高分子化学总结教学内容

高分子化学总结教学内容
高分子化学总结教学内容

名词解释

1:凝胶点:开始出现凝胶瞬间的反应程度。

2:凝胶效应:体系粘度增加所引起的自动加速现象。

3:诱导分解:链自由基向引发剂的转移反应,使引发剂效率降低。

4:动力学链长:每个活性中心自引发至终止平均消耗的单体分子数。

5:理想恒比共聚:当r1=r2=1时,无论配比和转化率如何,共聚物的组成和单体的组成完全相同,F1=f1时,共聚物组成的曲线为一对角线。

6:竞聚率:单体均聚和共聚链增长的速率常数之比。(用于表征两单体的相对活性)

7:官能度:一分子中能参与反应的官能团数。

8:反应程度:参与反应的集团数(N0-N)占起始基团数N0的百分数。

9:环氧值:100g树脂中含有的环氧基的摩尔数。

10:半衰期:引发剂分解至起始浓度一半时所需的时间。

11:引发效率:引发剂分解生成的自由基中能用于引发聚合反应的百分数。

12:笼蔽效应:由于初级自由基受溶剂分子包围,限制了自由基的扩散,,导致初级自由基之间发生耦合或歧化终止,使引发率f降低的效应。

13:数钧聚合度:平均每个聚合物分子所包含的结构单元数。

14:Q,e概念:单体的共轭效应因子Q和极性效应因子e与单体竞聚率相关联的定量关联式。15:临界胶速浓度:乳化剂开始形成胶速的临界浓度。

问答题

1:什么是自动加速现象,产生的原因是什么?对聚合度及聚合反应产生怎样的影响?离子聚合中是否发生自动加速现象?

答:①自动加速现象:单体和引发剂的浓度随着转化率的增加而降低后,聚合速率理应降低,但达一定转化率后,却出现了聚合反应速率增加的现象。

②产生原因:随聚合反应的进行,体系粘度不断增大,当体系粘度增加到一定程度时,双基终止受阻碍,使Kt明显变小,链终止速度下降,但单体扩散的速率几乎不受影响,Kp下降很小,链增长的速率变化不大,因此相对提高了聚合反应的速率,出现了自动加速现象。③影响:导致聚合反应速率增加,体系粘度增加,导致分子量和分散性增加,影响产品质量,易发生局部过热而出现暴聚。

改善:降低体系粘度如溶液聚合,强化传热如搅拌,此外选用良溶剂,如增大溶剂用量,提高或降低聚合物分子质量都会减轻自动加速程度。

④:在离子聚合过程中,由于同种电荷相互排斥而无法双基终止,因而不会产生自动加速现象。

2:为什么缩聚反应中不能用转化率而用反应程度来描述反应过程?

答:缩聚反应的本质是官能团之间的反应,在缩聚早期,转化率就很高,转化率并无实际意义,只有官能团之间充分反应才能生成大分子。

3:能否用蒸馏的方法提纯高分子化合物,为什么?

答:不能,由于高分子化合物分子间作用力往往超过高分子主链中共价键的键合力,所以当温度升高达气化温度之前,就发生主链的断裂和分解,从而破坏了高分子化合物的化学结构。4:推导自由基聚合动力学方程时,作了哪些基本假设?

答:①:等活性假设:链自由基活性与链长无关,即各步增长反应速率常数相等。

②:稳态假设:自由基浓度不发生改变进入稳态状态,即引发速率等于终止速率。

③:高分子聚合度很大:用于增长的单体远远多于用于引发消耗的单体。

④:链转移不影响聚合速率,仅影响分子量

动力学方程:适用条件:低转化率下

5:简述理想乳液聚合体系的组分,聚合前体系中的三相和聚合的三个阶段的标志。

答:①:组分:难溶于水的单体,水溶性引发剂,水溶性乳化剂,去离子水

②:三相:微量单体和乳化剂以分子分散状态真正溶解于水中——水相

部分乳化剂形成胶束——胶束

大部分单体分散成液滴——液滴

③:三个阶段:成核期或增速期:胶束不断减少,胶粒不断增多,速率相应增加,单体液滴数不变,单体体积不断减小。

胶粒数恒定期或恒速期:转化率恒定,胶束消失,胶粒数恒定,胶粒不断长大。

减速期:单体液滴消失,只剩胶粒,胶粒数不变,聚合速率随[M]下降而下降。

6:丙烯晴连续溶液聚合知道腈纶纤维,除加入丙烯晴作为主要单体外还常加入丙烯酸甲酯或衣原酸为辅助单体与其共聚,试说明它们对产品性能的影响。

答:①:因为丙烯晴中-CN极性太强,分子间吸力不大,加热时不熔融,只分解。均聚难成纤维且性质脆不柔软,难染色,所以常用之共聚。

②:加入丙烯晴酸甲酯共聚是为了改善分子链的柔性,相对减少和隔离分子链的氰基,以提高腈纶纤维的松软性和手感,同时也利于染料分子扩散进入。

③:与衣原酸共聚是为了把少量-COOH基引入分子链(侧链),改善亲水性和对染料的结合能力。

7:为什么阳离子聚合反应一般需要有很低温度下进行才能得到高相对分子量的聚合物?答:因为阳离子聚合的活性种一般为碳阳离子,而碳阳离子很活泼,极易发生重排和链转移反应。向单体的链转移常数比自由基聚合大很多,为了减少链转移反应的发生,提高聚合物相对分子质量,所以阳离子反应一般需在很低的温度下进行。

8:分别叙述进行阴,阳离子聚合时,控制聚合反应速度和聚对分子质量的主要办法?

答:①:进行离子聚合时,一般多采用改变聚合反应温度或改变溶剂极性的方法来控制聚合反应速度。

②:阴离子聚合一般为无终止聚合,所以通过引发剂的用量可调节聚合物的相对分子质量,也有时可加入链转移剂(如甲苯)来调节聚合物的相对分子质量。

③:阳离子聚合极易发生链转移反应,链转移反应是影响聚合物分子量的主要因素,而聚合反应温度对链转移反应的影响很大,所以一般通过控制聚合反应温度来控制聚合物的相对分子质量,有时也通过加入链转移剂来控制聚合物的相对分子质量。

9:乳液聚合中,乳化剂的作用?

