5章电容元件和电感元件

合集下载

《电容元件和电感元 》课件

《电容元件和电感元 》课件

PART 03
电容元件和电感元件的特 性比较
REPORTING
静态特性比较
总结词
在静态条件下,电容元件和电感元件的特性存在显著差异。
详细描述
电容元件在静态时表现为隔直流通交流的特性,其两端电压 与电流相位差为90度;而电感元件在静态时表现为通直阻交 流的特性,其两端电压与电流相位差为0度。
动态特性比较
机械应力
电感元件应能承受一定的 机械应力,如振动和冲击 。
THANKS
感谢观看
REPORTING
选频。
扼流:在高频电路中,电 感可以抑制高频信号的突
变。
旁路:在高频信号下,电 容可以作为旁路,使信号
顺利通过。
电感元件
滤波:对于高频信号,电 感可以滤除特定频率的信
号。
PART 05
电容元件和电感元件的选 用原则
REPORTING
根据电路需求选择合适的元件
滤波电路
耦合电路
选择低损耗、高绝缘电阻的电容或电 感元件。
电容
电容元件的电学量,表示电容器 容纳电荷的本领,与电容器极板 的面积、距离和介质有关。
电容元件的种类
01
02

固定电容
电容量固定的电容器,常 见有瓷介电容、薄膜电容 等。
可变电容
电容量可调的电容器,常 见有空气电容、可变电容 器等。
电解电容
有极性的电容器,正极和 负极材料不同,常见有铝 电解电容、钽电解电容等 。
总结词
在动态条件下,电容元件和电感元件的特性也表现出不同的特点。
详细描述
电容元件在动态时表现为充电和放电的过程,其阻抗随频率的升高而减小;而电 感元件在动态时表现为电流的磁效应,其阻抗随频率的升高而增大。

电路分析基础教案(第5章) 2

电路分析基础教案(第5章) 2

§5-2 电容的VCR 例题:电路如图所示,电压源电压为三角波形, 求电容电流i(t)。
0 0.5 1 1.5 -100 解:在关联参考方向时,i=C(du/dt), 在0≤t≤0.25ms期间, i=1×10-6×[(100-0)/(0.25×10-3-0)=0.4A;
35
i(t) + C= u(t) 1 μ F -
100
u/V t/ms
ቤተ መጻሕፍቲ ባይዱ
§5-2 电容的VCR u/V
100 0 -100
t/ms 0.5 1 1.5
在0.25≤t≤0.75ms期间, i=1×10-6×[(-100-100)/(0.75×10-30.25×10-3)] =-0.4A;
36
§5-2 电容的VCR
100 0 -100
0.4
u/V
§5-1 电容元件
3、电容元件特点 线性电容有如下特点: (1)双向性 库伏特性是以原点对称,如图所示,因此与 端钮接法无关。 斜率为C q/C C u/V
0
18
§5-1 电容元件 (2)动态性 若电容两端的电压是直流电压U,则极板上的 电荷是稳定的,没有电流,即:I=0。
电容相当于断 路(开路),所 以电容有隔断直 流作用。
8
第五章 电容元件与电感元件 电阻电路在任意时刻t的响应只与同一时刻的 激励有关,与过去的激励无关。 因此,电阻电路是“无记忆”,或是说“即 时的”。 与电阻电路不同,动态电路在任意时刻t的响 应与激励的全部过去历史有关。 因此,动态电路是“有记忆”的。
9
第五章 电容元件与电感元件
本章主要内容: 动态元件的定义; 动态元件的VCR; 动态电路的等效电路; 动态电路的记忆、状态等概念。

第五章 电容元件与电感元件.

第五章 电容元件与电感元件.

