物理化学-表面性质

合集下载

物理化学中的表面现象和界面反应

物理化学中的表面现象和界面反应

物理化学中的表面现象和界面反应表面现象和界面反应是物理化学领域中的重要课题,涉及到物质与界面的相互作用、表面结构、表面能量等方面。

本文将以此为主题,介绍表面现象和界面反应的基本概念、研究方法以及在生物、化工等领域的应用。

一、表面现象的基本概念表面现象是指物质与界面之间的相互作用过程,包括液体-气体界面和固体-气体界面。

液体-气体界面的表面现象包括液体表面张力和液滴形成,固体-气体界面的表面现象包括液体在固体表面的吸附、界面活性剂的作用等。

表面现象有其固有的特点,例如,液体分子在液体-气体界面上受到复杂的吸附相互作用,导致液滴形成;而在固体-气体界面上,固体表面原子和分子的排列方式与体相有所不同,表现出特定的性质。

二、研究表面现象的方法研究表面现象的方法主要包括表面张力测定、界面活性剂的表面吸附等实验手段。

例如,通过在液体-气体界面加压,测定液滴的半径变化来确定液体表面的张力。

界面活性剂的表面吸附可以通过测定界面剂溶液的表面张力和浓度来推断。

此外,表面和界面的结构也可以通过许多表征手段进行研究,包括拉曼光谱、X光衍射、透射电子显微镜等技术。

这些方法可以直接或间接地揭示表面分子和原子的排列方式、键长、键角等信息。

三、界面反应的原理与应用界面反应是指液体-液体界面或者固体-液体界面上发生的化学反应。

在界面反应过程中,各相之间的相互作用和传递起着重要的作用。

界面反应在生物、化工等领域有广泛的应用。

例如,生物体内的很多生化反应发生在细胞膜界面上;某些化工过程中,通过控制液体-液体界面上的界面反应,可以实现组分之间的选择性分离和传递,提高反应效率。

四、表面化学在材料制备中的应用表面化学是指通过改变固体表面的结构和性质,来实现功能化、修饰和改进材料性能的一种方法。

例如,通过在金属表面形成一层氧化物薄膜,可以提高金属的耐腐蚀性和强度;通过在纳米颗粒表面修饰有机分子,可以实现药物的缓慢释放,用于肿瘤治疗。

除此之外,表面化学在光电子学、传感器等领域也有广泛的应用。

物理化学第8章 表面物理化学

物理化学第8章 表面物理化学
例如,要农药润湿带蜡的植物表面,要在农 药中加表面活性剂;
如果要制造防水材料,就要在表面涂憎水的 表面活性剂,使接触角大于90°。
2.增溶作用
定义:非极性有机物如苯在水中溶解度很小, 加入油酸钠等表面活性剂后,苯在水中的溶解度 大大增加,这称为增溶作用。
增溶作用与普通的溶解概念是不同的,增溶 的苯不是均匀分散在水中,而是分散在油酸根分 子形成的胶束中。
2、公式 (1)形式: ⊿p=2ϭ/r
(2)结论: ①凸液面: r >0,则 ⊿p > 0。
液滴越小,附加压力越大
②凹液面 : r< 0,⊿p<0。
③水平液面:r为无穷大, ⊿p= 0。
④对于液泡(如肥皂泡):
⊿p =
4ϭ r
因为肥皂泡有两个气液界面,且两个球形界面的
半径几乎相等,方向均指向液泡中心。
①液体能润湿毛细管(如水能润湿玻璃): 呈凹形曲面,且液面上升一定高度。
p'
p ''
p0
M H2O
N Hg
r g h =⊿ p = 2 ϭ
r
曲率半径 r与毛细管半径R的关系:
R´ = R
cosq
联立以上二式,可得:
2ϭcosq
h=
r gR
②液体不能能润湿毛细管(如汞不能润湿玻璃): 呈凹形曲面,且液面下降一定高度。
可见光的波长约在400~750 nm之间。
二、溶胶的力学性质
主要指: Brown 运动
扩散
沉降和沉降平衡
1、Brown运动(Brownian motion)
通过超显微镜,可以看到胶体粒子不断地 作不规则的“之”字形运动,这就叫布朗运 动。
产生原因:分散介质分子以不同大小和方向 的力对胶体粒子不断撞击而产生的。

