电感元件与电容元件的基本概念

合集下载

《电容元件和电感元 》课件

《电容元件和电感元 》课件

PART 03
电容元件和电感元件的特 性比较
REPORTING
静态特性比较
总结词
在静态条件下,电容元件和电感元件的特性存在显著差异。
详细描述
电容元件在静态时表现为隔直流通交流的特性,其两端电压 与电流相位差为90度;而电感元件在静态时表现为通直阻交 流的特性,其两端电压与电流相位差为0度。
动态特性比较
机械应力
电感元件应能承受一定的 机械应力,如振动和冲击 。
THANKS
感谢观看
REPORTING
选频。
扼流:在高频电路中,电 感可以抑制高频信号的突
变。
旁路:在高频信号下,电 容可以作为旁路,使信号
顺利通过。
电感元件
滤波:对于高频信号,电 感可以滤除特定频率的信
号。
PART 05
电容元件和电感元件的选 用原则
REPORTING
根据电路需求选择合适的元件
滤波电路
耦合电路
选择低损耗、高绝缘电阻的电容或电 感元件。
电容
电容元件的电学量,表示电容器 容纳电荷的本领,与电容器极板 的面积、距离和介质有关。
电容元件的种类
01
02

固定电容
电容量固定的电容器,常 见有瓷介电容、薄膜电容 等。
可变电容
电容量可调的电容器,常 见有空气电容、可变电容 器等。
电解电容
有极性的电容器,正极和 负极材料不同,常见有铝 电解电容、钽电解电容等 。
总结词
在动态条件下,电容元件和电感元件的特性也表现出不同的特点。
详细描述
电容元件在动态时表现为充电和放电的过程,其阻抗随频率的升高而减小;而电 感元件在动态时表现为电流的磁效应,其阻抗随频率的升高而增大。

第五章 电容元件与电感元件.

第五章 电容元件与电感元件.

1 2
Li2

1 ψ2 2L
结论
(1) 元件方程是同一类型;
(2) 若把 u-i,q- ,C-L互换,可由电容元件
的方程得到电感元件的方程;
(3) C 和 L称为对偶元件, 、q等称为对偶
元素。
电容器和电感器的模型
电容器模型(按照近似程度分) 0 级模型:不考虑损耗和产生的磁场。 I 级模型:考虑损耗不考虑产生的磁场。 II级模型:考虑损耗和产生的磁场。
i
i dq
dt
+
+ dq =Cduc
uc
C


i C duc dt
uc(
t
)
1 C
t

i

t
dt


uc
(
t
0
)
1 C
t
t 0
i

t
dt

例 5-1 5-2
2. 线性电容的充、放电过程
u,i i u
o
ωt
i ii i
+ u
+u
u
u
- -++
(1) u>0,du/dt>0,则i>0,q , 正向充电(电流流向正极板);

1 2
Li 2 (t 2)
1 2
Li 2 (t1)
wL( t2 ) wL( t1 )
wL ( t 2 ) wL ( t1 )元件充电,吸收能量
wL ( t 2 ) wL ( t1 )元件放电,释放能量
五、电感电流不能跃变(连续性)
电感 L 储存的磁场能量
wL

交流电路中的电感与电容

交流电路中的电感与电容
互感系数
表示两个线圈之间互感能力的一个物理量,简称互感。它是两个线圈中互感电动势与其中一个线圈中电流变化率 的比值,单位是亨利(H)。
串联和并联电感特性
串联电感特性
在交流电路中,当两个或两个以上的电感线圈串联时,总电感等于各电感之和。即串联电感具有“总 电感等于各电感之和”的特性。
并联电感特性
在交流电路中,当两个或两个以上的电感线圈并联时,总电感小于任何一个单独的电感线圈的电感值 。即并联电感具有“总电感小于任何一个单独的电感线圈的电感值”的特性。
并联电容特性
并联电容器组的等效电容量等于各个 电容器的电容量之和。当并联电容器 组中任一电容器开路时,整个电容器 组将失效。
充放电时间常数计算
充电时间常数
电容器充电时电压上升的速度与 时间之间的关系称为充电时间常 数。充电时间常数等于电容器的 电容量与充电电流的乘积。
放电时间常数
电容器放电时电压下降的速度与 时间之间的关系称为放电时间常 数。放电时间常数等于电容器的 电容量与放电电流的乘积。
电感作用
电感在交流电路中具有阻碍电流变化的作用,当电流增大时,电感产生自感电 动势阻碍电流增大;当电流减小时,电感则释放储存的磁能,维持电流继续流 动。
电容定义及作用
电容定义
电容是指两个相互靠近的导体,中间夹一层不导电的绝缘介 质所构成的电子元件。当在两个导体上施加电压时,它们之 间就会储存电荷,形成电场。
电容作用
电容在交流电路中具有储存电能和滤波的作用。当电路中的 电压或电流发生变化时,电容可以吸收或释放能量,以平滑 电路中的波动。同时,电容还可以阻止直流电流的通过,允 许交流电流通过。
单位与符号表示
电感单位
电感的单位是亨利(H),常用 单位还有毫亨(mH)、微亨(