1 2
Li2

1 ψ2 2L
结论
(1) 元件方程是同一类型;
(2) 若把 u-i,q- ,C-L互换,可由电容元件
的方程得到电感元件的方程;
(3) C 和 L称为对偶元件, 、q等称为对偶
元素。
电容器和电感器的模型
电容器模型(按照近似程度分) 0 级模型:不考虑损耗和产生的磁场。 I 级模型:考虑损耗不考虑产生的磁场。 II级模型:考虑损耗和产生的磁场。
i
i dq
dt
+
+ dq =Cduc
uc
C


i C duc dt
uc(
t
)
1 C
t

i

t
dt


uc
(
t
0
)
1 C
t
t 0
i

t
dt

例 5-1 5-2
2. 线性电容的充、放电过程
u,i i u
o
ωt
i ii i
+ u
+u
u
u
- -++
(1) u>0,du/dt>0,则i>0,q , 正向充电(电流流向正极板);

1 2
Li 2 (t 2)
1 2
Li 2 (t1)
wL( t2 ) wL( t1 )
wL ( t 2 ) wL ( t1 )元件充电,吸收能量
wL ( t 2 ) wL ( t1 )元件放电,释放能量
五、电感电流不能跃变(连续性)
电感 L 储存的磁场能量
wL

电子元器件—电阻电容电感知识大全PPT版

电子元器件—电阻电容电感知识大全PPT版
参考书籍: 电子线路设计*实验*测试 主编:谢自美 51单片机应用从零开始 主编:杨欣,王玉凤,刘湘黔
第一课 电阻元件 电感元件 电容元件 电感的符号
电感器
带铁(磁)芯电感器 非铁磁芯电感器
可调电感器
带抽头电感器
磁芯微调电感器
铁芯变压器
绕组间有屏蔽的变压器 带屏蔽变压器
第一课 电阻元件 电感元件 电容元件
电感
第一课 电阻元件 电感元件 电容元件
色环电感基本构造
导磁体性质:铁氧体磁芯 绕线形式:单层密绕式 电感量:10,33,47,100... 应用范围:滤波 种类:电感线圈 封装形式:色环电感
色环电感特征
1.色环电感结构坚固,成本低廉,适合 自动化生产。 2.特殊铁芯材质,高Q值及自共振频率。 3.外层用环氧树脂处理,可靠度高。 4.电感范围大,可自动插件。
第2. 一常课用电的阻电元感件器电—感—元扼件流电线容元圈件
扼流线圈:又称为扼流 圈、阻流线圈、差模电感器, 是用来限制交流电通过的线 圈,分高频阻流圈和低频阻 流圈。采用开磁路构造设计, 有结构性佳、体积小、高Q 值、低成本等特点,适用于 笔记型电脑、喷墨印表机、 影印机、显示监视器、手机、 宽频数据机、游戏机、彩色 电视、录放影机、摄影机、 微波炉、照明设备、汽车电 子产品等。
它是利用半导体光敏效应制成的一种元件。电阻值随入 射光线的强弱而变化,光线越强,电阻越小。无光照射时, 呈现高阻抗,阻值可达1.5MΩ以上;有光照射时,材料激发 出自由电子和空穴,其电阻值减小,随着光强度的增加,阻 值可小至1kΩ以下。
如:可见光敏电阻,主要材料是硫化镉,应用于光电控 制。红外光敏电阻,主要材料是硫化铅,应用于导弹、卫星 监测。
第一课 电阻元件 电感元件 电容元件

第5章 电路的暂态过程分析

第5章  电路的暂态过程分析

第五章电路的暂态过程分析初始状态过渡状态新稳态t 1U Su ct0?动态电路:含有动态元件的电路,当电路状态发生改变时需要经历一个变化过程才能达到新的稳态。

上述变化过程习惯上称为电路的过渡过程。

iRU SKCu C +_R i +_U S t =0一、什么是电路的暂态过程K 未动作前i = 0u C = 0i = 0u C = U s K 接通电源后很长时间C u C +_R i+_U S二、过渡过程产生的原因。

(1). 电路内部含有储能元件L 、M 、C能量的储存和释放都需要一定的时间来完成(2). 电路结构、状态发生变化支路接入或断开,参数变化(换路)三、动态电路与稳态电路的比较:换路发生后的整个变化过程动态分析微分方程的通解任意激励微分方程稳态分析换路发生很长时间后重新达到稳态微分方程的特解恒定或周期性激励代数方程一、电容元件§5-1 电容与电感元件uCi+_q i)()(t Cu t q =dtdu Cdt dq i ==任何时刻,通过电容元件的电流与该时刻的电压变化率成正比。

电荷量q 与两极之间电压的关系可用在q -u 平面上可用一条曲线表示,则称该二端元件称为电容元件。

二、电感元件+–u (t)i (t)Φ(t)N uLi+_()()()()t Li t d di t u t Ldt dtψψ===任何时刻,电感元件两端的电压与该时刻的电流变化率成正比。