材料表面的物理化学性质

材料表面的物理化学性质

材料表面的物理化学性质随着科技的不断进步,我们对材料的表面物理化学性质的理解和掌握也越来越深刻。

材料表面的物理化学性质是指材料表面的化学组成、形貌、电学特性、磁性、力学和光学性质等多种属性。

材料表面的这些性质在研究和应用中都具有重要作用。

一、形貌对表面性质的影响材料表面的形貌和其它性质有着密切的关系。

表面形貌的变化有可能会影响材料的表面化学性质,如表面电化学特性、表面能、表面粘附力等。

表面形貌的特殊性质也可以用来改变材料的物理性质,例如光学性质、力学性质等。

表面形貌的特殊性质主要体现在表面的纳米结构特征上。

纳米颗粒、纳米线、纳米管等表面纳米结构材料通过产生特殊的光学和电学性质,即光子晶体、量子点效应等改变物理、化学或生物性质。

如纳米金材料在表面等离子体共振吸收现象中,有极高的光吸收率,可以用于生物分析和光电转化器件等领域。

二、材料的表面电学性质材料表面的电学性质在电化学分析、电化学催化、电能转换和电力传输等方面具有重要应用。

对于材料表面电学性质的研究,可以起到了解材料粒子表面的化学和电学特性的作用。

材料表面的电荷状态、表面酸碱性等主要是通过电位法和电荷法进行研究。

其中,表面电位法主要是用于研究电荷转移,而表面电荷法主要用于研究静电相互作用力和耦合电化学反应的作用机制。

表面电位法主要是通过测量溶液中物质在电极表面的电位变化来揭示材料表面化学特征。

而,表面电荷法主要通过测量物质在界面电荷的作用下电动势的变化来揭示材料表面的化学和动力特性。

表面电荷法可以直接反映溶液中物质和其它材料表面之间相互作用的电荷状态,并能够反映材料表面的酸碱性质。

三、表面能对表面性质的影响表面能可以简单理解为材料表面发生变化所需要的能量。

表面能的特性可以体现在表面界面、表面清洁度、表面液滴、表面异物等多个方面。

表面能在材料科学中的应用十分广泛,因为其可以直接影响吸附行为、界面反应、粘附强度、液滴和气泡形成等问题。

在工业领域,表面能常常被用来描述和分析材料的干燥性、印刷性、涂层附着性等,因此对表面能的研究有着重要的实际应用价值。

《物理化学》第四版表面化学教案

《物理化学》第四版表面化学教案

《物理化学》第四版表面化学教案物理化学第四版表面化学教案介绍本教案旨在介绍《物理化学》第四版中有关表面化学的部分内容。

表面化学是物理化学中的一个重要分支,研究物质与表面相互作用的过程和性质。

通过本教案,学生将了解到表面化学的基本概念、主要理论以及实际应用等方面的知识。

教案内容1. 表面化学概述- 表面化学的定义和基本概念- 表面活性物质的特性及应用- 表面化学与其他分支学科的关系2. 表面现象和表面张力- 表面现象的定义和分类- 表面张力的概念和测定方法- 表面张力的影响因素3. 吸附现象- 吸附的定义和分类- 吸附等温线及其解释- Langmuir等温吸附模型4. 表面活性剂- 表面活性剂的定义和分类- 表面活性剂的表面性质和胶束形成- 表面活性剂在乳液和胶体中的应用5. 表面电荷- 表面电荷的产生和性质- 双电层理论- 表面电荷与溶液pH值的关系6. 表面分析方法- 电子显微镜- 表面拉曼光谱- 表面等离子共振光谱教学目标通过研究本教案,学生将能够:- 掌握表面化学的基本概念和理论知识- 理解表面现象、表面张力和吸附等重要概念- 理解表面活性剂的性质和应用,以及表面电荷的产生和影响因素- 了解常用的表面分析方法及其原理教学方法本教案将采用多种教学方法,如讲解、实验演示、案例分析等,以提高学生的研究兴趣和理解能力。