答:1:降低表面张力,使单体分散成细小的液滴。

2:在液滴或胶粒表面形成保护层,防止凝胶,使乳液稳定。

3:形成速胶,使单体增溶。

三:判断单体聚合机理

①:CH2=CHCl:自由基聚合,Cl原子为吸电子基,也有给电子共轭效应,但相互抵消后电子效应较弱。

②:CH2=CCl2:自由基聚合,阴离子聚合,Cl原子为吸电子基,结构更不对称,极化程度

增加,更易自由基聚合,同时,吸电子基使双键电子云密度减小,并使阴离子增长,共轭稳定,因此可阴离子聚合。

③:CH2=CHCN:自由基,阴离子聚合,-CN强吸电子基,并且有共轭效应。

④:CH2=C(C N)2:阴离子聚合,-CN为强吸电子基,而两个-CN存在,使吸电子倾向过强,难于自由基聚合。

⑤:CH2=CHNO2:阴离子聚合,-NO2为强吸电子基,且其吸电子倾向过强使难自由基聚合。

⑥:CH2=CHCH3::难进行自由基,阴阳离子聚合,因为-CH3(烷基)的给电子效应和共轭效应均太弱。

⑦:CH2=C(CH3)2::阳离子聚合,-CH3为给电子基,且与双键有超共轭效应。

⑧:CH2=CH(C6H5):自由基,阴阳离子聚合,共轭体系π电子流动性较大,易诱导极化。

⑨:CH2=C(CH3)--CH=CH2::自由基,阴阳离子聚合,共轭体系π电子流动性较大,易诱导极化。

⑩:CF2=CF2:自由基聚合,F原子体积小,结构对称,位阻效应可忽略,而F又存在吸电子效应及给电子共轭效应,相互抵消,电子效应应较弱,不易阴离子,阳离子聚合。

⑾CH2=C(CN)COOR:自由基,阴离子聚合,为1,1-二取代基,两个吸电子基有共轭效应。CH2C(CH3)COOR:自由基,阴离子聚合,为1,1-二取代基,-CH3体积小,供电子效应很弱,-COOR为吸电子基,且-CH3,-COOR都有共轭效应。

(12)CH2=CH2.,CH2=CH2CH2CH3 同⑥。CH2=CHCH3,不易聚合。

(13)CF2=CFCF3,CH2=CHF,同⑩。

(14)CH2=C(CH3)2,只可阳离子聚合。

10. 什么叫聚合物相对分子质量的多分散性?

答:即使纯粹的聚合物也是由化学组成相同,相对分子质量不同的同系物组成的混合物。聚合物相对分子质量的不均一性,称其为相对分子质量的多分散性。我们所说的集合物的平均相对分子质量具有统计平均的意义。

11. 在离子聚合反应过程中,能否出现自动加速现象,为什么?

自由基聚合反应过程中出现自动加速现象的原因是:随着聚合反应的进行,体系的粘

度不断增大。当体系粘度增大到一定程度时,双基终止受阻碍,则而kt明显变小,链终止速度下降;但单体扩散速度几乎不受影响,kp下降很小,链增长速度变化不大,因此相对提高

了聚合反应速度,出现了自动加速现象。在离子聚合反应过程中由于相同电荷互相排斥不存在双基终止,因此不会出现自动加速效应。

12. 在典型乳液聚合体系中,为什么增加乳胶粒的数目N,可以同时提高聚合速率Rp和聚合物的平均聚合度?

典型乳液聚合反应中,聚合是在乳胶粒中进行,而乳胶粒的体积很多小,平均每个乳胶粒中在同一时刻只有一个活性链增长,若再扩散进入一个自由基活性链即终止。由于链自由基受

乳化剂的保护,因而双基终止的几率小,乳液聚合体系链终止方式可以认为是单基终止,链自由基的寿命长,链自由基浓度比一般自由基聚合要高得多,因而聚合反应速度快,产物相对分子量高

14. 为什么自由基聚合时聚合物的相对分子质量与反应时间基本无关。缩聚反应中聚合物相对分子质量随时间延长而增大?

自由基聚合遵循连锁聚合机理:链增加反应的活化能很低,Ep=20~34KJ/mol,聚合反应一旦开始,在很短时间内(0.01s~几秒)就有成千上万的单体参加了聚合反应,也就是生成一个相对分子质量几万~几十万的大分子只需要0.01~几秒的时间(瞬间可以完成),体系中不是聚合物就是单体,不会停留在中间聚合度阶段,所以聚合物的相对分子质量与反应时间基本无关。而缩聚反应遵循的是逐步聚合机理:单体先聚合成低聚体,低聚体再聚合成高聚物。链增加的活化能较高,Ep=60KJ/mol,生成一个大分子的时间很长,几乎是整个聚合反应所需的时间,缩聚物的相对分子质量随聚合时间的延长而增大

高分子材料化学重点知识点总结只是分享

第一章水溶性高分子 水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。 造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。 日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。 壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。1996年Donlar公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。 第二章、离子交换树脂 离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。 离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。(2)根据所交换离子的类型:阳离子交换树脂(-SO3H);阴离子交换树脂(-N+R3Cl-);两性离子交换树脂 离子交换树脂的制备:(1)聚苯乙烯型:(方程式) 离子交换树脂的选择性:高价离子,大半径离子优先 离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10%NaCl溶液再生;b. OH型强碱型阴离子交换树脂则用4%NaOH溶液再生。 离子交换树脂在水处理中的用:(1)水的软化;(2)水的脱盐。 第三章、高吸液树脂 淀粉接枝聚丙烯腈(丙烯酸) 改性淀粉类高吸水性树脂特点:优点:1)原料来源丰富,2)产品吸水倍率较高,通常都在千倍以上。缺点:1)吸水后凝胶强度低,2)保水性差,3)易受细菌等微生物分解而失去吸水、保水作用。 纤维素类高吸水性树脂的特点:优点:1)原料来源丰富,2)吸水后凝胶强度高。缺点:1)吸水能力比较低,2)易受细菌等微生物分解而失去吸水、保水作用。 壳聚糖类:壳聚糖类高吸水树脂具有好的耐霉变性。 聚丙烯酸型高吸水树脂:(1)丙烯酸直接聚合法:由于强烈的氢键作用,体系粘度大,自动加速效应明显,反应较难控制。(2)聚丙烯腈水解法:可用于废腈纶丝的回收利用,来制备高吸水纤维。(3)聚丙烯酸酯水解法:丙烯酸酯品种多样,反应易控制 聚乙烯醇型高吸水树脂:初期吸水速度较快,耐热性和保水性都较好 高吸水性树脂的吸水机制:亲水作用(亲水性基团);渗透压作用(可离子化基团);束缚作用(高分子网格)