Φi交链的磁通链与产生该磁通的电流的关系可用在Ψ-i 平面上可用一条曲线表示,则称该二端元件为电感元件。

§5-2 换路定则与初值的确定t = 0+与t = 0-的概念设换路在t =0时刻进行。

0-换路前一瞬间0+ 换路后一瞬间00(0)lim ()t t f f t -→<=00(0)lim ()t t f f t +→>=初始条件为t = 0+时u ,i 及其各阶导数的值。

0-0+0tf (t )基本概念:一、换路定则1()()d tC u t i C ξξ-∞=⎰0011()d ()d t i i C C ξξξξ---∞=+⎰⎰01(0)()d tC u i C ξξ--=+⎰t = 0+时刻001(0)(0)()d C C u u i C ξξ++--=+⎰当i (ξ)为有限值时u C (0+) = u C (0-)电荷守恒结论:换路瞬间,若电容电流保持为有限值,则电容电压(电荷)换路前后保持不变。

电工学 电容,电感元件

电工学 电容,电感元件

4 2
iS/A
2
W / J
4 6 (b)
8
t/s
由题意知L=2H,故电感上的储能为:
16
t0 0 2 4t 0 t 2 1 2 2 w(t ) li 4t 64t 256 2 2t 8 9 9 9 0 t 8
2
4
6
8

e )
例4-4 图所示电路,t<0时开关K闭合,电路已达到稳态。 t=0时刻,打开开关K, 球初始值il(0+), Uc(0+), i(0+), ic(0+), UL(0+)的值。
㈣电容的单位
在国际单位制中,电容C的单位为法拉 (F),但因法拉这个单位太大,所以 通常采用微法(μF)或皮法(pF)作 为电容的单位,其换算关系为
1F 10 F,
6
1F 10 pF
6
㈤电容的伏安关系 设电容上流过电流与其两端电压为关联参 考方向,如图所示,则根据电流的定义有
dq(t ) i(t ) dt
所以
1 1 uc (1) uc (0) ic (t )dt C 0
1 1 V 0 5tdt 1.25 2 0
10 0 -10
iC/A
t/s
1
2
3
4
5
(b)
1 4 uc (4) uc (0) ic (t )dt C 0
1 2 1 4 5tdt (10)dt 2 0 2 0
u(t ) u(t )
(4-4)
等式两边分别为电容电压在t时刻左右极限值.上 式说明在 t 和 t 时刻电压值是相等的。在动态 电路分析中常用这一结论,并称之为“换路理 论”。