在教学过程中,鼓励学生积极参与讨论,并帮助他们建立对表面化学理论的正确理解和应用能力。

教学评估为了评估学生对表面化学的理解程度和研究效果,教师将采用以下方式进行评估:- 课堂问答:通过提问学生的方式,检查他们对教学内容的理解情况。

- 实验报告:要求学生完成相关实验,并撰写实验报告,评估他们对实验内容和相关理论的理解和应用。

- 小组讨论:组织学生进行小组讨论,促进他们之间的合作和交流,评估他们的团队合作能力和表达能力。

教材选择参考资料。

物理化学第十章表面现象

物理化学第十章表面现象
P = P 0 + P
P = P 0 P
图10-8 弯曲液面的附加压力
§10-3 弯曲液面的附加压力和毛细现象 这种弯曲液面内外的压力差,就称之为附加压力,用 P 来表示。
P = P内 P外 = P P 0
附加压力的方向总是指向曲率中心。 二、拉普拉斯(Laplace)方程 附加压力的大小与弯曲液面曲率半径有关 。
Ga = γ s l (γ s g + γ l g ) = Wa'
图10-4 沾湿过程
§10-2 润湿现象与接触角
则此过程中, Wa' 即称为沾湿功。 对于一个自发过程来讲, Wa' > 0 。 Wa' 外
W a' 所做的最大功。
ቤተ መጻሕፍቲ ባይዱ是液固沾湿时,系统对
值愈大,液体愈容易润湿固体。
(2)浸湿(immersional wetting) 所谓浸湿是指当固体浸入液体中,气—固界面完全被 固—液界面所取代的过程。如图10-5所示: 在恒温恒压可逆情况下,将具有单位表面积的固体 浸入液体中,气—固界面转变为液固界面,在该过 程中吉布斯函数的变化值为 Gi = γ s l γ s g = Wi
γ s g = γ s l + γ l g cos θ
cos θ =
γ
sg
γ
sl
γ l g
1805年杨氏(TYoung)曾得到此式,故称其为杨氏方程。 1)当 θ > 90 0 时, cosθ < 0 即 γ s g < γ s l
G = γ s l γ s g > 0
γ s g > γ s l 2)当θ < 90 0 时, θ > 0 cos 液体润湿固体过程中能自动发生,液体有扩大固—液界面的趋势,

