等比数列概念课件

合集下载

高一数学 等比数列(课件) ppt课件

高一数学 等比数列(课件) ppt课件

n1
(a1 0, q 0)
3、探究等比数列的图像
等差数列的图像可以看成是直线上一群孤立的点 构成的,观察等比数列的通项公式,你能得出什 么结果?它的图像如何?
a n a1 q
n 1
(n≥2)
y a1 q q x (x N )
指数函数
由此可知等比数列 an 的图象是函数
07年广西高考(文科): 1.(第16题)等比数列{an}的前n项和为Sn,已知S1, 2S2,S3成等差数列,则{an}的公比为 __ 。 2. (第21题)设{an}是等差数列, {bn}是等比数列, 且a1=b1=1 , a3+b5=21 , a5+b3=13. (Ⅰ)求{an}、 {bn}的通项公式; (Ⅱ)略
a1q 2 12 ① 3 a1q 18 ②
a4 18 2 q ① a1q 12 ② 方法2: a3 12 变式1.等比数列 , a1 1, q 3, 求a8与an a中 n
变式2.等比数列
(3)思考消元方法。
, a中 n
a1 2, a9 32, 求q
5.看看高考(课后练习)
.
10
2.5 10 10 所以到第5代大约可以得到种子2.5 10 粒。
a1 120, q 120, a5 120120
51
例2(见教材例2):一个等比数列第三项与第四项 分别是12与18,求它的第1项和第2项。
分析:方法1:
(1)如何将已知条件与要求的a1与q联系起来? (2)列出方程:
等 比 数 列
第一课时
一、温故而知新
1、等差数列的定义: 2、等差数列性质:
温馨提示: 您是否还记得?

4.3.1等比数列的概念(第二课时)课件——高二上学期数学人教A版选择性必修第二册

4.3.1等比数列的概念(第二课时)课件——高二上学期数学人教A版选择性必修第二册

是函数
f x a1
q
qx x R
当 x n 时的函数值,即 an = f n .
a4
(4, a4 )
反之:任给指数函数f(x)=kax ( k, a为常数, k≠0 , a>0, 且 a≠1 ), 则f(1)=ka, f(2)=ka2 , …, f(n)=kan…构成一个等比数列 {kan},其首项为ka,公比为a.
是否一定是等比数列?如果数列{an}是各项均为正的等比数列, 那么数列{logb an}是否一定是等差数列?
➯ an1
b an1-an
d
b b b an
性质1:数列{an}是等差数列 ⇔数列{ban }是等比数列.
➯ logban1
logban
logb
an1 an
logbq
性质2:数列{an}是正项等比数 列⇔数列{logban}是等差数列.
∴a1=-12. 当n≥2时, an=Sn-Sn-1=13(an-1)-13(an-1-1),
得aan-n 1=-12.又 a1=-12, 所以{an}是首项为-12,公比为-12的等比数列.
已知数列{an}的前n项和为Sn,且对任意的n∈N*有an+Sn= n.
设bn=an-1,求证:数列{bn}是等比数列;
判断一个数列是等比数列的常用方法 (1)定义法:若数列{an}满足aan+n1 =q(q 为常数且不为零)或aan-n1 =q(n≥2,q 为常数且不为零),则数列{an}是等比数列. (2)通项公式法:若数列{an}的通项公式为 an=a1qn-1(a1≠0,q≠0),则数列 {an}是等比数列. (3)等比中项法:若 a2n+1 =anan+2(n∈N*且 an≠0),则数列{an}为等比数列. 说明:证明一个数列是等比数列,只能用定义法或等比中项法.

人教A版(2019)选择性必修第二册 4-3-1等比数列的概念 课件(53张)

人教A版(2019)选择性必修第二册 4-3-1等比数列的概念 课件(53张)
他5年内每年末得到的本利和分别是
2
3
4
5
a (1 + r ), a(1 + r ) , a(1 + r ) , a(1 + r ) , a(1 + r ) .