电工学 电容,电感元件

电工学 电容,电感元件

4 2
iS/A
2
W / J
4 6 (b)
8
t/s
由题意知L=2H,故电感上的储能为:
16
t0 0 2 4t 0 t 2 1 2 2 w(t ) li 4t 64t 256 2 2t 8 9 9 9 0 t 8
2
4
6
8

e )
例4-4 图所示电路,t<0时开关K闭合,电路已达到稳态。 t=0时刻,打开开关K, 球初始值il(0+), Uc(0+), i(0+), ic(0+), UL(0+)的值。
㈣电容的单位
在国际单位制中,电容C的单位为法拉 (F),但因法拉这个单位太大,所以 通常采用微法(μF)或皮法(pF)作 为电容的单位,其换算关系为
1F 10 F,
6
1F 10 pF
6
㈤电容的伏安关系 设电容上流过电流与其两端电压为关联参 考方向,如图所示,则根据电流的定义有
dq(t ) i(t ) dt
所以
1 1 uc (1) uc (0) ic (t )dt C 0
1 1 V 0 5tdt 1.25 2 0
10 0 -10
iC/A
t/s
1
2
3
4
5
(b)
1 4 uc (4) uc (0) ic (t )dt C 0
1 2 1 4 5tdt (10)dt 2 0 2 0
u(t ) u(t )
(4-4)
等式两边分别为电容电压在t时刻左右极限值.上 式说明在 t 和 t 时刻电压值是相等的。在动态 电路分析中常用这一结论,并称之为“换路理 论”。