物理化学表面现象及胶体化学总结

物理化学表面现象及胶体化学总结

1.压缩因子任何温度下第七章表面现象1.在相界面上所发生的物理化学现象陈称为表面现象。

产生表面现象的主要原因是处在表面层中的物质分子与系统内部的分子存在着力场上的差异。

2.通常用比表面来表示物质的分散度。

其定义为:每单位体积物质所具有的表面积。

3.任意两相间的接触面,通常称为界面(界面层)。

物质与(另一相为气体)真空、与本身的饱和蒸气或与被其蒸汽饱和了的空气相接触的面,称为表面。

4.表面张力:在与液面相切的方向上,垂直作用于单位长度线段上的紧缩力。

5.在恒温恒压下,可逆过程的非体积功等于此过程系统的吉布斯函数变。

6.影响表面及界面张力的因素:表面张力与物质的本性有关、与接触相的性质有关(分子间作用力)、温度的影响、压力的影响。

7.润湿现象:润湿是固体(或液体)表面上的气体被液体取代的过程。

铺展:液滴在固体表面上迅速展开,形成液膜平铺在固体表面上的现象。

8.亚稳状态与新相生成:a.过饱和蒸汽:按通常相平衡条件应当凝结而未凝结的蒸汽。

过热液体:按通常相平衡条件应当沸腾而仍不沸腾的液体。

过冷液体:按相平衡条件应当凝固而未凝固的液体。

过饱和溶液:按相平衡条件应当有晶体析出而未能析出的溶液。

上述各种过饱和系统都不是真正的平衡系统,都是不稳定的状态,故称为亚稳(或介安)状态。

亚稳态所以能长期存在,是因为在指定条件下新相种子难以生成。

9.固体表面的吸附作用:吸附:在一定条件下一种物质的分子、原子或离子能自动地粘附在固体表面的现象。

或者说,在任意两相之间的界面层中,某种物质的浓度可自动发生变化的现象。

吸附分为物理吸附(范德华力)和化学吸附(化学键力)。

具有吸附能力的物质称为吸附剂或基质,被吸附的物质称为吸附质。

吸附的逆过程,即被吸附的物质脱离吸附层返回到介质中的过程,称为脱附(或解吸)。

10.吸附平衡:对于一个指定的吸附系统,当吸附速率等于脱附速率时所对应的状态。

当吸附达到平衡时的吸附量,称为吸附量。

气体在固体表面的吸附量与气体的平衡压力及系统的温度有关。

物理化学-表面现象

物理化学-表面现象

定量计算:在一定T和外压下,半径为r的液滴 满足下述公式。
ln pr* 2M P * RTr
Kelvin公式(掌握)
Kelvin 公式导出了在指定温度下液体的蒸气压和曲 率半径之间的关系。
ln pr* 2M P * RTr
ln pr* 2M ( 1 1 ) P * RT r2 r1
Pr*:半径为r小液滴的蒸气压 P*:正常的蒸气压值(查手册) r:小液滴的曲率半径 σ:液体的表面张力 M:液体的摩尔质量 ρ:液体的密度
影响表面张力的因素(了解)
1)纯物质的表面表面张力与分子的性质有关:
(金属键)> (离子键)> (极性共价键)> (非极性共价键)
2)和形成相界面的另一相有关 两相之间密度和两相分子间的相互作用力不同
3)和温度有关:T 分子运动 ~分子间作用力 两相密度差 表面能 (压力则影响较小)
4)和组分有关 第四节讨论
例:
液体内部分子所受的力 可以彼此抵销;表面分子受 到体相分子的拉力大,受到 气相分子的拉力小,合计受 到被拉入体相的作用力。
界面现象的本质:表面分子受不对称力的作用 结果:表面分子具有高能量
表面Gibbs能(surface Gibbs energy)
以l-g 表面为例,液体表面分子与内部分子受力情况不同 (密度/相互作用)
表面的热力学关系式
根据多组分热力学的基本公式
dU TdS pdV m BdnB B
U U S,V ,nB
对需要考虑表面层的系统,由于多了一个表面相, 在体积功之外,还要增加表面功,则基本公式为
dU TdS pdV dA mBdnB
B
U U (S,V , A, nB )
考虑了表面功的热力学基本关系式为:

物理化学-表面性质

物理化学-表面性质

气相 液相
图7.1.1 液体表面与内部分子受力情况
18
• 表面张力σ
缩小表面积 →力 维持膜大小 不变,加相反的外力F,与 l 成 正比, 比例系数σ→
表面膜
F=2 σ l →

F
σ= F/(2l)
单位: N·m-1 2——液膜有两个面。
dx 图7.1.2 表面功示意图
σ ——表面张力→引起液体表面收缩的单位长度上的力; 方向 垂直于单位长度的边界、与表面相切并指向液体方向。
16
这些现象表明,在液体表面存在一种使液面收缩的力, 称表面张力(surface tension)或界面张力(interfacial tension)。
表面张力的方向和表面相切,是垂直作用在表面上单 位长度线段上的表面收缩力。
17
(3) 表面张力
• 表面层分子受力 表面层分子与
体相内分子所处的力场不同。主要 受到指向液体内部的拉力,使表面 层液体分子有 向液体内迁移、力 图缩小表面积的趋势。液滴→球形。 若扩大表面积,对系统作功。
(3) 毛细管现象
• 毛细管垂直插入液体,管内外液面高度不同;插入水中液面,
管内呈凹液面, 接触角 < 90, 附加压力指向大气, 管内凹液面下
的液体承受的压力< 管外水平液面下的液体承受的压力→液体
被压入管内,上升→升高h的液柱的静压力 gh=p , 平衡时 p=2 σ /r1=gh
由图 cos = R/r1,→上升高度h
• 推导 凸液面AB, σ分解为水平分力(相互平衡)和垂直分力(指向液
体), 单位周长的垂直分力 σ cos , 球缺圆周长 2r1, 其合力F F= 2r1σcos
∵cos=r1/r ; 球缺底面积 r12 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/11 10
基本概念
• 界面——两相的接触面。 3种相态:g, l, s。 有5种界面:g-l, g-s, l-l, l-s, s-s。
• 表面——与气体接触的界面。 g-l, g-s。 • 界面 有一定的厚度,不是几何面。 • 界面的结构和性质有特殊性。与相邻两侧的体相不同。如液滴蒸发. • 分散度 表示——比表面积。分散的程度, 表面积, 表面效应。
可见达到nm级的超细微粒,具有巨大的比表面 积,因而具有许多独特的表面效应,成为新材料和
多相催化方面的研究热点。
2021/3/11 12
7.1 界面张力 气相
(1) 表面功
↙↓↘
↙↓↘
←↖↙↑↓↘↗→
液相
• 液膜面积与功 增大液膜面积 dAS, 需抵抗力F,作非体积功——
表面功。可逆条件下,忽略摩擦力,可逆表面功
• 应2用02物1/3/理11 化学的基本原理,对界面的特殊性质及现象进行讨论和分析。 11
分散度与比表面
把物质分散成细小微粒的程度称为分散度。把 一定大小的物质分割得越小,则分散度越高,比
表面也越大。
例如,把边长为1 cm的立方体1 cm3 ,逐渐分 割成小立方体时,比表面将以几何级数增长。
分散程度越高,比表面越大,表面能也越高
气相 液相
图7.1.1 液体表面与内部分子受力情况
2021/3/11 18
• 表面张力σ
缩小表面积 →力 维持膜大小 不变,加相反的外力F,与 l 成 正比, 比例系数σ→
表面膜
F=2 σ l →