导入新课
思考:类比等差数列你能通过运算发现以下数列的取值规律吗?
9, 92 , 93 , … ,910;
100, 1002, 1003,…,10010;
q
但前一种设法的公比为 q2,只适合数列的各项同正或同负.
a
a
(3)五个数成等比数列,一般可设为 2 ,q ,a,aq,aq2.
q
变式练习
变式3 有四个实数,前三个数依次成等比数列,它们的积是-8;
后三个数依次成等差数列,它们的积为-80,求出这四个数.
b
解:由题意设这四个数分别为q ,b,bq,a,
an=1,∴32×2

n-1 =1,即 26-n=20,解得 n=6.
深入探究
等比数列的通项公式的推广
复习:等差数列{an}的 a a ( n 1)d 或a a ( n m )d .
n
1
n
m
通项公式:
例2 已知等比数列{an}的公比为q,试用{an}的第m项am表示an.
q ③
a1
a3
an an 1
a4 a 3 a 2
或an
a1
an 1 an 2
a3 a2 a1
a……
n 1
q n 2
an 2
q q
q q q a1 =a1q n1
an

q n 1
n-1个
an 1

《等比数列的概念》课件

《等比数列的概念》课件

03
等比数列的应用
等比数列在数学中的应用
解题技巧
等比数列是数学中常见的数列类型, 它在解决数学问题时具有广泛的应用 。例如,在求解一些复杂数学问题时 ,可以利用等比数列的性质简化计算 过程。
公式推导
等比数列的通项公式和求和公式在数 学中经常被用来推导其他公式或解决 一些复杂的数学问题。这些公式是等 比数列应用的基石,能够提供解决问 题的有效途径。
等比数列的公比
总结词
表示等比数列中任意两项的比值
详细描述
等比数列的公比是任意两项的比值,通常用字母 q 表示。公比是等比数列中相 隔一项的两个数的比值,即 a_n/a_(n-1)。公比反映了等比数列中每一项与前一 项的比值。
等比数列的项数与项的关系
总结词
表示等比数列中项数与项的关系
详细描述
在等比数列中,任意一项的值可以用首项、公比和项数来表 示。例如,第 n 项的值可以用 a_n=a_1×q^(n-1) 来表示, 其中 a_1 是首项,q 是公比,n 是项数。这个公式揭示了等 比数列中项数与项的关系。
《等比数列的概念》ppt课件
目录 Contents
• 等比数列的定义 • 等比数列的性质 • 等比数列的应用 • 练习题与答案
01
等比数列的定义
等比数列的文字定义
总结词:简洁明了
详细描述:等比数列是一种特殊的数列,其中任意两个相邻项之间的比值都相等 。
等比数列的数学符号定义
总结词:专业严谨
详细描述:等比数列通常表示为 a_n,其中 a 是首项,r 是公比,n 是项数。其数学定义是 a_n = a * r^(n-1),其中 r ≠ 0。
等比数列与等差数列的区别
总结词:对比分析

4-3-1等比数列的概念(第一课时)课件(人教版)

4-3-1等比数列的概念(第一课时)课件(人教版)

析 (2)a2+a5=18,a3++aa56==aa11qq+2+aa1q1q4=5=198,,
③ ④
由④÷③得 q=21,从而 a1=32.
解法二:因为 a3+a6=q(a2+a5),
又 an=1,所以 32·12n-1=1, 即 26-n=20,所以 n=6.
一个数与第四个数的和为21,中间两个数的和为18,求这四个数.
分析:三个数成等比数列,可怎么设为?
解: 设前三个数分别为a,a,aq(q≠0),则第四个数为 2aq-a, q
a+ 由题意得 q
2aq-a
=21,
a+aq=18,
解得 q=2 或 q=35.
当 q=2 时,a=6,这四个数为 3,6,12,18;
an a1q n1
当q=1时,这是一 个常数列, an ≠ 0。
注:方程中有四个量,知三求一,这是公式最简单的应用。
小试牛刀
求下列等比数列的通项公式
(1)2,4,8,16,32,64, … (2) 1 , 1 , 1 , 1 , …
2 4 8 16 (3)1,3,9,27,81,243,…
an 2 2n1 2n
(第一课时)
复习回顾
1.等差数列的定义: 如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,
这个数列就叫做等差数列. 符号表示:
2.等差中项的定义:
如果在 a与b中间插入一个数A,使a ,A,b成等差数列,
那么A叫做a与b 的等差中项,
A ab. 2
3.等差数列的通项公式:
an a1 (n 1)d , n N 不完全归纳法、累加法
a4 a3q (a1q 2 )q
a1q3
…… a n a1q n1