高三物理电容电感知识点

高三物理电容电感知识点

高三物理电容电感知识点电容和电感是电路中常见的元件,具有重要的应用价值。

在高三物理学习中,了解电容和电感的基本知识点对于理解电路和解决相关问题非常重要。

本文将为您介绍高三物理中与电容和电感相关的几个重要知识点。

1. 电容器的基本概念和性质电容器是由两个导体板和之间的绝缘介质组成的。

电容的单位是法拉(F),常用的是微法(μF)和皮法(pF)。

电容器的电容量与导体板的面积成正比,与板间距和绝缘介质的介电常数成反比。

电容器有充电和放电过程,其充放电过程中的电荷量和电压满足一定的规律。

2. 并联和串联电容器在电路中,多个电容器可以并联或串联连接。

并联电容器的总电容量等于各电容器电容量之和,而串联电容器的总电容量满足分式求和的规律。

这个概念在实际电路中非常重要,可以用来计算电路的总电容量,判断电路的等效电容情况。

3. 电容器的充放电特性当电容器与直流电源相连时,电容器会发生充电过程。

电容器的充电速率与电容器的电容量和电阻值有关。

当电容器与导线断开连接并与电阻相连时,电容器会发生放电过程。

电容器的放电过程可以通过电流、电压和时间的关系来描述。

4. 电感的基本概念和性质电感是导体中产生的感应电动势与电流变化率之比。

电感的单位是亨利(H)。

通常使用的是毫亨(mH)和微亨(μH)。

电感元件通常由线圈构成,导线的长度、截面积和匝数都是影响电感的因素。

电感器在电路中常用于控制电流、滤波、储能等方面。

5. 电感对交流电的影响电感元件对交流电的影响非常重要。

在交流电路中,电感具有阻碍电流变化的特性。

通过电感的存在,可以使电路产生阻抗,从而影响电流和电压的分布。

电感元件与电容元件可以相互作用,形成电路的谐振。

这在电路设计和信号处理中具有重要意义。

6. 电容和电感在电路中的应用电容和电感在电路中有多种应用。

电容可以用于储能、滤波、调节电流等方面。

电感常用于制造和调节电路的感应电动势、阻抗匹配和频率选择。

它们在电子产品、通信系统、电力传输等领域都有广泛的应用。

《电容以及电感》课件

《电容以及电感》课件

电感的应用场景和实例
滤波
电感常用于滤波电路中,如电 源滤波器和信号滤波器。
振荡
电感与电容配合使用,可构成 LC振荡电路,用于产生特定频 率的信号。
磁屏蔽
大电流的导线绕在铁氧体磁芯 上,可构成磁屏蔽,用于减小 磁场对周围电子设备的干扰。
传感器
利用电感的磁路和电路特性, 可制成位移、速度、加速度等
传感器。

信号处理
电容和电感在信号处理中起到关键 作用,能够实现信号的过滤、耦合 和转换等功能。
电路稳定性
电容和电感在电路中起到稳定电流 的作用,有助于提高电路的可靠性 和稳定性。
电容和电感的发展趋势和未来展望
微型化
随着电子技术的不断发展,电容和电感元件正朝着微型化 、高密度集成方向发展,以满足现代电子产品对小型化和 轻量化的需电源滤波电 路中,滤除交流成分,保 持直流输出平稳。
高频信号处理
陶瓷电容和云母电容用于 高频信号处理电路中,如 调频收音机和电视机的信 号处理。
耦合
电容用于信号耦合,将信 号从一个电路传输到另一 个电路,如音频信号的传 输。
03 电感的工作原理和应用
电感的磁路和电路特性
02 电容的工作原理和应用
电容的充电和放电过程
充电过程
当直流电压加在电容两端时,电容开 始充电,正电荷在电场力的作用下向 电容的一极移动,负电荷向另一极移 动,在极板上形成电荷积累。
放电过程
当充电后的电容两端接上负载电阻时 ,电容开始放电,电荷通过负载电阻 释放,电流逐渐减小,最终电容内的 电荷完全释放。
在RC振荡器中,通过改变电容的容量或电阻的阻值,可以调节振荡器的 输出频率。在LC振荡器中,通过改变电感的量或电容的容量,也可以调

电容元件与电感元件

电容元件与电感元件
电工基础
电容元件与电感元件
1.1 电容元件 1.2 电容的串、并联 1.3 电感元件
1.1 电 容 元 件
1.1.1 电容
1、电容器
任何两个彼此靠近而且又相互绝缘的导体都可以构成 电容器。这两个导体叫做电容器的极板,它们之间的绝缘物 质叫做介质。
2、电容器符号
+q和-q为该元件正、负极板上的电荷量
1.3 电感元件
1.1.2 电感元件的电压电流关系
电感元件的电流变化时,其自感磁链也随之变化,由电 磁感应定律可知,在元件两端会产生自感电压。 关联参考方向下电感元件的电流、电压关系:
u L di dt
结论: 1、任何时刻,线性电感元件上的电压与其电流的变化率成正比。 2、只有当通过元件的电流变化时,其两端才会有电压。 3、电流变化越快,自感电压越大。当电流不随时间变化时,则 自感电压为零。这时电感元件相当于短路
求(1)开关S打开时,(2) 开关S关
a
闭时,ab间的等效电容Cab。
S b
C3 C4
, 解:(1)当S打开时,C1与 C2串联,C3与C4串联,两串联 支路再并联,所以
(2)当S闭合时,C1与C3并 联,C2与C4并联,并联之后再串
联,所以
Cab
C1C2 C1 C2
C3C4 C3 C4
10 10 20 20 10 10 20 20
1.2 电容的串、并联
1.2.1 电容器的并联
图1.2(a)所示为三个电容器并联的电路
u
+q1 C1 +q2 C2 +q3 C3
-q1
q2
-q 3
+q
u
C
-q
(a)
(b)

