Abaqus单元类型选择 ppt课件
Abaqus单元类型选择解析

A1.2
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
• ABAQUS单元库中大量的单元为不同几何体和结构建模提供了非常大的灵活性。 – 可以通过以下的特征为单元分类: •族 • 节点个数 • 自由度 • 公式 • 积分点
二次插值 全积分 减缩积分
一次插值
A1.10
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
• 单元命名约定:例子
B21: Beam, 2-D, 1st-order interpolation S8RT: Shell, 8-node, Reduced integration, Temperature
A1.4
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
族 • 有限元族是一种广泛的分类 方法。 • 同族的单元共享许多基本特 征。 • 在同一族单元中又有许多变 异。
刚体单元 薄膜单元 连续体(实体单元) 壳单元 梁单元
无限单元
特殊单元,如弹簧、 阻尼器和质量单元
桁架单元
A1.5
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
节点个数 (插值) • 节点的单元编号决定了单元域内 节点自由度的插值方式。 • ABAQUS包含一阶和二阶插值方 式的单元。
一次插值 二次插值
A1.6
ABAQUS/analysis_单元选择标准
ABAQUS中的单元
自由度 • 在有限元分析过程中,单元节点的自由度是基本变量。 • 自由度的例子: – 位移 – 转动 – 温度 – 电势 • 一些单元具有与用户定义的节点不相关的内部自由度。
abaqus中单元的选择宝典

1.完全积分是指当单元具有规则形状时,所用的高斯积分点可以对单元刚度矩阵中的多项式进行精确地积分。
2.剪力自锁将使单元变得“刚硬”,只影响受弯曲荷载的完全积分线性(一阶)单元,这些单元功能在受直接或剪切荷载时没有问题。
二次单元的边界可以弯曲,没有剪力自锁的问题。
3.只有四边形和六面体单元才能采用减缩积分。
所有的楔形、四面体和三角形实体单元采用完全积分。
减缩积分单元比完全积分单元在每个方向上少用一个积分点。
4.只有四边形和六面体单元才能采用减缩积分。
所有的楔形、四面体和三角形实体单元采用完全积分。
减缩积分单元比完全积分单元在每个方向上少用一个积分点。
5.非协调单元:只有四边形和六面体单元才能采用减缩积分。
所有的楔形、四面体和三角形实体单元采用完全积分。
减缩积分单元比完全积分单元在每个方向上少用一个积分点。
6.ABAQUS对非协调单元采用了增强位移梯度形式。
在弯曲问题中,用非协调单元可得到与二次单元相当的结果,且计算费用明显降低。
对单元扭曲很敏感。
7.ABAQUS对非协调单元采用了增强位移梯度形式。
在弯曲问题中,用非协调单元可得到与二次单元相当的结果,且计算费用明显降低。
对单元扭曲很敏感。
8.杂交单元:ABAQUS对非协调单元采用了增强位移梯度形式。
在弯曲问题中,用非协调单元可得到与二次单元相当的结果,且计算费用明显降低。
对单元扭曲很敏感。
9.一般情况下应采用二次减缩积分单元(CAX8R,CPE8R,CPS8R,C3D20R)。
在应力集中局部采用二次完全积分单元(CAX8,CPE8,CPS8,C3D20)。
对含有非常大的网格扭曲模拟(大应变分析),采用细网格划分的线性减缩积分单元(CAX4R,CPE4R,CPS4R,C3D8R )。
对接触问题采用线性减缩积分单元或非协调单元(CAX4I,CPE4I,CPS4II,C3D8I等)的细网格划分。
10.采用非协调单元时应使网格扭曲减至最小。
三维情况应尽可能采用块状单元(六面体)。
软件教程——Abaqus最全、最经典中文培训教程PPT学习课件

3/5/2020
L2.43
线性阵列
Linear Pattern线性阵列
1、选取要进行阵列的部件实体Instance 2、阵列参数设置,阵列方向、数量、偏移量等
3/5/2020
L2.44
线性阵列
Radial Pattern辐射阵列
1、选取要进行阵列的部件实体Instance 2、阵列参数设置,阵列范围(°)、数量、中心轴等
3/5/2020
L2.10
PA R T 管 理 器
Part管理器的功能完全可以在窗口左侧模型树的右键快捷菜单实现。
3/5/2020
➢创建新Part,功能同 ➢复制Part ➢重命名Part,便于管理 ➢删除Part ➢锁定及解锁Part,锁定后Part将不能被修改 ➢修正Part ➢退出
L2.11
L2.33
3、特性设置 PROPERTY
3/5/2020
L2.34
特性设置
Property模块专有
3/5/2020