等比数列课件ppt

等比数列课件ppt

02
等比数列的通项公式
等比数列的通项公式推导
01
02
03
定义等比数列
等比数列是一个序列,其 中任意两个相邻项的比值 都相等。
推导通项公式
假设等比数列的首项为 $a_1$,公比为$r$,则第 $n$项$a_n$的通项公式 为$a_n = a_1 times r^{(n-1)}$。
证明通项公式
通过数学归纳法或迭代法 证明通项公式的正确性。
等比数列课件
• 等比数列的定义与性质 • 等比数列的通项公式 • 等比数列的求和公式 • 等比数列的应用 • 习题与解答
01
等比数列的定义与性质
等比数列的定义
总结词
等比数列是一种特殊的数列,其 中任意两个相邻项之间的比值都 相等。
详细描述
等比数列中,任意两个相邻项的 商是常数,这个常数被称为公比 。在等比数列中,每一项都是前 一项与公比的乘积。
举例说明
通过具体的例子来解释等比数列求和公式的推导过程。
等比数列求和公式的应用
解决实际问题
等比数列求和公式在解决实际问题中有着广泛的应用,如金融、工程、物理等 领域。
举例说明
通过具体的例子来展示等比数列求和公式的应用。
等比数列求和公式的变体
等差数列与等比数列的关系
01
等差数列和等比数列是两种不同的数列,但它们之间存在一定
01
第三组数列是等比数列,因为相 邻两项的比值都是1/2。
02
第四组数列也是等比数列,因为 相邻两项的比值都是1/2。
习题二:等比数列的通项公式
01
题目:已知等比数列的首项为 a,公比为q,求第n项的通项
公式。
02
答案与解析

高中数学《等比数列的概念及通项公式》课件

高中数学《等比数列的概念及通项公式》课件

[跟踪训练]
1.已知 a 是 1,2 的等差中项,b 是-1,-16 的等比中项,
则 ab=
()
A.6
B.-6
C.±6
D.±12
解析:依题意知,2a=1+2,b2=(-1)×(-16),
∴a=32,b=±4,∴ab=±6. 答案:C
2.已知等比数列{an}的前三项依次为 a-1,a+1,a+4,则 an=________. 解析:由已知可得(a+1)2=(a-1)(a+4),

将④⑤代入②,得 a23=a1+2 a3·a23a+3·aa55.
a1+a3a5 ∴a3= a3+a5 ,即 a3(a3+a5)=a5(a1+a3). 化简,得 a23=a1·a5.又 a1,a3,a5 均不为 0,所以 a1,a3,a5 成等
比数列.
2.已知数列{an}是首项为 2,公差为-1 的等差数列,令 bn =12an,求证数列{bn}是等比数列,并求其通项公式. 解:依题意 an=2+(n-1)×(-1)=3-n, 于是 bn=123-n. 而bbn+n 1=121223- -nn=12-1=2,又 b1=122=14. ∴数列{bn}是以14为首项,2 为公比的等比数列,通项公式 为 bn=2n-3.
求等比数列通项公式的常用方法 (1)根据已知条件,建立关于 a1,q 的方程组,求出 a1,q 后再求 an,这是常规方法; (2)充分利用各项之间的关系,直接求出 q 后,再求 a1,最 后求 an,这种方法带有一定的技巧性,能简化运算.
[跟踪训练] 在等比数列{an}中. (1)a4=2,a7=8,求 an; (2)a2+a5=18,a3+a6=9,an=1,求 n.
又∵an+1=2an+3,
an+1+3 2an+3+3 2an+3