电容电感电阻的角度

电容电感电阻的角度

电容电感电阻的角度在我们日常生活和工作中,电容、电感和电阻器是电子电路中常见的元件。

它们各自具有特定的功能和应用,为电子设备的高效运行提供了保障。

下面我们将分别从电容、电感和电阻的角度,详细探讨这些元件的定义、分类、应用以及选用与维护。

一、电容的角度1.电容的定义与作用电容是一种能够储存电荷的电子元件,其基本作用是在电路中起到滤波、耦合、旁路等作用。

电容器能够有效地调节电路中的电流和电压,从而提高电路的性能。

2.电容的分类与应用根据电容的构造和材料,可以分为陶瓷电容、电解电容、薄膜电容等。

陶瓷电容器具有高频率、高容值的特点,广泛应用于通信、计算机等领域;电解电容器则具有大容值、低频率的特点,主要用于电源滤波、电动机启动等场合;薄膜电容器则具有体积小、稳定性好的优点,适用于各种电子设备。

3.电容器的选用与维护在选用电容器时,首先要根据电路的需求选择合适的电容类型。

此外,还要注意电容的容值、耐压、频率等参数。

在维护方面,要保持电容器干燥,避免高温、潮湿环境,同时定期检查电容器的性能,如发现损坏或性能下降,要及时更换。

二、电感的角度1.电感的定义与作用电感是一种能够储存磁能的电子元件,其主要作用是在电路中起到滤波、振荡、延迟等作用。

电感器能够有效地调节电路中的电流和电压,从而提高电路的性能。

2.电感的分类与应用根据电感的构造和材料,可以分为线圈电感、磁芯电感、贴片电感等。

线圈电感具有高感值、低频率的特点,广泛应用于音响、电视等领域;磁芯电感则具有高频、低感值的特点,主要用于通信、计算机等领域;贴片电感则具有体积小、稳定性好的优点,适用于各种电子设备。

3.电感器的选用与维护在选用电感器时,首先要根据电路的需求选择合适的电感类型。

此外,还要注意电感的感值、耐压、频率等参数。

在维护方面,要保持电感器干燥,避免高温、潮湿环境,同时定期检查电感器的性能,如发现损坏或性能下降,要及时更换。

三、电阻的角度1.电阻的定义与作用电阻是一种能够阻碍电流流动的电子元件,其主要作用是在电路中起到分压、限流、保护等作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

L L
iL
(3.6)
称为电感元件的自感系数, 或电感系数, 简称电 感。
3.3.1 电感元件的基本概念(二)
L ,L
A
B
i

u
i -
图 3.7 线圈的磁通和磁链
3.3.1 电感元件的基本概念(三)
i
L

u

图 3.8 线性电感元件
3.3.1 电感元件的基本概念(四)
q M C 1 u M 1 , C 2u M 2 min 6 10 4 C
② 求工作电压
UM
UM1
qM C2
150
6 10 4 12 10 6
200 V
UM
qM C
6 10 4 3 10 6
200 V
3.3 电 感 元 件
3.3.1 电感元件的基本概念(一)
L NL 自感磁链
: u3
q C1
:
q C2
:
q C3
1 C1
:
1 C2
:
1 C3
q q M CU M
例 3.2(一)
电路如图3.5所示, 已知U=18V, C1=C2=6μF,
C3=3μF。求等效电容C及各电容两端的电压
U1, U2, U3。
a+
U= 18V
+ U 1-
C1 F
+ U 2-
C2 F
+ U 3-
由式(3.2)可得
iCd u0.516 01 0 160 5A dt
当1μs≤t≤3μs, 5μs≤t≤7μs及t≥8μs时,电压u 为常量, 其变化率为
du 0 dt
例3.1(四)
故电流
i C d u 0 .5 1 6 0 (1 0 16)0 5 A dt
当 7μs≤t≤8μs时, 电压u由-10V均匀上升 到0, 其变化率为
+ +q
u
u2 C2
- -q
+ +q
u3 C3

