城市轨道交通列车制动力

合集下载

城轨车辆制动方式介绍

城轨车辆制动方式介绍

城轨车辆制动方式按照制动时列车动能的转移方式不同城轨车辆的制动主要可以分为摩擦制动和电制动。

一,摩擦制动通过摩擦副的摩擦将列车的运动动能转变为热能,逸散于大气,从而产生制动作用。

城轨车辆常用的摩擦制动方式主要有闸瓦制动,盘形制动和轨道电磁制动。

(一)闸瓦制动闸瓦制动又称为踏面制动,它是最常见的一种制动方式。

制动时闸瓦压紧车轮,车轮与闸瓦发生摩擦,将列车的运动动能通过车轮与闸瓦间的摩擦转变为热能,逸散于空气中。

在车轮与闸瓦这一对摩擦副中,由于车轮主要承担着车辆行走功能,因此其他材料不能随便改变。

要改善闸瓦制动的性能,只能通过改变闸瓦材料的方法。

目前城轨车俩中大多数采用合成闸瓦。

但合成闸瓦的导热性较差,因此也有采用导热性能良好,且具有良好的摩擦性能的粉末冶金闸瓦。

在闸瓦制动中,当制动功率较大时,产生的热量来不及逸散到大气,而在闸瓦与车轮踏面上积聚,使他们的温度升高,摩擦力下降,严重时会导致闸瓦熔化和轮毂松弛等,因此,在闸瓦制动时,对制动功率有限制。

(二)盘形制动)盘形制动有轴盘式和轮盘式之分,一般采用轴盘式,当轮对中间由于牵引电机等设备使制动盘安装发生困难时,可采用轮盘式。

制动时,制动缸通过制动夹钳使闸片夹紧制动盘,使闸片与制动盘间产生摩擦,把列车的动能转变为热能,热能通过制动盘与闸片逸散于大气。

(三)轨道电磁制动轨道电磁制动也叫磁轨制动。

是一种传统的制动方式,这种制动方式是在转向架前后两轮之间安装包升降风缸,风缸顶端装有两个电磁铁,电磁铁包括电磁铁靴和摩擦板,电磁铁悬挂安装在距轨道面适当高度处,制动时电磁铁落下,并接通励磁电源使之产生电磁吸力,电磁铁吸附在钢轨上,列车的动能通过磨耗板与钢轨的摩擦转化为热能,逸散于大气。

轨道电磁制动可得到较大的制动力,因此常被用作于紧急制动时的一种补充制动,这种制动不受轮轨间黏着系数的限制,能在保证旅客舒适性条件下有效地缩短制动距离。

当磨耗板与轨道摩擦产生的热量多,对钢轨的磨损也很严重。

地铁车辆制动系统工作原理

地铁车辆制动系统工作原理

地铁车辆制动系统工作原理摘要:随着城市规模的快速发展和城市人口的不断增多,所面临的交通问题也越来越严重。

本文对地铁车辆的制动功能设计进行了说明,并介绍了制动指令的相关设计,最后介绍了混合制动控制系统设计及相关控制策略,以供读者参考关键词:地铁车辆;制动系统随着我国经济建设的不断推进,近年来城市轨道交通快速发展,国内许多大型城市都已有了地铁或者轻轨,随着大量的轨道交通项目投入运营,人们的日常出行变得更加方便,可随之而来的担忧也困扰着人们:“我们经常乘坐的地铁会不会刹车失灵呢、会不会追尾呢?”1.地铁车辆的制动功能设计地铁车辆采用减速度控制模式,制动指令为电气指令,即制动系统根据电气减速度指令施加制动力。

乘客通过站台固定区域上下车,因而地铁车辆每次停站位置要求准确无误,为满足此要求,ATO系统或司机根据停车距离给定列车减速度电气指令,地铁车辆制动过程中必须能够根据减速度指令快速施加相应制动力,即制动响应准确、迅速。