高分子化学与物理实验指导书总结

高分子化学与物理实验指导书

1. 实验课时间安排 高分子化学实验是在学生主修《高分子化学与物理》课程基础上开设的。其中学时安排如下: 2. 预习情况检查方式 要求学生在实验前必须做好实验预习,否则不予参加实验。实验预习主要包括以下两个方面的内容: 1、检查实验预习报告(预习报告要求包括实验目的、实验原理、实验所需仪器及药品、实验步骤等) 2、老师在实验前要检查学生的实验预习情况,可采取口头提问的方式了解学是对实验的预习情况。 3. 相关知识的讲解 针对高分子化学开设的不同实验,指导教师要做好相关的讲解工作。主要包括:实验一甲基丙烯酸甲酯的本体聚合 实验二酚醛树脂的缩聚 实验三PP球晶观察 实验四PS粘均分子量测定

实验一甲基丙烯酸甲酯的本体聚合 一、实验目的 1. 掌握自由基本体聚合的原理及合成方法; 2. 了解有机玻璃的生产工艺。 二、实验原理 聚甲基丙烯酸甲酯(PMMA),俗称有机玻璃。有机玻璃广泛用在工业、农业、军事、生活等的各个领域,如飞机、汽车的透明窗玻璃、罩盖等。在建筑、电气、医疗卫生、机电等行业也广泛使用,如制造光学仪器、电器、医疗器械、透明模型、装饰品、广告铭牌等。每年全世界要消耗数以百万吨的有机玻璃及其制品。 工业上制备有机玻璃主要采用本体、悬浮聚合法,其次是溶液和乳液法。而有机玻璃的板、棒、管材制品通常都用本体浇铸聚合的方法来制备。如果直接做甲基丙烯酸甲酯的本体聚合,则由于发热而产生气体只能得到有气泡的聚合物。如果选用其它聚合方法(如悬浮聚合等)由于杂质的引入,产品的透明度都远不及本体聚合方法。因此,工业上或实验室目前多采用浇注方法。即:将本体聚合迅速进行到某种程度(转化率 10% 左右)做成单体中溶有聚合物的粘稠溶液(预聚物)后,再将其注入模具中,在低温下缓慢聚合使转化率达到 93 ~ 95% 左右,最后在 100 ℃下聚合至反应完全。其反应方程式如下: 本实验采用本体聚合法制备有机玻璃。本体聚合是在没有介质存在的情况下进行的聚合反应,体系中可以加引发剂,也可以不加引发剂。按照聚合物在单体中的溶解情况,可以分为均相聚合和多相聚合两种:聚合物溶于单体,为均相聚合,如甲基丙烯酸甲酯,苯乙烯等的聚合;聚合物不溶于单体,则为多相聚合,如氯乙烯,丙烯腈的聚合。 本体聚合中因为体系中无介质存在,反应是粘度不断增大,反应热不容易排出,局部容易过热,导致单体气化或聚合物裂解,结果产品内有气泡或空心。在甲基丙烯酸甲酯聚合过程中甚至会使反应进入爆炸聚合阶段(爆聚),所以反应必须严格控制温度。

高分子材料与工程专业考研学校选择

高分子材料与工程专业考研学校选择作者:admin 更新时间:2009-3-9 20:25:14 在全国高校中在高分子领域领先: 工科: 偏合成的:浙江大学(国内高分子鼻祖,尤其在合成方面)、华东理工、北京化工大学、清华大学; 偏加工和应用的:四川大学、华南理工大学、东华大学(原中国纺织大学)、上海交通大学理科:偏合成的:北京大学(好像北大遥遥领先,其他象南开、南京大学明显差一些);偏性能形态研究的:中科院北化所(明显领先)、南京大学、复旦大学、北京大学(上述为网上摘录,不一定全面)简单评述下 浙江大学是出高分子院士最多的学校。 北京大学合成做的好,特别是高分子液晶。 复旦大学的研究偏向理论研究,有杨玉良和江明两位院士,实力不凡。上海交通大学也有新评上一个高分子方面的院士:颜德岳, 华南理工和北京化工大学研究领域较广,在橡胶、塑料、纤维方面做的都不错。华南理工大学有3位中科院院士程镕时、姜中宏生、曹镛、长江学者特聘教授2人、珠江学者特聘教授2人、博士生导师43人),副教授、副研究员和高级工程师67人;高分子加工实力很强的。在全国排前3名。 四川大学有高分子材料工程国家重点实验室,主要是做塑料的加工改性,实力虽有下滑,但仍然很强,毕竟其根基很厚。 东华大学的研究重点在纤维方面,建有纤维素改性国家重点实验室。 中科院长春应化所和中科院北京化学研究所共同建有高分子化学与物理国家重点实验室。长春应化所在一直是在做合成方面比较强。化学所在前两年还有个工程塑料国家重点实验室,不过现在降格为中科院的重点实验室了。所以化学所的合成和加工做的都还不错。 青岛科技大学在高分子方面主要的特色是其橡胶,2003年建成了教育部橡塑工程重点实验室,也是多年来对青岛科技大学研究工作的肯定。 研究生的方向很多,大的方面大概一下几个:树脂合成(环氧,丙烯酸,聚苯,聚酯等每个方向都很多);塑料/纤维加工(加工工艺川大最强的,模具和机械华南理工及北化都不错);生物医用高分子(华东理工等);高分子理论及表征(中科院化学所及南京大学最强);液晶高分子(吉大,北大,北科大等);导电高分子(化学所等);纳米高分子(化学所);碳纤维/碳纳米(北化,清华);有机硅(化学所)等等 而在珠三角这一带,华南理工中山大学都是不错选择,有志在高分子领域深入了解的同学可以报读。 下面附有2009年华南理工大学科学与工程学院硕士招生目录及初复试科目材料高分子材料与工程专业考研学校选择 作者:admin 更新时间:2009-3-9 20:25:14 高分子化学与物理专业设置如下研究方向 01 高分子物理、02高分子合成与高分子化学、03 功能高分子、04高分子结构与性能、05天然高分子与生物医用高分子、06环境友好高分子 09年初试科目:①101政治② 201英语③629物理化学(一) ④865有机化学复试:复试笔试科目:979高分子化学与物理 材料物理与化学专业设置如下研究方向: 01 、高分子光电材料与器件物理、02 金属材料表面物理化学、03 生态环境材料、04功能材料制备、结构与性能、05纳米材料与纳米技术、06纳米材料与新型能源材料、07非线性