特征修改、删除等,很少用到 Partition已讲,见Mesh部分 基准点、线、面及坐标系等
定义材料属性 创建截面属性 分配截面属性
L2.35
定义材料属性
1 2
3密度
3/5/2020
➢Name
rigid-floor
➢Modeling Space
2D Planar
➢Type
Analytical rigid
➢Approximate size
200
3/5/2020
L2.9
创 建 新 PA RT 之 刚 性 地 面 2
➢如左图,画一个 100X100的正方形, 来模拟刚性地面。 ➢点击鼠标中键或 点击按钮 , 完成。 200
《Abaqus教程》课件

06
Abaqus未来发展与展望
人工智能与机器学习在Abaqus中的应用
预测模型
利用机器学习技术,对Abaqus模拟结果进行预测 ,提高预测精度。
自动化优化
结合人工智能算法,实现Abaqus模型的自动优化 ,提高设计效率。
自动化校准
利用机器学习技术,自动校准Abaqus模型的参数 ,减少人工干预。
标准化接口
推动Abaqus的标准化接口发展,促进软件之间的互操作性。
THANKS FOR WATCHING
感谢您的观看
接触表面处理
在进行接触设置时,需要对接触表面进行处理,如 粗糙度、摩擦系数等,以确保模拟结果的准确性。
接触条件
在模拟过程中,用户需要设定接触条件,如 接触压力、温度等,以控制模拟的边界条件 。
优化设计
优化目标
用户可以根据实际需求设定优化目标,如最小化重量、最大化刚度 等,以实现结构优化设计。
优化算法
02
Abaqus基本操作
启动与退
启动Abaqus
打开Abaqus软件,选择合适的模块 和许可证。
退出Abaqus
完成操作后,选择“文件”菜单中的 “退出”选项,保存更改并关闭软件 。
模型创建
创建模型
在“模型”菜单中选择“创建模型”选项,选择合适的单位和坐标系。
创建部件
在“模型”菜单中选择“创建部件”选项,输入部件名称和尺寸。
材料模型的发展与挑战
01
02
03
新材料模型
随着新材料的发展,需要 开发新的材料模型以适应 模拟需求。
多物理场耦合
实现多物理场(如热、力 、电等)的耦合模拟,提 高模拟精度。
参数的不确定性
abaqus结构分析单元类型

a b a q u s结构分析单元类型(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--;this wordfile adds the code folding function which is useful to ignore rows of numbers,enjoy~;updated in , based on the wordfile "abaqus_67ef()";Syntax file for abaqus keywords ,code folding enabled;add *ANISOTROPIC *ENRICHMENT *LOW -DISPLACEMENT HYPERELASTIC;newly add /C"ElementType";delete DISPLACEMENT;delete MASS in /C2"Keywords2"/L29"abaqus_612" Nocase File Extensions = inp des dat msg/Delimiters = ~!@$%^&()_-+=|\/{}[]:;"'<> ,.//Function String = "%[ ^t]++[ps][a-z]+ [a-z0-9]+ ^(*(*)^)*{$"/Function String 1 = "%[ ^t]++[ps][a-z]+ [a-z0-9]+ ^(*(*)^)[ ^t]++$" /Member String = "^([A-Za-z0-9_:.]+^)[ ^t*&]+$S[ ^t]++[(=);,]"/Variable String = "^([A-Za-z0-9_:.]+^)[ ^t*&]+$S[ ^t]++[(=);,]"/Open Fold Strings = "*" "**""***"/Close Fold Strings = "*" "**""***"/C1"Keywords1" STYLE_KEYWORD*ACOUSTIC *ADAPTIVE *AMPLITUDE *ANISOTROPIC *ANNEAL *AQUA *ASSEMBLY *ASYMMETRIC *AXIAL *BASE *BASELINE *BEAM*BIAXIAL *BLOCKAGE *BOND *BOUNDARY *BRITTLE *BUCKLE *BUCKLING *BULK *C *CAP *CAPACITY *CAST *CAVITY *CECHARGE*CECURRENT *CENTROID *CFILM *CFLOW *CFLUX *CHANGE *CLAY *CLEARANCE*CLOAD *CO *COHESIVE *COMBINED *COMPLEX*CONCRETE *CONDUCTIVITY *CONNECTOR *CONSTRAINT *CONTACT *CONTOUR*CONTROLS *CORRELATION *COUPLED *COUPLING*CRADIATE *CREEP *CRUSHABLE *CYCLED *CYCLIC *D *DAMAGE *DAMPING*DASHPOT *DEBOND *DECHARGE *DECURRENT*DEFORMATION *DENSITY *DEPVAR *DESIGN *DETONATION *DFLOW *DFLUX*DIAGNOSTICS *DIELECTRIC *DIFFUSIVITY*DIRECT *DISPLAY *DISTRIBUTING *DISTRIBUTION *DLOAD *DRAG *DRUCKER*DSA *DSECHARGE *DSECURRENT *DSFLOW*DSFLUX *DSLOAD *DYNAMIC *EL *ELASTIC *ELCOPY *ELECTRICAL *ELEMENT*ELGEN *ELSET *EMBEDDED *EMISSIVITY*END *ENERGY *ENRICHMENT *EOS *EPJOINT *EQUATION *EULERIAN *EXPANSION *EXTREME *FABRIC *FAIL *FAILURE*FASTENER *FIELD *FILE *FILM *FILTER *FIXED *FLOW *FLUID *FOUNDATION *FRACTURE *FRAME *FREQUENCY *FRICTION*GAP *GASKET *GEL *GEOSTATIC *GLOBAL *HEADING *HEAT *HEATCAP*HOURGLASS *HYPERELASTIC *HYPERFOAM *HYPOELASTIC*HYSTERESIS *IMPEDANCE *IMPERFECTION *IMPORT *INCIDENT *INCLUDE*INCREMENTATION *INELASTIC *INERTIA*INITIAL *INSTANCE *INTEGRATED *INTERACTION *INTERFACE *ITS *JOINT*JOINTED *JOULE *KAPPA *KINEMATIC*LATENT *LOAD *LOADING *LOW *M1 *M2 *MAP *MASS *MATERIAL *MATRIX*MEMBRANE *MODAL *MODEL *MOHR *MOISTURE*MOLECULAR *MONITOR *MOTION *MPC *MULLINS *NCOPY *NFILL *NGEN *NMAP *NO *NODAL *NODE *NONSTRUCTURAL*NORMAL *NSET *ORIENTATION *ORNL *OUTPUT *PARAMETER *PART *PERIODIC *PERMEABILITY *PHYSICAL *PIEZOELECTRIC*PIPE *PLANAR *PLASTIC *POROUS *POST *POTENTIAL *PRE *PREPRINT*PRESSURE *PRESTRESS *PRINT *PSD *RADIATE*RADIATION *RANDOM *RATE *RATIOS *REBAR *REFLECTION *RELEASE*RESPONSE *RESTART *RETAINED *RIGID *ROTARY*SECTION *SELECT *SFILM *SFLOW *SHEAR *SHELL *SIMPEDANCE *SIMPLE*SLIDE *SLOAD *SOILS *SOLID *SOLUBILITY*SOLUTION *SOLVER *SORPTION *SPECIFIC *SPECTRUM *SPRING *SRADIATE*STATIC *STEADY *STEP *SUBMODEL*SUBSTRUCTURE *SURFACE *SWELLING *SYMMETRIC *SYSTEM *TEMPERATURE*TENSILE *TENSION *THERMAL *TIE *TIME*TORQUE *TRACER *TRANSFORM *TRANSPORT *TRANSVERSE *TRIAXIAL *TRS *UEL *UNDEX *UNIAXIAL *UNLOADING *USER*VARIABLE *VIEWFACTOR *VISCO *VISCOELASTIC *VISCOUS *VOID *VOLUMETRIC *WAVE *WIND-AXISYMMETRIC -DEFINITION -DISPLACEMENT -SIMULATION -SOIL -TENSION/C2"Keywords2"ACTIVATION ADDED AREA ASSEMBLE ASSEMBLY ASSIGNMENT AXIALBEHAVIOR BODY BULKCASE CAVITY CENTER CHAIN CHANGE CHARGE CLEARANCE COMPACTION COMPONENT COMPRESSION CONDITIONS CONDUCTANCECONDUCTIVITY CONSTANTS CONSTITUTIVE CONSTRAINT CONTACT CONTROL CONTROLS COPY CORRECTION COULOMB COUPLINGCRACKING CREEP CRITERIA CRITERION CYCLICDAMAGE DAMAGED DAMPING DATA DEFINED DEFINITION DELETE DENSITY DEPENDENCE DEPENDENT DERIVED DETECTIONDIFFUSION DIRECTORY DOFS DYNAMIC DYNAMICSEFFECT EIGENMODES ELASTIC ELASTICITY ELECTRICAL ELEMENT ELSET ENVELOPE EVOLUTION EXCHANGE EXCLUSIONSEXPANSIONFACTORS FAILURE FIELD FILE FLAW FLOW FLUID FLUX FOAM FORMAT FORMULATION FRACTION FREQUENCY FRICTIONGENERAL GENERATE GENERATION GRADIENTHARDENING HEAT HOLD HYPERELASTICINCLUSIONS INERTIA INFLATOR INITIATION INPUT INSTANCE INTEGRAL INTERACTION INTERFERENCE IRONLAYER LEAKOFF LENGTH LINE LINK LOAD LOCKM1 M2 MATERIAL MATRIX MEDIUM MESH METAL MIXTURE MODEL MODES MODULI MODULUS MOTIONNODAL NODE NSET NUCLEATIONORIGIN OUTPUTPAIR PARAMETER PART PARTICLE PATH PENETRATION PLASTIC PLASTICITY POINT POINTS POTENTIAL PRAGER PRINTPROPERTYRADIATION RATE RATIOS REDUCTION REFERENCE REFLECTION REGION RELIEF RESPONSE RESULTS RETENTIONSECTION SCALING SHAPE SHEAR SOLID SOLUTION SPECTRUM STABILIZATION STATE STEP STIFFENING STIFFNESS STOPSTRAIN STRESS SURFACE SWELLING SYMMETRYTABLE TECHNIQUE TEMPERATURE TENSION TEST THERMAL THICKNESS TO TORQUE TRANSFER TRANSPORTVALUE VARIABLES VARIATION VELOCITY VIEWFACTOR VISCOSITYWAVE WEIGHT/C3"ElementType" STYLE_ELEMENTAC1D2 AC1D3 AC2D3 AC2D4 AC2D4R AC2D6 AC2D8 AC3D4 AC3D6 AC3D8 AC3D8R AC3D10 AC3D15 AC3D20 ACAX3 ACAX4ACAX4R ACAX6 ACAX8 ACIN2D2 ACIN2D3 ACIN3D3 ACIN3D4 ACIN3D6 ACIN3D8 ACINAX2 ACINAX3 ASI1 ASI2 ASI2AASI2D2 ASI2D3 ASI3 ASI3A ASI3D3 ASI3D4 ASI3D6 ASI3D8 ASI4 ASI8 ASIAX2 ASIAX3B21 B21H B22 B22H B23 B23H B31 B31H B31OS B31OSH B32 B32H B32OSB32OSH B33 B33HC3D4 C3D4E C3D4H C3D4P C3D4T C3D6 C3D6E C3D6H C3D6P C3D6T C3D8 C3D8E C3D8H C3D8HT C3D8I C3D8IH C3D8PC3D8PH C3D8PHT C3D8PT C3D8R