的阶数比全积分小一阶。
一次插值
二次插值
ABAQUS/analysis_单元选择 标准
全积分
减缩积分
A1.10
Abaqus单元类型选择
• 单元命名约定:例子
B21: Beam, 2-D, 1st-order interpolation
ABAQUS/analysis_单元选择 标准
3-D 实体
线模型
利用梁单元建模的框架结构
A1.16
ABAQUS/analysis_单元选择标准
Abaqus单元类型选择
Abaqus单元类型选择
• 纯弯曲的物理特征 – 有限元方法企图模拟的材料行为是: • 在变形过程中,横截面仍然保持为 平面。 • 沿厚度方向,轴向应变xx 线性变化。
abaqus单元命名规则

Abaqus单元命名规则Abaqus是一款功能强大的工程仿真软件,广泛应用于各种领域,包括机械、材料、土木工程等。
在Abaqus中,单元类型、维度、特殊选项、节点数目以及单元名称等方面都有一定的命名规则。
本文将对这些规则进行简要介绍。
1. 单元类型Abaqus中的单元类型非常丰富,包括一维单元、二维单元和三维单元等。
在定义单元类型时,一般采用以下方式:* 一维单元:1D* 二维单元:2D* 三维单元:3D此外,还可以通过在数字后面添加字母来进一步描述单元的类型。
例如,1D-M表示一维质量单元,2D-B表示二维弯曲单元等。
2. 单元维度Abaqus中的单元分为一维、二维和三维三种类型,每种类型的单元都有相应的维度。
一般来说,一维单元的维度为长度,二维单元的维度为面积,三维单元的维度为体积。
在定义单元维度时,一般采用以下方式:* 一维单元:L* 二维单元:A* 三维单元:V3. 特殊选项Abaqus中的一些特殊选项也有相应的命名规则。
例如,在定义接触单元时,需要使用特定的关键字来描述接触类型、接触面以及目标面等。
此外,对于一些具有特殊属性的单元,例如热传导单元、流体流动单元等,也需要使用特定的关键字来描述其属性。
4. 节点数目Abaqus中的每个单元都由一定数量的节点组成。
一般来说,每个节点的编号都是唯一的,并且按照一定的顺序进行编号。
在定义节点数目时,一般采用以下方式:* 对于一维单元:节点数目为2或4。
* 对于二维单元:节点数目为3或6。
* 对于三维单元:节点数目为4或8或12等。
需要注意的是,对于一些具有特殊属性的单元,例如接触单元、弹簧单元等,节点数目可能会不同。
因此,在定义这些单元时需要特别注意节点数目的问题。
5. 单元名称在Abaqus中,每个单元都需要一个唯一的名称。
一般来说,单元名称应该能够清晰地表达出该单元的类型、属性以及一些特殊选项等信息。
例如,对于一个一维质量单元,可以使用“mass1d”作为名称;对于一个二维弹簧-阻尼器单元,可以使用“spring2d”作为名称等。
如何选择ABAQUS单元类型