高分子化学重点

第一章 绪论 单体:能通过聚合反应形成高分子化合物的低分子化合物,即合成聚合物的原料。 高分子:一个大分子由许多简单的结构单元通过共价键重复键接而成,并具有一定机械性能。 结构单元:在大分子链中出现的以单体结构基础的原子团称为结构单元。 重复单元:大分子链上化学组成和结构均可重复的最小单元,可能与结构单元相同,也可能由2个或多个结构单元组成。 单体单元:与单体中原子种类及个数相同的结构单元,仅电子结构有所变化。 重复单元或结构单元类似大分子链中的一个环节,故俗称链节 由一种单体聚合而成的高分子称为均聚物; 由两种或两种以上的单体聚合而成的高分子则称为共聚物. 结构单元=单体单元=重复单元=链节 聚合度:聚合度是衡量高分子大小的一个指标。 合成尼龙-66具有另一特征: H 2N(CH 2)6NH 2 + HOOC(CH 2)4COOH H--NH(CH 2)6NH--CO(CH 2)4CO--OH n (2n-1) H 2O + 结构单元 结构单元 重复结构单元 有两种表示法:[1]以大分子链中的结构单元数目表示,记作: [2]:以大分子链中的重复单元数目表示,记作: 单元的分子量 结构单元=重复单元=链节1 单体单元 单体在形成高分子的过程中要失掉一些原子 结构单元 1 重复单元 1 单体单元 重复单元=链节 三大合成材料:橡胶,塑料,纤维 玻璃化温度:聚合物从玻璃态到高弹态的热转变温度。 分子量及其分布 数均分子量:按聚合物中含有的分子数目统计平均的分子量高分子样品中所有分子的总重量除以其分子(摩尔)总数 ∑∑∑∑∑∑= = = =i i i i i i i i i n M x M W W N M N N W M ) ( n x DP n DP x n ==

高分子材料化学重点知识点总结

水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。 造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。 日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。 壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。1996年公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。 第二章、离子交换树脂 离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。 离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。(2)根据所交换离子的类型:阳离子交换树脂(3H);阴离子交换树脂(3);两性离子交换树脂 离子交换树脂的制备:(1)聚苯乙烯型:(方程式) 离子交换树脂的选择性:高价离子,大半径离子优先 离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10溶液再生;b. 型强碱型阴离子交换树脂则用4溶液再生。 离子交换树脂在水处理中的用:(1)水的软化;(2)水的脱盐。 第三章、高吸液树脂 淀粉接枝聚丙烯腈(丙烯酸) 改性淀粉类高吸水性树脂特点:优点:1)原料来源丰富,2)产品吸水倍率较高,通常都在千倍以上。缺点:1)吸水后凝胶强度低,2)保水性差,3)易受细菌等微生物分解而失去吸水、保水作用。 纤维素类高吸水性树脂的特点:优点:1)原料来源丰富,2)吸水后凝胶强度高。缺点:1)吸水能力比较低,2)易受细菌等微生物分解而失去吸水、保水作用。 壳聚糖类:壳聚糖类高吸水树脂具有好的耐霉变性。 聚丙烯酸型高吸水树脂:(1)丙烯酸直接聚合法:由于强烈的氢键作用,体系粘度大,自动加速效应明显,反应较难控制。(2)聚丙烯腈水解法:可用于废腈纶丝的回收利用,来制备高吸水纤维。(3)聚丙烯酸酯水解法:丙烯酸酯品种多样,反应易控制 聚乙烯醇型高吸水树脂:初期吸水速度较快,耐热性和保水性都较好 高吸水性树脂的吸水机制:亲水作用(亲水性基团);渗透压作用(可离子化基团);束缚作用(高分子网格) 高吸油树脂类型及制备方法:(1)聚丙烯酸酯类(2)聚烯烃类树酯(3)丙烯酸酯和烯烃共聚物(4)聚氨酯吸油泡沫

高分子化学概念总结

高分子化学试题 目录 高分子化学试题 (1) 一、名词解释 (1) 第一章绪论(Introduction) (1) 第二章自由基聚合(Free-Radical Polymerization) (4) 第三章自由基共聚合(Free-Radical Co-polymerization) (9) 第四章聚合方法(Process of Polymerization) (11) 第五章离子聚合(Ionic Polymerization) (12) 二、填空题 (15) 一、名词解释 第一章绪论(Introduction) 高分子化合物(High Molecular Compound):所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。单体(Monomer):合成聚合物所用的-低分子的原料。如聚氯乙烯的单体为氯乙烯 重复单元(Repeating Unit):在聚合物的大分子链上重复出现的、组成相同的最小基本单元。 结构单元(Structural Unit):单体在大分子链中形成的单元。 单体单元(Monomer Unit):结构单元与原料相比,除了电子结构变化外,其原子种类和各种原子的个数完全相同,这种结构单元又称为单体单元。 聚合度(DP、X n)(Degree of Polymerization) :衡量聚合物分子大小的指标。以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值。

聚合物分子量(Molecular Weight of Polymer):重复单元的分子量与重复单元数的乘积;或结构单元数与结构单元分子量的乘积。 数均分子量 (Number-average Molecular Weight):聚合物中用不同分子量的分子数目平均的统计平均分子量。 重均分子量(Weight-average Molecular Weight):聚合物中用不同分子量的分子重量平均的统计平均分子量。 粘均分子量(Viscosity-average Molecular Weight):用粘度法测得的聚合物的分子量。 分子量分布(Molecular Weight Distribution, MWD ):由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般有分布指数和分子量分布曲线两种表示方法。 多分散性(Polydispersity):聚合物通常由一系列相对分子量不同的大分子同系物组成的混合物,用以表达聚合物的相对分子量大小并不相等的专业术语叫多分散性。 分布指数(Distribution Index) :重均分子量与数均分子量的比值,用来表征分子量分布的宽度或多分散性。 连锁聚合(Chain Polymerization):活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合(Step Polymerization):无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应(Addition Polymerization):即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应(Condensation Polymerization):即缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。