制动系统设有载荷补偿功能。

由于城市轨道交通车辆载客量大,乘客上下频繁,因此要求制动过程中能够根据车辆载荷变化自动调整制动力,称之为载荷调整功能。

常用制动具有防冲动限制功能。

制动指令是电气信号,制动指令变化瞬间可以完成,如果制动力跟随制动指令迅速变化,就可能造成冲动,引起乘客不适,而且常用制动需频繁施加,为减少制动时的冲动以避免制动力变化过快引起乘客不适,常用制动过程中需限制制动力的变化速率,称之为冲动限制功能。

2.制动系统功能2.1常用制动常用制动采用模拟电气指令方式,是由微处理器控制的直通式电空制动,它采用减速度控制模式,其制动力随输入指令大小无级控制,制动控制单元根据减速度指令和车辆实际载重来计算目标制动力,产生相应的减速度。

常用制动具有冲击率限制功能,以改善乘坐的舒适性;常用制动采用空电混合制动并优先使用电制动,不足部分由空气制动补足,以尽可能减少空气制动的负荷。

2.2快速制动当司机操作主控制器手柄使其处于快速制动位时快速制动被触发。

城市轨道交通车辆—制动系统

城市轨道交通车辆—制动系统
1)纯滚动状态。车轮与轨道的接触点无相对滑行,车轮在钢轨上做纯滚动。这时车轮与闸瓦之间 为动摩擦,车轮与钢轨之间为静摩擦,车轮与钢轨之间可能实现的最大制动例时轮轨之间的最大 静摩擦力。只是一种难以实现的理想状态。
2)滑行状态。车轮在钢轨上滑行,此时车轮与钢轨之间的滑动摩擦力为列车制动力。这是一种必 须避免的事故状态,由于滑动摩擦系数远小于静摩擦系数,因此一旦发生滑行,制动力将大大减 少,制动距离会延长;同时车轮在钢轨上的长距离滑行,将导致车轮踏面的擦伤,危及行车安全。
制动类型
电制动
再生制动 (动能→ 牵引电机→电能→接触网)
1)再生制动。当车辆施加常用制动时,牵引电机变成发电机状态,将车辆的 动能转变成电能,电能经过整流后反馈至接触网,供列车所在的接触网供电 分区上其它车辆牵引和供本车其它系统(辅助系统等)使用,即再生制动。 再生制动取决于接触网的接收能力,也取决于网压的高低和载荷利用能力。
以电磁力为源动力的制动方式称为电制动;
空气(摩擦)制动
以压缩空气为源动力的制动方式称为空气制动,如踏面 制动、盘式制动等都为空气制动方式;
其他制动
还有机械制动、液压制动等方式。
制动源动力 不同
城市轨道交通车辆牵引电传动系统采用先进的调频调压交流感应电机驱 动系统,在高速时具有良好的电制动性能。
但是由于电制动的效率随着运行速度的降低而降低,所以在车速降低到 一定程度后必须采用空气制动系统。
列车制动时,将牵引电机变为发电机,动能转化为 电能。
动能转移方 式不同
制动类型
粘着制动 利用轮、轨之间的粘着力来实现制动。
制动力获取 方式不同
非粘着制动 制动力的提供不再依靠轮轨之间的粘着力,可获得超过轮轨粘着 力的制动力。