电路元件电阻电容和电感的作用和特性

电路元件电阻电容和电感的作用和特性

电路元件电阻电容和电感的作用和特性电路元件电阻、电容和电感是电路中常见的三种基本元件,它们各自具有不同的作用和特性。

在本文中,我将详细讨论这三种元件的作用和特点。

1. 电阻(Resistor)电阻是电路中最常见的元件之一。

它的作用是限制电流的流动,阻碍电流通过的能力。

电阻器的电阻值用欧姆(Ω)表示,可以根据需要选择合适的电阻值来控制电路的电流。

电阻对电流有以下影响:- 限制电流大小:电阻通过电功率将电能转化为热能,并限制了电流的流动。

当电阻值增加时,电路中的电流减小,反之亦然。

- 控制电路电压:通过欧姆定律,我们知道电压等于电流乘以电阻,因此可以通过选择适当的电阻值来控制电路的电压。

电阻的特性包括:- 热稳定性:电阻器的电阻值在一定的温度范围内是稳定的,不会因温度的变化而发生明显的变化。

- 精确性:电阻器的电阻值可以根据需要设计和制造,具有较高的精确度。

2. 电容(Capacitor)电容是一种具有存储电荷能力的元件。

它由两个导电板和介质组成,通过存储电荷来储存电能。

电容对电流有以下影响:- 存储和释放电荷:电容器可以存储电荷,并在需要时释放。

当电容器充电时,电流会流向电容器并使之充电;当电容器放电时,储存的电荷流回电路。

电容的特性包括:- 存储能力:电容器的储能能力取决于电容值和电压。

较大的电容值和电压可以存储更多的电荷和储存更多的电能。

- 频率依赖性:电容的容抗(阻抗)随频率的变化而变化。

在低频情况下,电容器的容抗较大;而在高频情况下,容抗较小。

3. 电感(Inductor)电感是一种具有储存磁场能力的元件。

它由线圈或线圈的组合构成,通过改变电流来储存和释放磁场能量。

电感对电流有以下影响:- 储存和释放磁场能量:当电流通过电感时,它会储存磁场能量,并在电流变化或断开电路时释放。

电感的特性包括:- 自感性:电感器对电流的变化具有自感应作用,即当电流变化时,会产生电势变化,阻碍电流的变化。

这是由电感器内部的自感效应引起的。

电容电感-电路分析基础

电容电感-电路分析基础

)
L
diL (t dt
)
1
iL (t) iL (t0 ) L
t
t0 uL ( )d
WL
(t)
1 2
LiL2
(t)
(t) LiL (t)
....
2. i(t)取决于u(t)在此时刻的变化率;
规律:电压变化 电荷变化 产生电流
3. 若u和i参考方向不一致,
i(t) C du dt
电压的积分形式:
u(t)- i(t)关系
含义
1、u(t)取决于i(t)从到t的积分, 电容电压与电流过去历史有关, 说明电容电压有记忆性。
2、或者说u(t)取决于初始值u(t0)和 t0到t的电压增量。
i
u ++ ++ +q
-- --
-q
a) 符号 b)电容的库伏特性 (c d) 线性电容及库伏特性
§5 2 电容的伏安关系
i(t) C + u(t) _
电容电流等于电容电荷的变化率
i(t) dq d(Cu) C du i(t)-u(t)关系
dt dt
dt
含义 1、电容的伏安关系是微积分关系;
电压为有限值时,电流是时间的 连续函数;也叫做电感电流不能跃变;
2、电感是记忆元件; 3、对直流相当于短路。
例1:已知
i(t)
L
解:
_ + u(t)
例2:已知 L=1H,求 u(t)
i(A)
1
解:
-1 0 1
u(V)
1
2 3 t(s)
-1 0 1 2 3 t(s)
A,L=0.5H, 求 u(t)
t+1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
§5.1 电容元件
(2)电容构成原理
金属极板
i
面积A
+q
u
d
介质
−q
图5.2 电容的基本构成
C = εA d
(3)电容的电路符号
电 解
一般电容




(a) (b) (c)

图 5.3电容的电路符号

2019/10/10
第5章 电容元件和电感元件
3
§5.1 电容元件
2 线性电容定义
一个二端元件,在任一时刻,它的电荷q与端电压u成正比:
2 线性电感定义
一个二端元件,在任一时刻,它的磁链Ψ与电流 i 成正比:
= Li
L:电感[系数],单位:亨[利] (符号H )
韦安特性曲线
iL

在电感的磁链与电流的参考
+u −
方向符合右手螺旋法则时, 线性电感磁链、电流关系曲 线(韦安特性曲线)如图所
O
i
示。
(c)
2019/10/10
第5章 电容元件和电感元件
u
2 2
=
8J
2019/10/10
第5章 电容元件和电感元件
8
§5.1 电容元件
5 电容的串并联等效 (1)电容的并联等效
+i
i1
i2
iN
u

C1
C2
CN
+i
u

Ceq
(a)
(b)
图 5.5 电容的并联等效
由于并联电容的总电荷等于各电容的电荷之和,即
q = q1 + q2 + + qN = (C1 + C 2 + + C N )u = C equ
4
§5.1 电容元件
3 线性电容的电压电流关系:
i = dq = C du dt dt
(电容元件的VCR方程) + i
u q = Cu
⚫物理意义:线性电容的端口电流并不取决于 −
当前时刻电压,而与端口电压的时间变化率成 正比,所以电容是一种动态元件。
图5.4(a)
用电流表示电压:
u(t) = q(t) = 1
第 5 章 电容元件和电感元件
本章目录
2019/10/10
第5章 电容元件和电感元件
1
§5.1 电容元件
1 基本概念 (1)实际电容器示例
电解电容器
瓷质电容器
图 5.1a 固 定 电 容 器
聚丙烯膜电容器
管式空气可调电容器
片式空气可调电容器
5.1b 可 变 电 容 器
2019/10/10
第5章 电容元件和电感元件
=
q2 2C
电容吸收的总能量全部储存在电场中,没有产生能量损耗, 所以电容是无损元件。
2019/10/10
第5章 电容元件和电感元件
6
§5.1 电容元件
电容储能公式:we (t)
=
1 2
Cu2 (t)
=
q2 2C
当|u(t)|↑ → 储能↑ 也即吸收能量→吸收功率 当|u(t)|↓ → 储能↓ 也即释放能量→发出功率
p = ui = Cu du dt
截止到t瞬间,从外部输入电容的能量为 :
we (t) =
t
p( )d =