高分子化学复习题答案资料

答案大部分都是在网上或者书上找到的,少数自己总结的,不能确保百分之百正确,仅供 参考,如发现错误和遗漏之处,请大家指出! 计算题第二题方法应该没错,答案有保留小数方面的问题,如果有人找到正确的解答欢迎 补充。 一、名词解释 1. 凝胶化现象:多官能团单体聚合到某一程度,开始交联,粘度突增,气泡也难上升的现象。 2. 多分散性:合成聚合物总是存在一定的分子量分布,常称作多分散性。 3. 玻璃化温度:非晶态热塑性聚合物在玻璃态下受热转变成高弹态时的转变温度。 4. 自由基聚合:自由基成为活性种,打开烯类的n键,弓I发聚合,成为自由基聚合。| 5. 胶束成核:难溶于水的单体其短链自由基只增长少数单元(<4),就被沉析出来,与初级自由基一起 被增溶胶束捕捉,引发其中的单体聚合而成核,即所谓胶束成核。 6. 力口聚:稀类单体n键断裂而后加成聚合起来的反应。 7. 缩聚反应:是官能团单体多次缩合成聚合物的反应,除形成缩聚物外,还有水、醇、氨或氯化氢等低分子副产 物产生。 8. 接枝共聚物:主链由某一种单元组成,支链则由另一种单元组成。 9. 竞聚率:是指单体均聚和共聚链增长反应速率之比。 10. 均相成核:溶于水中的单体引发聚合形成短链自由基,多条这样亲水性较大、链较长的短链自由基 相互聚集在一起,絮凝成核的现象。 11. 定向聚合:定向聚合指单体经过定向配位、络合活化、插入增长等形成立构规整(或定向)聚合物 的过程 12. 开环聚合:环状单体b -键断裂而后开环、形成线性聚合物的反应,称作开环聚合。 13. 共聚合:由两种或两种以上单体共同聚合,生成同一分子中含有两种或两种以上单体单元的聚合物的反应。 14. 化学计量聚合 :阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计 量聚合。 15. 嵌段共聚物:是将两种或两种以上性质不同的聚合物链段连在一起制备而成的一种特殊聚合物,每 一锻炼可长达至几千结构单元。

高分子化学知识总结

一、绪论 1.聚合物的分类及命名可按来源、合成方法、用途、热行为、结构等来分类,主要是按主链结构来分类,分为:(1)碳链聚合物,(2)杂链聚合物,(3)元素有机聚合物; 2.聚合物的命名 (1)单体来源命名法 烯类聚合物单体名前加“聚”; 两种单体合成的,取二者简名加后缀“树脂”“橡胶”; 杂链聚合物按其特征结构命名; *有些聚合物按单体名来命名容易引起混淆,例如[]22OCH CH --,可以从环氧乙烷、乙二醇、氯丙醇或氯甲醚来合成,因为环氧乙烷单体最常用,故通常称作聚环氧乙烷,按结构该聚合物应称作聚氧乙烯。 (2)系统命名法 命名原则和程序:先确定重复单元结构,再排好其中次级单元次序,给重复单元命名,最后冠以“聚”字,就成为聚合物的名称。写次级单元时候,先写侧基最少的元素,再写有取代的亚甲基,然后写无取代的亚甲基。 3.聚合反应 (1)按单体-聚合物结构变化分类 缩聚 官能团单体多次缩合成聚合物的反应,除形成缩聚物外,还有水、醇、 氨或氯化氢等低分子产物产生 加聚 烯类单体π键断裂而后加成聚合起来的反应称作加聚,产物称作加聚 物。加聚物结构单元的元素组成与其单体相同,仅仅是电子结构有所变化,因此加聚物的分子量是单体分子量的整数倍 开环聚合 环状单体σ键断裂而后聚合成线形聚合物的反应,反应时无低分子副 产物产生 (2)按聚合物机理分类 逐步聚合 多数缩聚和聚加成反应属于逐步聚合,其特征是低分子转变成高分 子是缓慢逐步进行的,每步反应的速率和活化能大致相同,单体分子首先聚合成二、三、四具体等低聚物(齐聚物),短期内单体转化率很高,随后,低聚物间相互缩聚分子量缓慢增加,直至集团反应程度很高分子量才达到较高的数值 *连锁聚合 多数烯类单体的加聚反应属于连锁聚合。有自由基、阴离子或阳离 子聚合,自由基聚合过程中,分子量变化不大,除微量引发剂外,体系始终由单体和高分子量聚合物组成,没有分子量递增的中间产物,转化率随时间而增大,单体则相应减少。活性阴离子聚合的特征是分子量随转化率的增大而线性增加。 4.分子量是影响强度的重要因素,聚合物强度随着分子量的增大而增加。 5.平均分子量 (1)数均分子量n M (通常由渗透压,蒸汽压等依数性方法测定)定义:某 体系的总质量m 被分子总数所平均。

高分子化学心得体会

高分子化学心得体会 在未学习高分子化学以前,对高分子化合物的认识停留在涤纶、橡胶、纤维、树脂等这一些常见的化合物上,对高分子化学的认知就是我们有机化学所讲述的聚合物之间的加成、缩聚之类。学习了高分子化学之后,让我了解到现在的高分子科学的研究十一高分子化学为基础,研究高分子化合物的分子设计、合成及改性等,为高分子科学研究提供新生化合物、为国民经济提供新材料及合成方法。而高分子科学的发展由三大合成材料(塑料、合成橡胶和合成纤维)到了精细高分子、功能高分子、生物医学高分子等领域。下面我就本学期以来自己对高分子化学主要内容的学习的心得体会做一简单地总结。 一、对高分子化合物的基本认识 1、高分子化合物的定义及特点 所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子质量在10000以上的化合物。所谓“相对分子质量在10000以上”其实只是一个大概的数值。对于不同种类的高分子化合物而言,具备高分子材料特殊物性所必需的相对分子质量下限各不相同,甚至相去甚远。 高分子化合物的基本特点主要表现在4个方面:a.相对分子质量很大,而且具有多分散性,一般高分子化合物实际上都是由相对分子质量大小不等的同系物组成的混合物,其相对分子质量具有统计平均意义;b.化学组成比较简单,分子结构有规律;c.分子形态多种多样;d.物性迥异于低分子同系物,尤其是具有黏弹性。 2、高分子化合物的分类 A.按照来源分类 可分为天然高分子和合成高分子两大类。天然高分子如云母、石棉、石墨、蛋白质、淀粉、纤维素、核糖核酸(RNA)、脱氧核糖核酸(DNA)等;合成高分子如聚乙烯、尼龙-66、涤纶等。 B.按材料用途分类 可分为塑料、橡胶、纤维、涂料、胶黏剂和功能高分子等6大类。 C.按主链元素组成分类 a.碳链高分子(主链完全由碳原子组成。如聚乙烯); b.杂链高分子(主链除碳原子