我国城市轨道车辆制动技术的现状与思考

我国城市轨道车辆制动技术的现状与思考

我国城市轨道车辆制动技术的现状与思考我国城市轨道车辆制动技术的现状与思考导言随着城市化进程的加速,城市轨道交通系统已成为城市重要的交通方式之一。

城市轨道交通系统的安全性与可靠性是其发展的基本保障,而制动技术作为其中的重要组成部分,对确保列车安全运行起着至关重要的作用。

本文将对我国城市轨道车辆制动技术的现状进行深入探讨,并提出一些思考和建议。

一、我国城市轨道车辆制动技术的现状1. 制动技术的应用范围在我国城市轨道交通系统中,制动技术被广泛应用于地铁、轻轨、有轨电车等多种类型的城市轨道车辆中。

2. 制动技术的发展历程随着城市轨道交通的快速发展,我国的城市轨道车辆制动技术也经历了长足的进步。

从最早的气动制动到现在的电磁制动,制动技术的发展经历了多个阶段。

3. 制动技术的特点目前,我国城市轨道车辆制动技术具有自动化程度高、制动距离短、制动灵活性强等特点,能够有效提高列车的安全性和运行效率。

二、我对城市轨道车辆制动技术的个人观点和思考在我看来,我国的城市轨道车辆制动技术虽然已经取得了一定的成就,但仍然存在一些问题和挑战。

在高速列车上,由于制动能量的快速释放,常常会引起车轮和轨道的磨损,从而影响列车的安全性和运行稳定性。

我认为,未来我国在城市轨道车辆制动技术方面需要在以下几个方面加强研究和改进:1. 提高制动系统的智能化程度针对城市轨道车辆制动系统在运行过程中的复杂工况,需要继续提高制动系统的智能化程度,实现更加精准的控制和操作。

2. 加强制动系统的舒适性和稳定性对于乘客来说,制动过程中的舒适性和稳定性是影响乘坐体验的重要因素,因此需要在制动系统设计和制动控制技术方面进行进一步优化和改进。

3. 推动新型制动技术的应用随着材料技术和控制技术的不断发展,一些新型制动技术已开始逐渐应用于城市轨道车辆中,如液体制动、能量回收制动等。

这些新型制动技术将为我国城市轨道车辆制动技术的进一步提升提供重要的技术支撑。

总结我国城市轨道车辆制动技术的发展经历了多年的积淀与进步,目前已经具备了较高水平的制动技术。

城市轨道交通车辆制动技术项目1 轨道交通车辆制动技术概论

城市轨道交通车辆制动技术项目1 轨道交通车辆制动技术概论

力)也在起作用,但起主要作用的还是列车制动力(人为阻力)。
9
2.制动能力 城市轨道交通车辆在设计和制造过程中,列车的最高运行速度和 牵引功率需要得到充分考虑和计算,而制动能力更是需要认真计算和 校核的技术参数之一。列车的最大速度与牵引功率有关,但它更应该 受到制动能力的限制。 列车的制动能力是指该列车的制动系统能使其在规定的安全范 围内或规定的安全制动距离内可靠地把车停下来的能力。一般来说, 城市轨道交通系统都有明确的车辆运行规程,特别对列车制动能力有 严格的要求和规定。例如,要求列车在紧急情况下的制动距离(紧急 制动距离)不得超过某一规定值。我国的上海地铁规定:列车在满载 乘客的条件下,在任何运行速度下,其紧急制动距离不得超过180m。 这个距离要比启动加速度短得多。因此,从安全的目的出发,一般列
1.能叙述制动、缓解、制动装臵等重要的基本概念。 2.能分析城市轨道交通车辆制动系统的组成。
2
任务1
城轨制动技术的基本认知
【活动场景】 在城市轨道交通车辆检修基地或在城轨制动模型室或有多媒体 能展示城轨车辆制动作用的教室或现场进行教学。 【任务要求】 1.了解城市轨道交通车辆制动的基本知识。
2.能知道城轨车辆制动装臵的基本作用、基本结构与基本特点等。
轨列车的制动装臵分为动车制动装臵和拖车制动装臵两种类型,各型
车一般都有基础制动的装臵,但动车和拖车制动控制单元有一定的 区别。
7
②制动系统。城市轨道交通车辆制动装臵至少包括两个部分,制 动控制部分和制动执行部分。制动控制部分由制动信号发生与输出 装臵以及制动控制装臵组成;制动执行部分通常称为基础制动装臵,
包括闸瓦制动和盘式制动等不同方式。在传统意义上,列车上安装的
制动装臵比较简单、直观,采用压缩空气传递信号,因此我们称其为列 车制动装臵。但是随着轨道交通技术的发展,制动装臵中越来越多地 采用了电气信号和电气驱动设备,微机和电子设备的出现使制动装臵 变得无触点化和集成化,并且使制动控制功能融入了其他电路而不能 独立划分。因此,我们只能按现代化方法将具有制动功能的电子线 路、电气线路和气动控制部分归结为一个系统,统称为轨道交通车辆 制动系统。 由此可见,对城市轨道交通车辆来讲称之为制动系统比制动装臵 要更准确些。