C3D8RH C3D8RHT C3D8RP C3D8RPH C3D8RPHTC3D8RPT C3D8RT C3D8T C3D10 C3D10EC3D10H C3D10I C3D10M C3D10MH C3D10MHT C3D10MP C3D10MPH C3D10MPTC3D10MT C3D15 C3D15E C3D15H C3D15VC3D15VH C3D20 C3D20E C3D20H C3D20HT C3D20P C3D20PH C3D20R C3D20REC3D20RH C3D20RHT C3D20RP C3D20RPHC3D20RT C3D20T C3D27 C3D27H C3D27R C3D27RH CAX3 CAX3E CAX3H CAX3T CAX4 CAX4E CAX4H CAX4HT CAX4ICAX4IH CAX4P CAX4PH CAX4PT CAX4R CAX4RH CAX4RHT CAX4RP CAX4RPHCAX4RPHT CAX4RPT CAX4RT CAX4T CAX6CAX6E CAX6H CAX6M CAX6MH CAX6MHT CAX6MP CAX6MPH CAX6MT CAX8 CAX8E CAX8H CAX8HT CAX8P CAX8PH CAX8RCAX8RE CAX8RH CAX8RHT CAX8RP CAX8RPH CAX8RT CAX8T CAXA4HN CAXA4N CAXA4RHN CAXA4RN CAXA8HN CAXA8NCAXA8PN CAXA8RHN CAXA8RN CAXA8RPN CCL12 CCL12H CCL18 CCL18H CCL24 CCL24H CCL24R CCL24RH CCL9 CCL9HCGAX3 CGAX3H CGAX3HT CGAX3T CGAX4 CGAX4H CGAX4HT CGAX4R CGAX4RH CGAX4RHT CGAX4RT CGAX4T CGAX6 CGAX6HCGAX6M CGAX6MH CGAX6MHT CGAX6MT CGAX8 CGAX8H CGAX8HT CGAX8R CGAX8RH CGAX8RHT CGAX8RT CGAX8T CIN3D12RCIN3D18R CIN3D8 CINAX4 CINAX5R CINPE4 CINPE5R CINPS4 CINPS5R COH2D4 COH2D4P COH3D6 COH3D6P COH3D8COH3D8P COHAX4 COHAX4P CONN2D2 CONN3D2 CPE3 CPE3E CPE3H CPE3T CPE4 CPE4E CPE4H CPE4HT CPE4I CPE4IHCPE4P CPE4PH CPE4R CPE4RH CPE4RHT CPE4RP CPE4RPH CPE4RT CPE4T CPE6 CPE6E CPE6H CPE6M CPE6MH CPE6MHTCPE6MP CPE6MPH CPE6MT CPE8 CPE8E CPE8H CPE8HT CPE8P CPE8PH CPE8RCPE8RE CPE8RH CPE8RHT CPE8RPCPE8RPH CPE8RT CPE8T CPEG3 CPEG3H CPEG3HT CPEG3T CPEG4 CPEG4H CPEG4HT CPEG4I CPEG4IH CPEG4R CPEG4RHCPEG4RHT CPEG4RT CPEG4T CPEG6 CPEG6H CPEG6M CPEG6MH CPEG6MHT CPEG6MT CPEG8 CPEG8H CPEG8HT CPEG8RCPEG8RH CPEG8RHT CPEG8T CPS3 CPS3E CPS3T CPS4 CPS4E CPS4I CPS4RCPS4RT CPS4T CPS6 CPS6E CPS6M CPS6MTCPS8 CPS8E CPS8R CPS8RE CPS8RT CPS8TDASHPOT1 DASHPOT2 DASHPOTA DC1D2 DC1D2E DC1D3 DC1D3E DC2D3 DC2D3EDC2D4 DC2D4E DC2D6 DC2D6E DC2D8DC2D8E DC3D10 DC3D10E DC3D15 DC3D15E DC3D20 DC3D20E DC3D4 DC3D4EDC3D6 DC3D6E DC3D8 DC3D8E DCAX3DCAX3E DCAX4 DCAX4E DCAX6 DCAX6E DCAX8 DCAX8E DCC1D2 DCC1D2D DCC2D4 DCC2D4D DCC3D8 DCC3D8D DCCAX2DCCAX2D DCCAX4 DCCAX4D DCOUP2D DCOUP3D DGAP DRAG2D DRAG3D DS3 DS4 DS6 DS8 DSAX1 DSAX2EC3D8R EC3D8RT ELBOW31 ELBOW31B ELBOW31C ELBOW32 