高分子化学历年考研题

高分子化学 一、名词解释 1.活性聚合物; 2.自动加速现象 3.凝胶点 4.临位集团效应 5.配位阴离子聚合 6.种子聚合 7.死端聚合 8.异构化聚合 9.立构选择聚合 10.树脂 11.动力学链长 12.竞聚率 13.遥爪聚合物 14.高分子材料 15.诱导分解 16.熔融缩聚 17.反应程度 18.配位聚合 19.竞聚率 20.引发剂效率 21.自由基寿命 二、解释下列名词 1.反应程度和转化率 2.平均官能度和当量系数 3.动力学链长和数均聚合度 4.何谓竞聚率?它有何物理意义? 5.凝胶和凝胶点 三、写出下列反应 1.DPPH与链自由基的阻聚反应,并标明反应前后的颜色变化。 2.萘钠在THF中对苯乙烯的引发反应,并标明不同阶段产物的颜色变化。 3.由“白球”制备强碱型阴离子交换树脂的反应。 4.尼龙1010的聚合反应 5.过硫酸盐与亚硫酸盐的反应 6.阴离子活性链与四氯化硅的反应 7.乙烯在二氧化硫存在下的氯化反应 四、写出合成下列高聚物一般常用的单体及由单体生成聚合物的反应式,指出反应所属的类型 1.尼龙-610 2.PMMA 3.PVC 4.聚异丁稀 5.涤纶树脂 6.环氧树脂(双酚A型) 7.氯化铁对自由基的阻聚反应 8.阴离子活性链与二氧化碳加成后终止反应 9.聚乙烯醇缩丁醛反应 五、写出下列单体形成聚合物的反应式,指出形成聚合物的重复单元的化学结构 1.甲基丙烯酸甲酯 2.双酚A+环氧氯丙烷 3.己二胺+己二酸 4.氯乙烯 5.异戊二烯 六、写出下列所写符号表示的意义 1.LLDPE 2.ABS 3.SBS 4.PTFE 5. ABVN 6.IIP 七、写出下列聚合物的结构和单体结构 1.聚丙烯 2.聚苯乙烯 3.聚氯乙稀 4.有机玻璃 5.尼龙6 6.尼龙66 7.涤纶 8.天然橡胶 八、选择答案 1.下列单体聚合时聚合热最大的是(a)四氟乙烯;(b)丙稀;(c)甲基丙烯酸甲酯;(d)丙烯酸甲酯 2.下列聚合物热解时单体收率最低的是(a)聚苯乙烯;(b)聚乙烯;(c)聚甲基丙烯酸甲酯;(d)聚四氟乙烯3.乳液聚合恒速阶段开始的标志是(a)自由基消失;(b)单体液滴消失;(c)胶束消失;(d)乳胶粒消失4.自由基聚合时主要以链转移方式终止的单体是(a)苯乙烯;(b)甲基丙烯酸甲酯;(c)醋酸乙烯酯;(d)氯乙烯 5.与苯乙烯共聚时,交替倾向最大的是(a)顺丁烯二酸酐;(b)醋酸乙烯酯;(c)丁二烯;(d)甲基丙烯酸甲酯 6.甘油和等物质量的邻苯二甲酸酐缩聚,Flory方法计算凝胶点P c是(a)0.833;(b)0.707;(c)0.845;(d)0.667 7.合成顺式-1,4含量90%以上的聚丁二烯,引发剂用(a)n-BuLi;(b)d-TiCl3-AlR3;(c)CoCl2-AlEt2Cl;(d)萘+Na 8.THF(四氢呋喃)开环聚合,用的引发剂是(a)BPO;(b)n-BuLi;(c)Na;(d)BF3·OEt2 9.苯乙烯在不同溶剂中进行溶液聚合C s最小的是(a)苯;(b)乙苯;(c)甲苯;(d)异丙苯 10.线型缩聚制尼龙1010,控制分子量的有效手段是(a)控制缩聚反应时间;(b)排除小分子;(c)制成一定酸值的尼龙盐;(d)用乙二胺调节分子量

有机化学知识点总结归纳(全)

催化剂 加热、加压 有机化学知识点归纳 一、有机物的结构与性质 1、官能团的定义:决定有机化合物主要化学性质的原子、原子团或化学键。 2、常见的各类有机物的官能团,结构特点及主要化学性质 (1)烷烃 A) 官能团:无 ;通式:C n H 2n +2;代表物:CH 4 B) 结构特点:键角为109°28′,空间正四面体分子。烷烃分子中的每个C 原子的四个价键也都如此。 C) 物理性质:1.常温下,它们的状态由气态、液态到固态,且无论是气体还是液体,均为无色。 一般地,C1~C4气态,C5~C16液态,C17以上固态。 2.它们的熔沸点由低到高。 3.烷烃的密度由小到大,但都小于1g/cm^3,即都小于水的密度。 4.烷烃都不溶于水,易溶于有机溶剂 D) 化学性质: ①取代反应(与卤素单质、在光照条件下) , ,……。 ②燃烧 ③热裂解 C 16H 34 C 8H 18 + C 8H 16 ④烃类燃烧通式: O H 2 CO O )4(H C 222y x y x t x +++????→?点燃 ⑤烃的含氧衍生物燃烧通式: O H 2 CO O )24(O H C 222y x z y x z y x +-+ +????→?点燃 E) 实验室制法:甲烷:3423CH COONa NaOH CH Na CO +→↑+ 注:1.醋酸钠:碱石灰=1:3 2.固固加热 3.无水(不能用NaAc 晶体) 4.CaO :吸水、稀释NaOH 、不是催化剂 (2)烯烃: A) 官能团: ;通式:C n H 2n (n ≥2);代表物:H 2C=CH 2 B) 结构特点:键角为120°。双键碳原子与其所连接的四个原子共平面。 C) 化学性质: CH 4 + Cl 2CH 3Cl + HCl 光 CH 3Cl + Cl 2 CH 2Cl 2 + HCl 光 CH 4 + 2O 2 CO 2 + 2H 2O 点燃 CH 4 C + 2H 2 高温 隔绝空气 C=C 原子:—X 原子团(基):—OH 、—CHO (醛基)、—COOH (羧基)、C 6H 5— 等 化学键: 、 —C ≡C — C=C 官能团 CaO △