4.3.1等比数列的概念及通项公式课件-高二上学期数学人教A版选择性必修第二册

4.3.1等比数列的概念及通项公式课件-高二上学期数学人教A版选择性必修第二册

a2 a1 d a2 a1 d
a3 a2 d a3 a1 2d
a4 a3 d a4 a1 3d
a3
2
q a3 a1q
a2

不完全归纳法得
an=a1+(n-1)d
类比
a4
3
q a4 a1q
a3

不完全归纳法得an=a1qn-1
a1 a3 a9 3a1 10 d 13d 13




a2 a4 a10 3a1 13 d 16d 16
13
16 .
____
对照归纳总结
等差数列
等比数列
通项公式
推导方法
累加法
不完全归纳法
定义式
a n 1 a n d ( n N )
公差公比
通项公式
等差/比中项
累乘法
不完全归纳法
*
a n 1
*
q( n N ), q 0
an
公差d可正、可负、可为零 公比d可正、可负、不可为零
a n a1 ( n 1)d
an am ( n m) d
A是a与b的等差中项
2 A a b.
n 1
ቤተ መጻሕፍቲ ባይዱ
an a1q
an am q n m
2
a与b的等比中项G ab (ab 0).
G b

a G
注:①同号的两数才有等比中项,且等比中项有2个,它们互为相反数;
②若a,G,b组成等比数列,则必有G2=ab;
而G2=ab并不能说明a,G,b组成等比数列,如a=G=0,b=5时不成等比.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
项的比都等于同一个常数,那么这个数列就叫做等比 数列,这个常数叫做公比,记为q(q≠0). an q (n 2且n N* ). 数学语言: an 1
an 1 或 q n N * an
思考1:
1.已知等比数列{ an }: (1) an 能不能是零? 不能 能 (2)公比q能不能是1? 2.用下列方法表示的数列中能确定 是等比数列的是 ① ④ ⑥ . ① 1,-1,1,…,(-1)n+1 √ ; ②1,2,4,6…; ③a,a,a,…,a;
名称 概念
等差数列 从第2项起,每一项与它前 一项的差等同一个常数
公差d可正可负,且可以为零
常数
an amq
an a1 q
n 1
通项 公式
通项 * 变形 中项 公式
n m
an a1 (n 1)d
an am (n m)d
ab 等差中项 A 2
(n, m N )
其中,a1与q均不为0。由于当n=1时上面等式两边均为a1, 即等式也成立,说明上面公式当n∈N*时都成立,因此它 就是等比数列{an}的通项公式。
等比数列的通项公式:
an a1 q
n1
(n∈N﹡,q≠0)
探究四:等比数列的通项公式与函数有怎样的关系?
例如:数列{an}的首项是a1=1,公比q=2,则通项公式是:
2 1 3 1
解得,
3 q 2
2 1
16 ,a 3
1
因此
16 答:这个数列的第1项与第2项分别是 与 8. 3
16 3 a aq 8 3 2
课堂互动
1 4 (1)一个等比数列的第5项是 ,公比是 ,求它的第1项; 9 3
解:设它的第一项是
1 51 4 a1 ( ) 3 9
0.05 2 2 0.05 2 ……
是首项为0.05x2,
公比为2的等比数列
0.0等比数列的定义
观察下列数列,说出它们的特点.
(1)1,2,22,23,… (2)5, 25,125, 625... 1 1 1 (3)1, , , , 2 4 8 定义:如果一个数列从第二项起,每一项与它的前一
an am (n m)d
(n, m N * )
试问:在等比数列 a n 中,如果知道 am 和公 比q,能否求 an ?如果能,请写出表达式。
an amq
n m
(n, m N )
*
应用示例
例1.在等比数列 an 中,
(1)a4 27, q 3, 求an ; (2)a3 12, a4 18, 求a1.