- -q

+q
u
C -q

(a )
(b )
图 3 .4
3.2.2 电容器的串联(二)
q C1u1 C 2u2 C 3u3
u
u1
u2
u3
q C1
q C2
q C3
q( 1 C1
1 C2
1) C3
u q C
1 1 1 1 C C1 C2 C3
u1
: u2
1 pF 10 12 F
3.1.2 电容元件的u—i关系
根据电流的定义, i dq 及q=Cu dt
关联参考方向下 i C du dt
电流与该时刻电压的变化率成正比。 若电压不变, i=0。电容相当与开路(隔直流作 用)
3.1.3 电容元件的储能(一)
在电压和电流关联的参考方向下, 电容元件吸收
wCCuu((t1t2))udu1 2C2u(t2)1 2C2u(t1)
wC(t2)wC(t1)
例3.1(一 图3.2()a)所示电路中, 电容C=0.5μF, 电压u
的波形图如图3.2(b)所示。求电容电流i, 并绘 出其波形。
+ i
u -
(a)
u/V
i/A
10
5
C
0 1 2 3 4 5 6 7 8 9 t/s -10
d du t01 (1 1 0 6)01 016V 0/s
例3.1(五)
故电流
iCd u0.516 01 0 160 5A dt
3.2 电容的串、 并联
3.2.1 电容器的并联(一)

+q1
+q2
+q3
u
-q1 C1 -q2 C2 -q3 C3

(a)
图3.3

+q
u
C -q

(b)
3.2.1 电容器的并联(二)
电感元件与电容元件的基本概念
目的与要求
1. 理解电容、电感元件上的u-i关系 2. 会分析电容器的串并联电路
重点与难点
重点: (1)电容器的串并联电路 (2)电容、电感元件上的u-i关系
难点: (1)电容器串联使用时最大工作电压的 计算
(2)电容、电感元件上的u-i关系
3.1电 容 元
3.1.1 电容元件的基本概念(一)
其耐压值为 UUM115V0
(2) 将两只电容器串联使用时, 等效电容为
C C1C2 4123F
C1C2 412
例 3.3(三)
① 求取电量的限额
q M 1 C 1U M 1 4 10 6 150 6 10 4 C q M 2 C 2U M 2 12 10 6 360 4 .32 10 3 C
0 1 23 4 56 7 8 9 t/s -5
(b)
(c)
图 3.2 例 3.1 图
例3.1(二 )
解 由电压u的波形, 应用电容元件的元件约 束关系, 可求出电流i。 当0≤t≤1μs, 电压u从0均匀上升到 10V, 其变 化率为
d du t111 00 0 61 0160 V/s
例3.1(三)
q1 C1u , q2 C 2u , q3 C 3u q1 : q2 : q3 C1 : C 2 : C 3 q q1 q2 q3 C1u C 2u C 3u (C1 C 2 C 3)u C C1 C2 C3
3.2.2 电容器的串联(一)

+ +q
u1 C1 - -q
的功率为
p u iu Cd u dt
电容元件吸收的电能为
wc
t
u(t)
C udu u(t0)
12Cu2(t)12Cu2(t0)
3.1.3 电容元件的储能(二)
若选取t0为电压等于零的时刻, 即u(t0)=0
wC
1Cu2(t) 2
从时间t1到t2, 电容元件吸收的能量为
例 3.3(一)
已知电容C1=4μF, 耐压值UM1=150V, 电容C2=12μF, 耐压值UM1=360V。 (1) 将两只电容器并联使用, 等效电容是多大?
(2) 将两只电容器串联使用, 等效电容是多大?
例 3.3(二 )
解(1) 将两只电容器并联使用时, 等效电容为
C C 1 C 2 4 1 2 1F 6
C3 F

b
图3.5 例3.2图
例 3.2(二)
解 C2与C3串联的等效电容为
C 23
C 2C 3 C2 C3
6 6
3 3
2F
C C 1 C 23 2 6 8 F
U 1 U 18V
例 3.2(三)
U 2 U 3 18 V
U
2
:U
3
1 C2
:
1 C3
1:2
U 2 6V ,U 3 12 V
1. 电容元件是一个理想的二端元件, 它的图形
符号如图3.1所示。
i +q -q
Cq u
(3.1)

C u-
图3.1 线性电容元件的图形符号
3.1.1 电容元件的基本概念(二)
2. 电容的SI单位为法[拉], 符号为F; 1 F=1 C/V。常采用微法(μF)和皮法(pF) 作为其单位。
1 F 10 6 F
相关文档
最新文档