城市轨道交通列车制动力的产生

城市轨道交通列车制动力的产生

城市轨道交通列车制动力的产生目前,城市轨道交通中除了橡胶车轮列车和磁悬浮列车等特殊交通系统外,绝大部分列车采用的是钢轨钢轮的走行方式。

因此,首先要来研究钢轨与钢轮之间的相互关系,以及它们在运行中的各种工况。

对由一根车轴与两个车轮组成,其在钢轨上运行时,一般承受垂直荷载、纵向荷载和横向荷载。

垂直荷载来自车辆对轮对的正压力,纵向荷载主要来自牵引及制动,横向荷载来自车辆的蛇行运动。

牵引时,牵引电动机通过传动机构将牵引动力传递给动车的动力轮对(动轮对),通过车轮和钢轨的相互作用产生使车辆运动的反作用力。

根据物理学中有关机械摩擦的理论,轮轨间的切向作用力就是静摩擦力。

而最大静摩擦力就是钢轨对车轮的反作用力的法向分力与静摩擦系数的乘积。

稳态前进的非动力轮对的车轮在不制动时,其纵向切向力平衡轴承阻力和蛇行时的惯性力。

因此,无论是动轮对还是从动轮对都存在着纵向切向力,它导致了轮轨之间的纵向相对运动。

但实际上,事情并非那么简单,动轮与钢轨间切向作用力的最大值与物理学上的最大静摩擦力相比要小一些,情况也更复杂一些。

在分析轨道车辆的轮轨关系时,通常必须引入两个十分重要的概念,即黏着和蠕滑。

一、黏着图为某城市轨道交通列车的动车以速度v在直线线路上运行时,它的一个动轮对的受力情况(图中忽略了其内部的各种摩擦阻力,为了更清楚地表示该图中的各种关系,我们把实际上相互接触的车轮与钢轨稍稍分开画出)。