高分子化学知识总结

二、缩聚和逐步聚合 2.2 缩聚反应(缩聚反应是缩合聚合的简称,是多次缩合重复结果形成缩聚物 的过程) (1) 缩合反应 *官能度:一分子中能参与反应的官能团数称作官能度(f );考虑官能度时需以参与的反应集团为基准。 (2)缩合反应 线形缩聚的首要条件是需要2-2或2-官能度体系作原料,采用2-3或2-4官能度体系是,除了按线形方向缩聚外,侧基也能缩聚,先形成支链,进一步形成体形结构,这就称作体形缩聚。 (3) 共缩聚 羟基酸或氨基酸一种单体的缩聚,可称作均缩聚;由二元酸和二元醇2种单体进行的缩聚是最普通的缩聚;从改进缩聚物结构性能角度考虑,将1种二元酸和2种二元醇、2种二元酸和2种二元醇进行所谓“共缩聚”。 2.3 线形缩聚反应的机理 2.3.1 线形缩聚和成环倾向 *线形缩聚时,需考虑单体及其中间产物的成环倾向,一般情况下,五、六元环的结构比较稳定。 *成环是单分子反应,缩聚则是双分子反应,因此,低浓度有利于成环,高浓度有利于线形缩聚。 2.3.2 线形缩聚机理 (特征有2:逐步、可逆) (1)逐步特性 缩聚反应无特定的活性种,各步反应速率常数和活化能基本相等,缩聚早期,转化率就很高,因此用基团的反应程度来表述反应的程度更为确切,现已等摩尔二元酸和二元醇的缩聚反应为例来说明 *反应程度p 的定义为参与反应的基团数(0N N -)占起始基团数0N 的分数,因此: 0001N N N p N N -==- *如将大分子的结构单元数定义为聚合度n X ,则: 0n N X N ==结构单元总数大分子数 进一步可得 11n X p =-; (2) 可逆平衡 聚酯化和低分子酯化反应相似,都是可逆平衡反应,正反应是酯化,逆反应是水解。 *平衡常数小,低分子副产物水的存在限制了分子量的提高,需在高度减压条件下脱除; *平衡常数中等,300—400;水对分子量有所影响,聚合早期可在水中进行,只是后期,需要在一定的减压条件下脱水,提高反应程度; *平衡常数很大,K>1000;可以看作不可逆。 2.3.3 缩聚中的副反应 (1)消去反应; 影响产物的分子量

高分子化学和物理南开大学高分子化学与物理考研真题答案

高分子化学和物理南开大学高分子化学与物理考研真 题答案 一、南开大学832高分子化学与物理考研真题及答案

南开大学2011年硕士研究生入学考试高分子化学与物理

2 参考答案 高分子物理部分: 一、名词解释 1.高分子链的远程结构:远程结构是指整个高分子链的结构,是高分子链结构的第二个层次,包含高分子链的大小(质量)和形态(构象)两个方面。 2.高斯链:高斯链是指高分子链段分布符合高斯分布函数的高分子链,也称为等效自由结合链。柔性的非晶状线型高分子链,不论处于什么形态(如玻璃态、高弹态、熔融态或高分子溶液),相同分子量的高分子链段都取平均尺寸近乎相等的无规线团构象,称为“等效自由结合链”。因为等效自由结合链的链段分布符合高斯分布函数,又称为高斯链。 3.聚集态结构:聚集态结构是指高分子链间的几何排列,又称三次结构,也称为超高分子结构。聚集态结构包括晶态结构、非晶态结构、取向结构和织态结构等。 4.溶度参数:溶度参数表征聚合物-溶剂相互作用的参数。物质的内聚性质可由内聚能予以定量表征,单位体积的内聚能称为内聚物密度,其平方根称为溶度参数。溶度参数可以作为衡量两种材料是否共容的一个较好的指标。 5.玻璃化转变:玻璃化转变对于聚合物来说是非晶聚合物的玻璃态与高弹态之间的转变。其分子运动本质是链段运动发生“冻结”与“自由”的转变。6.熵弹性:熵弹性是指由于系统熵变而引起的弹性。熵是和物质分子排列有序度有关的一种状态函数,当物质系统分子排列有序度降低,混乱程度增加时,系统熵也增大。所以当橡胶受外力变形时,若没有内能变化,则其抵抗变形的收缩力(弹力)完全是由熵的变化而产生的,这种称之为熵弹性。

完整高分子化学知识点

2.名词解释 交替共聚物:两种单体在大分子链上严格交替相间排列。 嵌段聚合:两种或两种以上单体分别聚合成链节(或链段)生成嵌段共聚物的一类共聚合反应。活性聚合:阴离子聚合由链引发、链增长和链终止三个基元反应组成,如聚合体系纯净、无质子供体,阴离子聚合可控制其终止反应,这种无终止;无链转移的聚合反应即为活性聚合。特征为(1)无链终止;(2)无链转移;(3)引发反应比增长反应快,反应终了时聚合链仍是活的。 异构化聚合:指在链增长反应过程中常常发生原子或原子团的重排过程的反应。反应程度:高分子缩聚反应中用以表征高分子聚合反应反应深度的量。计算方法为参加反应的官能团数占起始官能团数的比例。 转化率:进入共聚物的单体量占起始单体量M的百分比。笼蔽效应:在溶液聚合反应中,浓度较低的引发剂分子及其分解出的初级自由基始终处于含大量溶剂分子的高黏度聚合物溶液的包围之中,一部分初级自由基无法与单体分子接触而更容易发生向引发剂或溶剂的转移反应,从而使引发剂效率降低。 诱导分解:诱导分解(Induced Decomposition)自由基向引发剂转移的反应为诱导分解。自由基发生诱导分解反应将使引发剂的效率降低,同时也使聚合度降低平均官能度:有两种或两种以上单体参加的混缩聚或共缩聚反应中在达到凝胶点以前的线形缩聚阶段,反应体系中实际能够参加反应的官能团数与单体总物质的量之比。(每一份子平均带的官能度) 凝胶点:开始出现凝胶瞬间的临界反应程度Pc。高分子:由许多结构相同的简单的单元通过共价键重复连接而成的相对分子质量很大的化合物。由于对大多数高分子而言,其均由相同的化学结构重复连接而成,故也成为聚合物或高聚物。计量聚合:指链引发速率在阴离子聚合反应中严格控制条件,以得到接近单分散的聚合物为目的的聚合反应。 配位聚合:单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。随后单体分子插入过渡金属(Mt)-碳(C)链中增长形成大分子的过程。这种聚合本质上是单体对增长链Mt-R键的插入反应,所以又称为插入聚合。(配位聚合具有以下特点:活性中心是阴离子性质的,因此可称为配位阴离子聚合;单体π电子进入嗜电子金属空轨道,配位形成π络合物;π络合物进一步形成四圆环过渡态;单体插入金属-碳键完成链增长;可形成立构规整聚合物。配位聚合引发剂有四种:Z-N催化剂;π烯丙基过渡金属型催化剂;烷基锂引发剂;茂金属引发剂。其中茂金属引发剂为新近的发展,可用于多种烯类单体的聚合,包括氯乙烯。) 线形缩聚:是两种或者以上的双官能团单体聚合最终生成物是长链的线性大分子 理想衡比共聚:不论单体配比和转化率如何,共聚物组成总是与单体组成完全相等,共聚物组成曲线是一条对角线。 动力学链长:是指活性中心(自由基)从产生到消失所消耗的单体数目 立构规整度:是立构规整聚合物占总聚合物的分数,是评价聚合物性能、引发剂定向聚合能力的一个重要指标。 降解:大分子分解成较小的分子。(分子量变小的反应) 老化:聚合物及其制品在加工、贮存及使用过程中,物理化学性质及力学性能逐步变坏,这种现象称老化。PMA聚丙烯酸甲酯PAN 聚丙烯腈PTFE 聚四氟乙烯 SMA 苯乙烯-马来酸酐(顺丁烯二酸酐)AIBN 偶氮二异丁腈ABVN 偶氮二亿庚腈BPO 过氧化二苯甲酰PP 聚丙烯 PS 聚苯乙烯PMMA 聚甲基丙烯酸甲酯PVA 聚乙烯醇PAN 聚丙烯晴PET 聚酯PA66 6 尼龙66PA6 尼龙. PET:聚对苯二甲酸乙二醇酯PVAc聚醋酸乙烯酯ABS 丙烯醇-丁二烯-苯乙烯共聚物3影响线形缩聚聚合物的分子量因素答:反应程度,平衡常数,。Xn=1/1-p=√k+1;