变式:求出下列等比数列中的未知项: ( 1) 2,a, 8; a 4 (2)a 5 =4,a 7 =6,求a 9 . a9 9
应用示例
例3 一个等比数列的第3项与第4项分别 是12与18,求它的第1项与第2项.
解:设这个等比数列的第1项是
那么
a,公比是q ,
1
a q 12 a q 18
n
a1 q b1 q2 与a1 q b1 q2 n1 n a1b1 (q1q2 ) 与a1b1(q1q 2 ) 即为
n1 1
n1
n 1
n
所以 an bn 是一个以 q1q2 为公比的等比数列
五.回顾小结
等比数列 从第2项起,每一项与它前 一项的比等同一个常数 公比q( q 0 )
数学无处不在
• 如果能将一张厚度为0.05mm的报纸对 折,再对折,…..对折一次厚度是多少? 对折两次呢?对折50次后报纸厚多少?
• • • • 对折一次厚度 对折两次厚度 ……. 对折50次厚度
0.05 2 2 0.05 2 ……
0.05 2
50
发挥想象力,你觉得 0.05 2 m m大约 是多高?一本字典?一棵大树?一座高 楼?还是……..?
an 2n-1 ______
an 8 7
1 n 上式还可以写成 a n 2 2
可见,这个等比数列 的图象都在函数
· · · ·
1 2 3
6
5
y1 2 2
x
4
3
2 1
0
的图象上,如右图所示。
结论: 等比数列an 的图象是其对应的 函数的图象上一些孤立的点
4
n
变形结论:
在等差数列 a n 中
等比中项的定义
在a与b中间插入一个数G,使a,G,b成等比数列,那么 G叫做a与b的等比中项。
G ab
即G ab
2
探究三:通项公式
思考3:如何用a1和q表示第n项an 1.累乘法 2.不完全归纳法 a2/a1=q a2=a1q a3/a2=q a3=a2q=a1q2 a4/a3=q a4=a3q=a1q3 … … an/an-1=q 这n-1个式子相乘得an/a1=qn-1 an=a1qn-1 所以 an=a1qn-1
(n, m N )
*
等比中项 G ab
谢 谢 !
积跬步以致千里,积怠惰以致深渊
数学励志公式,用心看,你懂得
50
0.05 2 mm 5.6310 mm 5.6310 m
50 13 10
地球与月球的距离约为
8 3.8410 m
哇,太不可思议了
数学无处不在
• 如果能将一张厚度为0.05mm的报纸对 折,再对折,…..对折一次厚度是多少? 对折两次呢?对折50次后报纸厚多少?
• • • • 对折一次厚度 对折两次厚度 ……. 对折50次厚度
已知
an ,bn 是项数相同的等比数列, 求证 an bn 是等比数列.
证明:设数列 an 首项为a 1,公比为 q 1 ;b n 首项为b1,公比为q 2 那么数列 an bn 的第n项与第n+1项 分别为:
an1 bn1 a1b1 (q1q2 ) q1q2 .它是一个与n无关的常数, n 1 an bn a1b1 (q1q2 )
解得,
a1,则由题意得
a1 36
答:它的第一项是36 .
(2)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项 . 解:设它的第一项是 a1,公比是 q ,则由题意得 a1q 10 , a1q 2 20 解得, a1 5 , q 2 a4 a1q3 40 因此 答:它的第一项是5,第4项是40.
×
× ④已知a1=2,an=3an+1 ; √ 2 3 ⑤ m, 2m, 4m ,8m ,... × 非零的 ⑥2a,2a,2a,…,2a. √ 3.什么样的数列既是等差数列又是等比数列?常数列
探究二.等比中项
观察如下的两个数之间,插入一个什么数后,这三个数就会成 为一个等比数列: (1)1,±3 , 9 (3)-12, ±6 ,-3 (2)-1, ±2 ,-4 (4)1,±1 ,1
相关文档
最新文档