1、按照节点位移插值的阶数,可以将ABAQUS单元分为线性单元、二次单元和修正的二次单元2、线性完全积分单元在承受弯曲载荷时会出现剪切自锁,造成单元过于刚硬,即使划分很细的网格,计算精度仍然很差3、二次完全积分单元适于模拟应力集中问题,一般情况下不会出现剪切自锁,但不能在接触分析和弹塑性分析中使用4、线性减缩积分单元对位移的求解结果较精确,在弯曲载荷下不容易发生剪切自锁,网格的扭曲变形(例如Quad单元的角度远远大于或小于90°)对其分析精度影响不大,但这种单元需要划分较细的网格来克服沙漏问题,且不适于求解应力集中部位的节点应力5、二次减缩积分单元不但支持了线性减缩积分单元的优点,而且不划分很细的网格也不会出现严重的沙漏问题,即使在复杂应力状态下,对自锁问题也不敏感,但它不适于接触分析和大应变问题6、非协调模式单元克服了剪切自锁问题,在单元扭曲比较小的情况下得到的位移和应力结果很精确,但如果所关心部位的单元扭曲比较大,其分析精度会降低7、线性Tri单元和Tet单元的精度很差,二次Tet单元(C3D10)适于ABAQUS/Standand中的小位移无接触问题,修正的二次Tet单元(C3D10M)适于ABAQUS/Explicit,以及ABAQUS/Standand中的大变形和接触问题8、ABAQUS的壳单元可以有多种分类方法,按照薄壳和厚壳来划分,可以分为通用目的(general-purpose)壳单元和特殊用途(special-purpose)壳单元;按照单元的定义方式,可以分为常规(conventional)壳单元和连续体(continuum)壳单元9、ABAQUS中的所有梁单元都可以产生轴向变形、弯曲变形和扭转变形,B21和B31单元(线性梁单元)以及B22和B32单元(二次梁单元)即适用于模拟剪切变形引起重要作用的深梁,又适用于模拟剪切变形不太重要的细长梁,三次单元B23和B33只需划分很少的单元就可以得到较精确的结果1、对于应力集中问题,尽量不要使用线性减缩积分单元,可使用二次单元来提高精度。
Abaqus单元类型选择解析

A1.2
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
• ABAQUS单元库中大量的单元为不同几何体和结构建模提供了非常大的灵活性。 – 可以通过以下的特征为单元分类: •族 • 节点个数 • 自由度 • 公式 • 积分点
二次插值 全积分 减缩积分
一次插值
A1.10
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
• 单元命名约定:例子
B21: Beam, 2-D, 1st-order interpolation S8RT: Shell, 8-node, Reduced integration, Temperature
A1.4
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
族 • 有限元族是一种广泛的分类 方法。 • 同族的单元共享许多基本特 征。 • 在同一族单元中又有许多变 异。
刚体单元 薄膜单元 连续体(实体单元) 壳单元 梁单元
无限单元
特殊单元,如弹簧、 阻尼器和质量单元
桁架单元
A1.5
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
节点个数 (插值) • 节点的单元编号决定了单元域内 节点自由度的插值方式。 • ABAQUS包含一阶和二阶插值方 式的单元。
一次插值 二次插值
A1.6
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
自由度 • 在有限元分析过程中,单元节点的自由度是基本变量。 • 自由度的例子: – 位移 – 转动 – 温度 – 电势 • 一些单元具有与用户定义的节点不相关的内部自由度。
Abaqus单元类型选择讲课文档

内能
内能
伪应变能
伪应变能
沿厚度方向有两个单元: 伪应变能与内 沿厚度方向有四个单元: 伪应变能与内
能之比为2%。
能之比为0.1%。
第二十四页,共51页。
使用连续体单元模拟弯曲
ABAQUS/analysis_单元选择标 准
• 使用非协调模式单元模拟弯曲 (CPS4I, …) – 对于以弯曲为主的问题中,这种单元可能是效率最高的实体单元。 – 计算费用在一阶和二阶减缩积分单元之间,兼有两种积分方法的优点。 • 可以正确的模拟剪切行为—在纯弯曲问题中没有剪切应变。 • 在厚度方向,仅用一个单元就可以模拟弯曲。 • 没有沙漏模式;在塑性和接触问题中,工作的很好。 – 如果单元严重扭曲,相对一阶减缩积分单元的优势将会减弱;然而, 在严重扭曲的条件下,所有单元的精度都会下降。
第二十五页,共51页。
使用连续体单元模拟弯曲
• 例子:扭曲单元的悬臂梁
ABAQUS/analysis_单元选择 标准
第二十六页,共51页。
平行扭曲
梯形扭曲
使用连续体单元模拟弯曲
• 总结
ABAQUS/analysis_单元选择标准
单元类型 物理行为 二阶插值 一阶插值、全积分 一阶插值、减缩积分
非协调模式
ABAQUS/analysis_单元选择 标准
在厚度方向有四个单元
没有沙漏
第二十二页,共51页。
使用连续体单元模拟弯曲
• 检查并控制沙漏 – 在变形形状的绘图中,可以看到沙漏 现象。
• 例子:带有中心点载荷简支梁的 粗网格和中等网格。
– ABAQUS有内建的沙漏控制方法,用 以限制沙漏产生的问题。
ABAQUS/analysis_单元选择标准
Abaqus单元类型选择