F
σ= F/(2l)
单位: N·m-1 2——液膜有两个面。
dx 图7.1.2 表面功示意图
σ ——表面张力→引起液体表面收缩的单位长度上的力; 方向 垂直于单位长度的边界、与表面相切并指向液体方向。
小20视21/3频/11 4
19
•注意: 表面张力, 单位面积的表面功, 单位面积 的表面Gibbs函数, 不同物理量有相同的数值和 量纲。∵1 J =1 N·m1 J·m-2 =1 N·m-1 其它 界面有界面张力。
2021/3/11 20
• 恒温恒压、各相中物质的量不变时,可有 dGT,p,nB= σ dAS
2021/3/11 14
热力学公式
由多相多组分热力学公式,如
dGSdTV dp idin
i
并未考虑相界面面积AS,对高度分散系统, 应有AS变量,有一个相界面,
热力学公式为
d G S d T V d p ds A idi n
i
d U T d Sp d V d A s idi n
i
d H T d S V d p d A s idi n
• 比表面积aS:物质的表面积AS与其质量m之比。 aS= AS/m
单位: m2·kg-1
如水 球形液滴 直径
比表面积
1 cm
610-4 m2·g-1
将其分散→ 10 nm(1018个) 600 m2·g-1
活性炭 实验测得 ~500 m2·g-1,高达2000 m2·g-1
• 物质的分散度很高时,其界面性质很突出,有特殊性。
这些现象表明,在液体表面存在一种使液面收缩的力, 称表面张力(surface tension)或界面张力(interfacial tension)。
表面张力的方向和表面相切,是垂直作用在表面上单 位长度线段上的表面收缩力。
2021/3/1层分子受力 表面层分子与
体相内分子所处的力场不同。主要 受到指向液体内部的拉力,使表面 层液体分子有 向液体内迁移、力 图缩小表面积的趋势。液滴→球形。 若扩大表面积,对系统作功。
第7章 表面化学
• 界面——两相的接触面。 • 物质的分散度很高时, 其界面性质很突出, 有特殊性。 • 应用物理化学的基本原理,对界面的特殊性质及现象
进行讨论和分析。
2021/3/11 1
在自然界中,表面现象保罗万象:
曙光晚霞
碧海蓝天
2021/3/11 雨滴
露珠
2
小视频3
2021/3/11 3
表面现象
物理化学意义上的相 界面是一个有几个分子 直径厚度的薄层,是两 相之间的过渡区。
根据形成界面的物质的聚集状态可将界面分为
气—液界面 气—固界面 液—液界面 液—固界面 固—固界面
2021/3/11 4
1.气-液界面
空气
CuSO 4 溶液
2021/3/11
气-液 界面
5
2.气-固界面
2021/3/11
气-固界面
6
3.液-液界面
H 2O
Hg
2021/3/11
液-液 界面
7
4.液-固界面
Hg
液-固界面
H 2O
玻璃板
2021/3/11 8
5.固-固界面
Cr镀层 铁管
固-固界面
2021/3/11 9
目录
7.1 界面张力 7.2 弯曲界面的附加压力及其后果 7.3 固体表面与吸附作用 7.4 液-固界面 7.5 溶液表面
W= σdAS
σ = W/dAS σ ——使液体增加单位表面积时, 环境所需作的可逆功 →表面功。
单位 J·m-2
2021/3/11 13
(2) 表面Gibbs函数
• 恒温恒压 Wr=G, Wr= dGT,p= σ dAS
G AS
T ,p
σ=系统增加单位面积时所增加的G (比)表面Gibbs函数, J·m-2
i
d A S d T p d V d A s idi n
式中
i
A G S T ,p ,n B )( A U S S ,V ,n B )( A H S S ,p ,n B )( A A S T ,V ,n B )(
• 意义:第1等式→σ =恒温恒压、各相中物质的量不变,增加单位
界面202面1/3/积11 时,所增加的Gibbs函数。其余式意义类似。
15
(3) 表面张力
用肥皂液在一个系有 线圈的金属环上形成一 个液膜,由于线圈周围 都是相同的液体,受力 均衡,线圈可以在液膜 上自由移动位置。
若将线圈内液膜刺破,线 圈两边受力不再平衡,立即绷 紧成圆形。 小视频7
2021/3/11 16
该条件下,由于相界面面积的变化,而引起系统的Gibbs函 数变。也称界面吉布斯函数变, dGS。 • 积分上式, AS:0→AS, σ不变 GS= σAS • 根据吉布斯函数判据:dGT,p,nB<0 自发过程,即恒温恒压下, 系统总界面G 减小的过程为自发过程。如多个小液滴聚集→大 液滴。 • 总界面吉布斯函数减少是很多界面现象产生的热力学原因。
相关文档
最新文档