EMC2D3 EMC2D4 EMC3D4 EMC3D8F2D2 F3D3 F3D4 FAX2 FLINK FRAME2D FRAME3D FC3D4 FC3D6 FC3D8GAPCYL GAPSPHER GAPUNI GAPUNIT GK2D2 GK2D2N GK3D12M GK3D12MN GK3D18 GK3D18N GK3D2 GK3D2N GK3D4LGK3D4LN GK3D6 GK3D6L GK3D6LN GK3D6N GK3D8 GK3D8N GKAX2 GKAX2N GKAX4 GKAX4N GKAX6 GKAX6N GKPE4 GKPE6GKPS4 GKPS4N GKPS6 GKPS6NHEATCAPIRS21A IRS22A ISL21A ISL22A ITSCYL ITSUNI ITT21 ITT31JOINT2D JOINT3D JOINTCLS3S LS6MASS M3D3 M3D4 M3D4R M3D6 M3D8 M3D8R M3D9 M3D9R MAX1 MAX2 MCL6 MCL9 MGAX1 MGAX2PC3D PIPE21 PIPE21H PIPE22 PIPE22H PIPE31 PIPE31H PIPE32 PIPE32HPSI24 PSI26 PSI34 PSI36Q3D4 Q3D6 Q3D8 Q3D8H Q3D8R Q3D8RH Q3D10M Q3D10MH Q3D20 Q3D20H Q3D20R Q3D20RHR2D2 R3D3 R3D4 RAX2 RB2D2 RB3D2 ROTARYIS3 S3T S3R S3RS S3RT S4 S4T S4R S4RT S4R5 S4RS S4RSW S8R S8R5 S8RT S9R5 SAX1 SAX2 SAX2T SAXA1NSAXA2N SC6R SC6RT SC8R SC8RT SFM3D3 SFM3D4 SFM3D4R SFM3D6 SFM3D8 SFM3D8R SFMAX1 SFMAX2 SFMCL6 SFMCL9SFMGAX1 SFMGAX2 SPRING1 SPRING2 SPRINGA STRI3 STRI65T2D2 T2D2E T2D2H T2D2T T2D3 T2D3E T2D3H T2D3T T3D2 T3D2E T3D2H T3D2T T3D3 T3D3E T3D3H T3D3TWARP2D3 WARP2D4。
abaqus中单元的选取

ABAQUS中单元的选取总结实体单元的选择1. 如果不需要模拟非常大的应变或进行复杂的需改变接触条件的问题,则应采用二次减缩积分单元(CAX8R、CPE8R、CPS8R、C3D20R等);2. 如果存在应力集中,则在局部应采用二次完全积分单元(CAX8、CPE8、CPS8、C3D20等)。
它们可用最低费用提供应力梯度最好的解答。
3. 涉及到非常大的网格扭曲问题(大变形分析),建议采用细网格剖分的线性减缩积分单元(CAX4R、CPE4R、CPS4R、C3D8R等);4. 对接触问题采用线性减缩积分单元或细分的非协同单元(CAX4I、CPE4I、CPS4I、C3D8I等);5. 尽可能的减少网格变形的扭歪,形状扭歪的粗网格线性单元会导致非常差的结果。
壳单元的选择1.当要求解十分精确时,可使用线性、有限薄膜应变、完全积分的四边形壳单元(S4),这个壳单元十分适合于要考虑膜作用或有弯曲模式沙漏的问题,也适合于有平面弯曲的问题;2.线性、有限薄膜应变、减缩积分、四边形壳单元(S4R)较流行,适合于各类问题的应用;3.线性、有限薄膜应变、三角形壳单元(S3/S3R)可作为一般的壳单元来使用。
因为在单元内部是常应变应力场,求解弯曲变形和高应变梯度时需要精细的网格剖分;4.考虑到在复合材料层合壳模型中剪切柔度的影响,可应用厚壳单元(S4、S4R、S3、S3R、S8R)来模拟它,此时需检验平面假定是否满足;5.四边形或三角形的二次壳单元,对于一般的小变形薄壳来说是很有效的,它们对于剪力锁闭和薄膜锁闭不敏感;6.如果在接触问题中一定要用二阶单元,不要选用二阶三角形壳单元(STRI65),而要采用9节点的四边形壳单元(S9R5);7.对于几何线性的,但规模又非常大的模型,线性薄壳单元(S4R5)通常将比一般壳单元效率更高。
梁单元的选择1. 对任何涉及到接触的分析,应使用一阶的、有剪切变形的梁单元(B21、B31);2. 对于结构刚度非常大或非常柔软的结构,在几何非线性分析中应当使用杂交梁单元(B21H、B32H等);3. Euler-Benoulli三次梁单元(B23、B33)在模拟承受分布荷载作用的梁,包括动态的振动分析时,会有很高的精度。
Abaqus各功能模块入门讲解PPT课件

特征修改、删除等,很少用到 线、面、体分割工具,辅助网格划分 基准点、线、面及坐标系等 拓扑修改等,辅助网格划分
网格控制 网格密度 网格划分
网格质量检查
.