• 有许多可用的横截面形状。 • 还可以用工程常数的方式指
定横截面属性。
ABAQUS/analysis_单元选择 标准
3-D 实体
线模型
利用梁单元建模的框架结构
A1.16
ABAQUS/analysis_单元选择标准
使用连续体单元模拟弯曲
使用连续体单元模拟弯曲
CPE8PH: Continuum, Plane strain, 8-node, Pore pressure, Hybrid
DC1D2E: Diffusion (heat transfer), Continuum, 1-D, 2-node, Electrical
A1.11
ABAQUS中的单元
ABAQUS/analysis_单元选择 标准
节点个数 (插值) • 节点的单元编号决定了单元域内
节点自由度的插值方式。 • ABAQUS包含一阶和二阶插值方
式的单元。
ABAQUS/analysis_单元选择 标准
一次插值
二次插值
A1.6
ABAQUS中的单元
ABAQUS/analysis_单元选择 标准
自由度 • 在有限元分析过程中,单元节点的自由度是基本变量。 • 自由度的例子:
等参线
因为假设单元边为曲线,所以变形等参线
之间的夹角仍为90o (意味着 xy = 0)。
A1.19
使用连续体单元模拟弯曲
• 使用一阶全积分实体单元模拟弯 曲问题 (CPS4, CPE4, C3D8)
– 这些单元在积分点检测到剪切 应变。
• 不真实的;由于使用的单 元公式才出现。
– 单元过硬的行为源于应变能用 于产生剪切变形而不是产生弯 曲(称为“剪切锁闭”)。
abaqus中单元的选取

ABAQUS中单元的选取总结实体单元的选择1. 如果不需要模拟非常大的应变或进行复杂的需改变接触条件的问题,则应采用二次减缩积分单元(CAX8R、CPE8R、CPS8R、C3D20R等);2. 如果存在应力集中,则在局部应采用二次完全积分单元(CAX8、CPE8、CPS8、C3D20等)。
它们可用最低费用提供应力梯度最好的解答。
3. 涉及到非常大的网格扭曲问题(大变形分析),建议采用细网格剖分的线性减缩积分单元(CAX4R、CPE4R、CPS4R、C3D8R等);4. 对接触问题采用线性减缩积分单元或细分的非协同单元(CAX4I、CPE4I、CPS4I、C3D8I等);5. 尽可能的减少网格变形的扭歪,形状扭歪的粗网格线性单元会导致非常差的结果。
壳单元的选择1.当要求解十分精确时,可使用线性、有限薄膜应变、完全积分的四边形壳单元(S4),这个壳单元十分适合于要考虑膜作用或有弯曲模式沙漏的问题,也适合于有平面弯曲的问题;2.线性、有限薄膜应变、减缩积分、四边形壳单元(S4R)较流行,适合于各类问题的应用;3.线性、有限薄膜应变、三角形壳单元(S3/S3R)可作为一般的壳单元来使用。
因为在单元内部是常应变应力场,求解弯曲变形和高应变梯度时需要精细的网格剖分;4.考虑到在复合材料层合壳模型中剪切柔度的影响,可应用厚壳单元(S4、S4R、S3、S3R、S8R)来模拟它,此时需检验平面假定是否满足;5.四边形或三角形的二次壳单元,对于一般的小变形薄壳来说是很有效的,它们对于剪力锁闭和薄膜锁闭不敏感;6.如果在接触问题中一定要用二阶单元,不要选用二阶三角形壳单元(STRI65),而要采用9节点的四边形壳单元(S9R5);7.对于几何线性的,但规模又非常大的模型,线性薄壳单元(S4R5)通常将比一般壳单元效率更高。
梁单元的选择1. 对任何涉及到接触的分析,应使用一阶的、有剪切变形的梁单元(B21、B31);2. 对于结构刚度非常大或非常柔软的结构,在几何非线性分析中应当使用杂交梁单元(B21H、B32H等);3. Euler-Benoulli三次梁单元(B23、B33)在模拟承受分布荷载作用的梁,包括动态的振动分析时,会有很高的精度。
Abaqus单元的选择