t Cu du d = C
u(t)
udu
− d
u ( − )
=
1 2
Cu2
u(t) u ( − )
=
1 2
Cu2 (t)

1 Cu2 (−) 2
=
1 2
Cu2 (t)
t
i( )d
C C −
= 1 C
t0 i( )d + 1

C
t
i( )d
t0
=
u(t0 ) +
1 C
t
i( )d
t0
⚫物理意义:t 时刻电容上的电压决定于此时刻以前的全部
电流,所以电容属于记忆元件。
2019/10/10
第5章 电容元件和电感元件
5
§5.1 电容元件
4 电容的功率和能量 在关联参考方向下,输入线性电容端口的功率:
q = Cu
库伏特性曲线
C:电容[系数],单位:F(法拉)。 常用单位:mF(微法) ,pF(皮法); 1mF =10-6F,1pF =10-12F。
在 u、q 取关联参考方向时,线性电容电荷、电压关系曲线
(库伏特性曲线)如图所示。
q
+i u q = Cu −
O
u
(a)
(b)
2019/10/10
第5章 电容元件和电感元件
所以并联等效电容等于各电容之和,等效电路如图 5.5(b)所示
C eq = C1 + C 2 + + C N
2019/10/10
第5章 电容元件和电感元件
9
§5.1 电容元件
(2)电容的串联等效
根据KVL及电容元件 的u、i关系得:
C1
C2
+ i +u1 − +u2 − u

CN +uN −
图5.6(a)电容的串联
+i
u

Ceq
图5.6(b)等效电容
u
=
u1
+ u2
++ uN
=
1 C1
t i( )d + 1

C2
t i( )d + + 1

CN
t
i( )d

= ( 1 +
1
+ +
1t )
i( )d =
1
t
i( )d
C1 C2
CN −
Ceq −
串联等效电容的倒数等于各电容
的倒数之和。如图5.6(b)所示。 1 = 1 + 1 + Ceq C1 C2
+1 CN
2019/10/10
第5章 电容元件和电感元件
10
§5.2 电感元件
1 基本概念 (1)实际电感线圈示例
2019/10/10
第5章 电容元件和电感元件
11
§5.2 电感元件
(2)电感线圈原理
线圈中有电流 i 时,其周围即建立磁场,从而在线圈中形
成与电流相交链的磁通Ф ,如图5.10所示。

磁链ψ :磁通和
Ψ = NΦ 单位:韦伯(Wb)
i
图5.10 电感线圈原理示意图
(3)电感的符号


电L
L

(a)
(b)
2019/10/10
第5章 电容元件和电感元件
可 调 电 感
12
§5.2 电感元件
+
4 u2 −
C1
−u1 + 20
12 32V
图 5.7
解 在直流电路中电容相当于开路, 据此求得电容电压分别为
u1
=
12 (12 + 4)
32 V
=
24V
u 2 = 32 V − u1 = 8V
所以两个电容储存的电场能量分别为
w1
=
1 2
C1u12
=
144J
;
w2
=
1 2
C
2
从全过程来看,电容本身不能提供能量,电容是无源元件。
综上所述,电容是一种动态、记忆、储能、无损、无源元件。
2019/10/10
第5章 电容元件和电感元件
7
§5.1 电容元件
例5.1图示电路,设 C 1 = 0 .5 F ,C 2 = 0 .2 5 F ,电路处于直流工作
状态。计算两个电容各自储存的电场能量。
13
§5.2 电感元件
3 线性电感的电压电流关系:
iL
+u −
u = dΨ = L di dt dt
(电感元件的VCR方程)
即线性电感的端口电压与端口电流的时间变化率成正比,所 以电感也属动态元件。
用电压表示电流:
相关文档
最新文档