在图中,Pi为作用在钢轨上的正压力,又称为轮对的轴重;Mi为牵引电动机作用在动轮对上的驱动转矩,可以用一对力(Fi′和Fi)形成的力偶代替。

力Fi′和Fi分别作用在轮轴中心的O点和轮轨接触处的O′点,其大小为:式中,Ri为动轮半径。

在正压力Pi的作用下,车轮与钢轨的接触部分紧紧压在一起。

Fi使车轮上的O′点具有向左运动的趋势,并通过O′点作用在钢轨上。

fi ′表示车轮作用在钢轨上的力,fi ′=Fi 。

由于轮轨接触处存在着摩擦力,车轮上O′点向左运动的趋势将引起向右的静摩擦力fi,即钢轨对车轮的反作用力,fi =fi ′。

城市轨道交通车辆构造与检修单元7-城市轨道交通车辆制动系统检修【可编辑全文】

城市轨道交通车辆构造与检修单元7-城市轨道交通车辆制动系统检修【可编辑全文】
单元7 城市轨道交通车辆制动系统检修
任务1 城市轨道交通车辆制动系统的组成
【任务目标】 1.掌握制动系统在城市轨道交通车辆运行中的重要意义。 2.熟悉空气制动系统的组成和分类。 3.掌握风源系统的种类和主要部件的工作原理。 4.熟悉基础制动装置的组成和工作原理。 【任务分析】 通过本任务的学习,重点掌握城市轨道车辆制动系统的组成,掌握 制动的种类,本任务的难点是制动优先原则的掌握。
19
图7.4 再生制动原理图
20
(2)电阻制动 如果制动列车所在的接触网供电区段内无其他列车吸收该制动能 量,VVVF则将能量反馈在线路电容上,使电容电压XUD迅速上升,当 XUD达到最大设定值1800V时,DCU启动能耗斩波器模块A14上的 门极可关断晶闸管GTO:V1,GTO打开制动电阻RB,制动电阻RB与电 容并联,将电机上的制动能量转变成电阻的热能消耗掉,此即电阻制动 (能耗制动),电阻制动能单独满足常用制动的要求。 电阻制动是承担电机电流中不能再生的那部分制动电流。再生制 动电流加电阻制动电流等于制动控制要求的总电流,此电流受电机电 压的限制。再生制动与电阻制动之间的转换由DCU控制,能保证它们 连续交替使用,转换平滑,变化率不能为人所感受。当高速时,动车采 用再生制动,将列车动能转换成电能;当再生制动无法再回收时(如当 网压上升到1800V时),再生制动能够平滑地过渡到电阻制动。
26
(三)快速制动 当主控制器手柄移到“快速制动”位时,列车将实施减速度与紧急 制动相同的快速制动。快速制动具有以下特点: ①电制动不起作用,仅空气制动。 ②受冲击率极限的限。 ③主控制器手柄回“0”位,可缓解。 ④具有防滑保护和载荷修正功能。
27
(四)常用制动 在常用制动模式下,电制动和空气(摩擦)制动一般都处于激活状 态。一般情况下[车载为定员AW2以下,速度8km/h(可调)以上],电 制动能满足车辆制动要求,当电制动不能满足制动要求时,空气制动能 够迅速、平滑地补充,实现混合制动作用。