最新-潘祖仁第五版高分子化学知识点 精品

潘祖仁第五版高分子化学知识点 篇一:高分子化学第五版潘祖仁第一章思考题1举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。 答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。 在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。 在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。 在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。 如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。 聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。 聚合度是衡量聚合物分子大小的指标。 以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以表示。 2举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。 答:合成高分子多半是由许多结构单元重复键接而成的聚合物。 聚合物()可以看作是高分子()的同义词,也曾使用的术语。 从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。 根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。 多数场合,聚合物就代表高聚物,不再标明“高”字。 齐聚物指聚合度只有几~几十的聚合物,属于低聚物的范畴。

高分子化学总结教学内容

名词解释 1:凝胶点:开始出现凝胶瞬间的反应程度。 2:凝胶效应:体系粘度增加所引起的自动加速现象。 3:诱导分解:链自由基向引发剂的转移反应,使引发剂效率降低。 4:动力学链长:每个活性中心自引发至终止平均消耗的单体分子数。 5:理想恒比共聚:当r1=r2=1时,无论配比和转化率如何,共聚物的组成和单体的组成完全相同,F1=f1时,共聚物组成的曲线为一对角线。 6:竞聚率:单体均聚和共聚链增长的速率常数之比。(用于表征两单体的相对活性) 7:官能度:一分子中能参与反应的官能团数。 8:反应程度:参与反应的集团数(N0-N)占起始基团数N0的百分数。 9:环氧值:100g树脂中含有的环氧基的摩尔数。 10:半衰期:引发剂分解至起始浓度一半时所需的时间。 11:引发效率:引发剂分解生成的自由基中能用于引发聚合反应的百分数。 12:笼蔽效应:由于初级自由基受溶剂分子包围,限制了自由基的扩散,,导致初级自由基之间发生耦合或歧化终止,使引发率f降低的效应。 13:数钧聚合度:平均每个聚合物分子所包含的结构单元数。 14:Q,e概念:单体的共轭效应因子Q和极性效应因子e与单体竞聚率相关联的定量关联式。15:临界胶速浓度:乳化剂开始形成胶速的临界浓度。 问答题 1:什么是自动加速现象,产生的原因是什么?对聚合度及聚合反应产生怎样的影响?离子聚合中是否发生自动加速现象? 答:①自动加速现象:单体和引发剂的浓度随着转化率的增加而降低后,聚合速率理应降低,但达一定转化率后,却出现了聚合反应速率增加的现象。 ②产生原因:随聚合反应的进行,体系粘度不断增大,当体系粘度增加到一定程度时,双基终止受阻碍,使Kt明显变小,链终止速度下降,但单体扩散的速率几乎不受影响,Kp下降很小,链增长的速率变化不大,因此相对提高了聚合反应的速率,出现了自动加速现象。③影响:导致聚合反应速率增加,体系粘度增加,导致分子量和分散性增加,影响产品质量,易发生局部过热而出现暴聚。 改善:降低体系粘度如溶液聚合,强化传热如搅拌,此外选用良溶剂,如增大溶剂用量,提高或降低聚合物分子质量都会减轻自动加速程度。 ④:在离子聚合过程中,由于同种电荷相互排斥而无法双基终止,因而不会产生自动加速现象。 2:为什么缩聚反应中不能用转化率而用反应程度来描述反应过程? 答:缩聚反应的本质是官能团之间的反应,在缩聚早期,转化率就很高,转化率并无实际意义,只有官能团之间充分反应才能生成大分子。 3:能否用蒸馏的方法提纯高分子化合物,为什么? 答:不能,由于高分子化合物分子间作用力往往超过高分子主链中共价键的键合力,所以当温度升高达气化温度之前,就发生主链的断裂和分解,从而破坏了高分子化合物的化学结构。4:推导自由基聚合动力学方程时,作了哪些基本假设? 答:①:等活性假设:链自由基活性与链长无关,即各步增长反应速率常数相等。 ②:稳态假设:自由基浓度不发生改变进入稳态状态,即引发速率等于终止速率。 ③:高分子聚合度很大:用于增长的单体远远多于用于引发消耗的单体。 ④:链转移不影响聚合速率,仅影响分子量

高分子化学与物理考研学校介绍

高分子化学与物理(不考数学)考研整理 中国人民大学 首都师范大学 查询条件:(10028)首都师范大学(017)化学系(070305)高分子化学与物理(03)功能高分子材料理论研究与合成 中国矿业大学 查询条件:(11413)中国矿业大学(北京)(003)化学与环境工程学院(070305)高分子化学与物理 南开大学 查询条件:(10055)南开大学(051)化学学院(电话:23505121)(070305)高分子化学与物理(01)

河北大学 辽宁大学 查询条件:(10140)辽宁大学(016)化学院(070305)高分子化学与物理(00)不区分研究方向 辽宁石油大学 查询条件:(10148)辽宁石油化工大学(002)化学与材料科学学院(070305)高分子化学与物理 中北大学

辽宁师范大学 查询条件:(10165)辽宁师范大学(120)化学化工学院(070305)高分子化学与物理(00)不区分研究方向 长春工业大学 查询条件:(10190)长春工业大学(010)化学工程学院(070305)高分子化学与物理(01)乳液聚合技术及应用 东北师范大学 查询条件:(10200)东北师范大学(123)化学学院(070305)高分子化学与物理(01)电子聚合物化学与物理

上海师范大学 查询条件:(10270)上海师范大学(114)生命与环境科学学院(070305)高分子化学与物理(01)新型绿色高分子材料 上海大学 查询条件:(10280)上海大学(010)材料科学与工程学院(070305)高分子化学与物理(01)聚合物

南京工业大学 浙江理工大学 杭州师范大学 查询条件:(10346)杭州师范大学(015)材料与化学化工学院(070305)高分子化学与物理(02)高

相关文档
最新文档