L2.19
PARTITION CELL
Define Cutting Plane
定义切割平面的方法: ➢一点一法线 ➢三点 ➢一点一边(点要在边上,该边垂直于定义的切割平面)
SI m N kg s Pa J Kg/m3 m/s2
SI(mm) mm
US Unit in
N
1bf
T (103kg)
1bf s2/in
s
s
MPa mJ (10-3J)
t/mm3 mm/s2
psi in 1bf 1bf s2/in4
.
L2.3
分析流程九步走
1、几何建模 Part 2、划分网格 Mesh 3、特性设置 Property 4、建立装配体 Assembly 5、定义分析步 Step 6、相互作用 Interaction 7、载荷边界 Load 8、提交运算 Job 9、后处理 Visualization
ABAQUS仿真分析培训
.
L2.1
模型操作
Ctrl+Alt+鼠标左键 旋转模型
Ctrl+Alt+鼠标中键 平移模型
Ctrl+Alt+鼠标右键 缩放模型
.
L2.2
单位一致性
CAE软件其实是数值计算软件,没有单位的概念。
Length Force Mass Time Stress Energy Density Ace
Material管理器的功能完全可以在窗口左侧模型树的右键快捷菜单实现。
abaqus单元类型几何阶次

ABAQUS的实体单元大体可分为完全积分、减缩积分、非协调以及杂交这四种常见的单元模式。
按阶次可分为一阶(线性)单元和二阶单元。
1. 线性单元(即一阶单元):仅在单元的角点处布置节点,在各个方向都采用线性插值。
2. 二次单元(即二阶单元):在每条边上有中间节点,采用二次插值。
3. 修正的二次单元(只有Tri或Tet才有此类型):在每条边上有中间节点,并采用修正的二次插值。
请注意,具体的ABAQUS单元类型和几何阶次可能会因不同的版本和模块而有所不同。
建议查阅您所使用的ABAQUS版本的官方文档以获取最准确的信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A1.7
Abaqus单元类型选择
ABAQUS/analysis_单元选择 标准
公式 • 用于描述单元行为的数学公式是用于单元分类的另一种方法。 • 不同单元公式的例子:
– 平面应变 – 平面应力 – 杂交单元 – 非协调元 – 小应变壳 – 有限应变壳 – 厚壳 – 薄壳
构尺寸的1/10,比如: – 支撑或点载荷之间的距离 – 尺寸变化很大的横截面之间的距离 – 最高振动模态的波长
A1.14
Abaqus单元类型选择
• 壳单元 – 使用表面模型构成的壳单元近似 模拟三维实体连续体单元。
• 可以有效的模拟弯曲和面内 变形。
– 如果需要分析某个区域的细节, 使用多点约束或子模型的办法可 以将局部的三维实体模型加入到 壳单元模型中。
– 对于具有线弹性材料属性的、 未扭转的单元,精确积分应变 能所需的最小积分阶数。
• 减缩积分:
– 积分的阶数比全积分小一阶。
一次插值
二次插值
ABAQUS/analysis_单元选择 标准
全积分
减缩积分
A1.10
Abaqus单元类型选择
• 单元命名约定:例子
B21: Beam, 2-D, 1st-order interpolation
ABAQUS/analysis_单元选择 标准
3-D 实体
线模型
利用梁单元建模的框架结构
A1.16
ABAQUS/analysis_单元选择标准
Abaqus单元类型选择
Abaqus单元类型选择
• 纯弯曲的物理特征 – 有限元方法企图模拟的材料行为是: • 在变形过程中,横截面仍然保持为 平面。 • 沿厚度方向,轴向应变xx 线性变化。
• 比较ABAQUS/Standard和ABAQUS/Explicit单元库 – 两种程序基本上具有相同的单元族:连续体、壳、梁等等。 – 除了应力分析,ABAQUS/Standard包括许多可以用于其它分析类型的单元: 热传导、土壤固结、声学等等。 • 在ABAQUS/Explicit中也可以使用声学单元。 – 对于每个单元族,ABAQUS/Standard包含许多变种。 – ABAQUS/Explicit包含几乎所有的一阶单元。 • 例外:二阶三角形和四面体单元、二阶梁单元 – 对于两种程序,许多单元选择的准则是一样的。