城市轨道交通制动系统

城市轨道交通制动系统

城市轨道交通制动系统1、制动与缓解(1)制动。

制动是指人为地通过制动装置使车辆减速或阻止其加速的过程。

从能量变化角度分析,制动过程是一个能量转移的过程,即将列车运行的动能人为控制地转化成其他形式能量的过程。

而制动力则是指使车辆减速或阻止其加速的外力,制动机是产生并控制制动力的装置。

(2)缓解。

缓解是对已经施行制动的列车,解除或减弱其制动作用。

对于运动的列车而言,列车在停车后启动加速前或列车在运行途中限速制动后加速前均要解除制动作用,即施行缓解作用。

2、制动装置与制动系统(1)制动装置。

制动装置是在车辆中产生制动力,使列车减速、停车的一套机械、电气装置,一般将机械装置称为基础制动装置,而将电气控制的部分称为制动机。

制动作用的性能对保证车辆安全和正点运行具有极其重要的作用,制动装置也是提高列车运行速度和线路输送能力的重要条件之一。

(2)制动系统。

①制动系统的组成。

制动系统由动力制动系统、空气制动系统及指令和通信网络系统组成。

动力制动系统。

动力制动系统一般与牵引系统连在一起形成主电路,包括再生反馈电路和制动电阻器,将动力制动产生的电能反馈给供电接触网或消耗在制动电阻器上。

空气制动系统。

空气制动系统由供气部分、控制部分和执行部分组成。

供气部分有空气压缩机组、空气干燥器的风缸等;控制部分有电-空转换阀、紧急阀、称重阀、中继阀等;执行部分主要是指基础制动装置,主要有闸瓦制动装置、盘形制动装置等。

指令和通信网络系统。

指令和通信网络系统是传递司机指令的通道,也是制动系统内部数据传递交换及制动系统与列车控制系统进行数据通信的总线。

②制动系统的作用。

制动系统的主要作用如下:车辆在运行过程中,司机通过制动装置使列车减速、停车或停止加速。

防止车辆在长大下坡道运行时加速。

防止城轨车辆在停车线或检修线上自动溜放而实施停放作用等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

城市轨道交通列车制动力
人为地使运动物体减速或阻止其加速叫作制动,对于城市轨道交通列车来说,为了使运行着的列车能迅速地减速或停车,必须对它施行制动;为了防止列车在下坡道上运行时由于重力作用导致速度增加,也需要对它施行制动;同时为避免停放的车辆因重力作用或风力吹动而溜走,也要对它施行制动(称为停放制动)。

因此,制动系统对保证列车安全和正点运行具有极其重要的意义。

列车制动力是由制动装置产生的与列车的运行方向相反、阻碍列车运动并且司机可以根据需要或由自动驾驶装置控制和调节的外力。

制动力和列车运行阻力虽然都阻止列车的运动,但是制动力是人为的和可控的。

所以,在列车制动减速过程中,尽管运行阻力也在起作用,但起主要作用的是列车制动力。

一、制动功率与制动能力
从能量的观点看,制动的实质就是将列车所具有的动能转移出去,制动系统转移动能的能力称为制动功率。

在一定的制动距离条件下,列车的制动功率是其速度的三次函数。

列车的最高运行速度虽然与其牵引功率有关,但也受其制动能力的限制。

列车的制动能力是指制动系统能使其在规定的制动距离内安全停车的能力。

按照城市轨道交通列车的运行规程,列车在非常情况下的制动距离(紧急制动距离)不得超过某一规定值。

例如,地铁规定的紧急制动距离一般为180 m。

这个距离要比启动加速距离短得多,因此列车的制动功率要比驱动功率大5~10倍。

二、制动的类型
根据不同的分类方式,制动可分为黏着制动和非黏着制动、摩擦制动和非摩擦制动。

踏面(闸瓦)制动、盘形制动、电阻制动、再生制动和液力制动都需要通过轮轨黏着来产生制动力,故习惯上把它们归为一类,称为黏着制动。

轨道电磁制动(包括摩擦式和涡流式)和翼板制动都不需要通过轮轨黏着来
产生制动力,故习惯上把它们归为一类,称为非黏着制动。

在各种制动中,踏面(闸瓦)制动、盘形制动、轨道电磁制动等都通过摩擦来产生制动力,所以有时也把它们统称为摩擦制动;把其他不通过摩擦来产生制动力的统称为非摩擦制动,如轨道涡流制动。

三、制动系统应具备的条件
城市轨道交通的站距较短,因此列车的调速及停车都比较频繁。

为了提高运行速度,尤其是对高架有轨交通列车和地铁列车,必须使其起动快,制动距离短。

同时,城市轨道交通列车的乘客上下波动较大,对列车载重有较大的影响。

针对这些特点,城市轨道交通列车的制动系统应具备以下条件:
1、操纵灵活,制动减速快,作用灵敏可靠,列车前后车辆制动、缓解作用一致。

2、具有足够的制动能力时,其制动力不会衰减。

保证列车能在规定的制动距离内停车、在长大下坡道上运行。

3、具有动力制动与摩擦制动的联合制动能力。

在正常制动过程中,优先使用动力制动,以减少对城市环境的污染和降低运行成本。

4、具有荷载校正能力,能根据乘客荷载的变化自动调节制动力,使车辆制动率保持恒定,以保证乘客乘坐的舒适性。

5、具有紧急制动性能,遇有紧急情况时,能使列车在规定距离内安全停车。

紧急制动除可由司机操纵外,必要时还可由行车有关人员利用紧急按钮(紧急阀)进行操纵。

此外,列车在运行中发生列车分离、制动系统故障等危急行车安全的事故时,应能自动产生紧急制动作用。

相关文档
最新文档