Abaqus单元的选择2015-03-06 有限元在线如果想要以合理的费用得到高精度的结果,那么正确的选择单元是非常关键的。
对于ABAQUS经验丰富的使用者,毫无疑问都会自己的单元选择指南来处理各种具体的应用。
但是,在刚开始使用ABAQUS 时,下面的指导是非常有用的。
1、实体单元选择以下单元选择的建议适用于ABAQUS/Standard和ABAQUS/Explicit:(1)尽可能的减小网格的扭曲。
使用扭曲的线性单元的粗糙网格会得到相当差的结果。
(2)对于模拟网格扭曲过分严重的问题,应用网格细划的线性、减缩积分单元(CAX4R,CPE4R,CPS4R,C3D8R等)。
(3)对三维问题应尽可能地采用六面体单元。
它们以最低的成本给出最好的结果。
当几何形状复杂时,采用六面体单元划分网格可能是非常困难的,因此,还需要楔形和四面体单元。
这些单元(C3D4和C3D6)的一阶模式是较差的单元(需要细划网格以取得较好的精确度)。
(4)某些前处理器包含了自由划分网格算法,用四面体单元划分任意几何体的网格。
对于小位移无接触的问题,在ABAQUS/Standard中的二次四面体单元(C3D10)能够给出合理的结果。
这个单元的另一种模式是修正的二次四面体单元(C3D10M),它适用于ABAQUS/Standard和ABAQUS/Explicit,对于大变形和接触问题,这种单元是强健的,展示了很小的剪切和体积自锁。
但是,无论采用何种四面体单元,所用的分析时间都长于采用了等效网格的六面体单元。
(5)对于ABAQUS/Standard求解器,除非需要模拟非常大的应变或者模拟一个复杂的、接触条件不断变化的问题,对于一般的分析工作,应采用二次、减缩积分单元(CAX8R,CPE8R,CPS8R, C3D20R 等)。
(6)对于ABAQUS/Standard求解器,在存在应力集中的局部区域,采用二次、完全积分单元(CAX8, CPE8, CPS8, C3D20等)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Table 1 ABAQUS Elements Selection Criteria
General contact between deformable bodies
变形体间的普通接触
First-order quad/hex
linear一阶四边形/三角形单元
Second-order quad/hex
quadratic二阶四边形/三角形
Contact with bending
弯曲接触Incompatible mode
非协调模式
First-order fully integrated quad/hex
or second-order quad/hex一阶全积分
或二阶四边形/三角形
Bending (no contact) 非接触弯曲Second-order quad/hex
二阶四边形/三角形单元
First-order fully integrated quad/hex
一阶全积分四边形/三角形
Stress concentration
集中应力Second-order
二阶
First-order
一阶
Nearly incompressible (ν=k/(k+1)>0.475 or large strain plasticity εpl>10%) 近不可压缩刚体First-order elements or second-order
reduced-integration elements
一阶全积分单元或二阶缩减单元
Second-order fully integrated
Completely incompressible (rubberν= 0.5)
完全,不可压缩刚体
Hybrid quad/hex, first-order if large
deformations are anticipated
一阶四边形/三角形混合单元(Quad-dominated)
Bulk metal forming (high mesh distortion) (金属)体积成型(网格畸变) First-order reduced-integration quad/hex
一阶四边形/三角形缩减单元
Second-order quad/hex
Complicated model geometry (linear material,
no contact)
(线性材料无接触) Second-order quad/hex if possible (if not overly distorted) or second-order tet/tri (because of
meshing difficulties)
Complicated model geometry (nonlinear problem or contact) First-order quad/hex if possible (if not overly distorted) or modified second-order tet/tri (because of meshing difficulties)
Natural frequency (linear
dynamics)
Second-order
Nonlinear dynamic (impact) 非线性动力冲击
First-order
linear一阶四边形/三角形
Second-order。