A1.8
Abaqus单元类型选择
ABAQUS/analysis_单元选择 标准
积分点 • 在单元之内,刚度和单元质量在采样点,所谓的“积分点”,进行数值计算。 • 用于积分这些变量的数值算法将影响单元的行为。 • ABAQUS包含“全”积分和“减缩”积分单元。
A1.9
Abaqus单元类型选择
• 全积分:
ABAQUS/analysis_单元选择标准
Element type
Abaqus单元类型选择
Abaqus单元类型选择
• ABAQUS中的单元 • 结构单元(壳和梁) vs. 连续体单元 • 使用连续体单元模拟弯曲 • 应力集中 • 接触 • 不可压材料 • 网格生成 • 选择实体单元总结
ABAQUS/analysis_单元选择 标准
CAX8R: Continuum, AXisymmetric, 8-node, Reduced integration
DC3D4: Diffusion (heat transfer), Continuum, 3-D, 4-node
ABAQUS/analysis_单元选择 标准
S8RT: Shell, 8-node, Reduced integration, Temperature
A1.12
ABAQUS/analysis_单元选择标准
Abaqus单元类型选择
Abaqus单元类型选择
ABAQUS/analysis_单元选择 标准
• 连续体(实体)单元模型一般较大、并且昂贵,尤其对于三维问题。 • 如果合适,应该尽量使用结构单元(壳和梁),以得到更经济的解。
– 与连续体单元模型相比,结构单元模型需要的单元一般少得多。 • 对于能得到可接受结果的结构单元,壳的厚度和梁截面的尺寸应该小于总体结
A1.2
ABAQUS/analysis_单元选择标准
Abaqus单元类型选择
Abaqus单元类型选择
ABAQUS/analysis_单元选择 标准
• ABAQUS单元库中大量的单元为不同几何体和结构建模提供了非常大的灵活性。 – 可以通过以下的特征为单元分类: •族 • 节点个数 • 自由度 • 公式 • 积分点
CPE8PH: Continuum, Plane strain, 8-node, Pore pressure, Hybrid
DC1D2E: Diffusion (heat transfer), Continuum, 1-D, 2-node, Electrical
A1.11
Abaqus单元类型选择
ABAQUS/analysis_单元选择 标准
ABAQUS/analysis_单元选择 标准
3-D 实体
表面模型
遭受发射冲击半球圆顶的壳模型
A1.15
Abaqus单元类型选择
• 梁单元 – 使用线模型构成的梁单元近似模 拟三维实体单元。
• 可以有效的模拟弯曲、扭转 和轴力。
• 有许多可用的横截面形状。 • 还可以用工程常数的方式指
定横截面属性。
A1.4
Abaqus单元类型选择
族
• 有限元族是一种广泛的分类 方法。
• 同族的单元共享许多基本特 征。
• 在同一族单元中又有许多变 异。
连续体(实体单元)
刚体单元
ABAQUS/analysis_单元选择 标准
壳单元
梁单元
薄膜单元
无限单元
特殊单元,如弹簧、 阻尼器和质量单元
桁架单元
A1.5
Abaqus单元类型选择
节点个数 (插值) • 节点的单元编号决定了单元域内
节点自由度的插值方式。 • ABAQUS包含一阶和二阶插值方
式的单பைடு நூலகம்。
ABAQUS/analysis_单元选择 标准
一次插值
二次插值
A1.6
Abaqus单元类型选择
ABAQUS/analysis_单元选择 标准
自由度 • 在有限元分析过程中,单元节点的自由度是基本变量。 • 自由度的例子: