高二物理 楞次定律及其应用

合集下载

高中物理最新课件-高二物理楞次定律的理解和应用 精品

高中物理最新课件-高二物理楞次定律的理解和应用 精品

【精讲精析】 条形磁铁从线圈正上方等高快速 经过时,通过线圈的磁通量先增加后减小.当通 过线圈的磁通量增加时,为阻碍其增加,在竖直 方向上线圈有向下运动的趋势,所以线圈受到的 支持力大于其重力,在水平方向上有向右运动的 趋势;当通过线圈的磁通量减小时,为阻碍其减 小,在竖直方向上线圈有向上运动的趋势,所以 线圈受到的支持力小于其重力,在水平方向上有 向右运动的趋势.综上所述,线圈受到的支持力 先大于重力后小于重力,运动趋势总是向右. 【答案】 D
如图1-2所示,两条平行且足够长的金 属导轨置于磁感应强度为 B的匀强磁场中, B 的方向垂直导轨平面,两导轨间距为L,左端 接一电阻 R,右端接一电容器 C,其余电阻不 计,长为 2L 的导体棒 ab 如图所示放置,从 ab 与导轨垂直开始,在以a为圆心沿顺时针方向 以角速度ω匀速转动90°的过程中,通过电阻 R的电荷量是电动势大小的求解公式 ΔΦ (1)E= n , 用于求解回路中(不一定闭合)平均感应 Δt 电动势的大小. (2)E= BLv,用于求解导体棒平动切割磁感线产生 的动生电动势的大小. 1 2 (3)E= BL ω,用于求解导体棒旋转切割磁感线产 2 生的动生电动势的大小.
ΔI (4)E= L· ,用于求解自感电动势的大小. Δt 我们要针对不同的情况选用合适的计算公式, 求解感应电动势与电路有密不可分的关系.
2.感应电动势和感应电流方向的确定 右手定则和楞次定律是用来判断电磁感应现象中感 应电动势和感应电流方向的.对于导体做切割磁感 线的运动以及判断电势高低时,常常使用右手定 则.对于磁通量发生变化而引起感应电动势、感应 电流方向的判断,则需使用楞次定律,在电源内部, 感应电流的方向由电源的负极指向正极,这是确定 感应电动势方向的依据.
(2011 年渭南高二检测 ) 如图 1 - 1 所示,粗糙 水平桌面上有一质量为 m的铜质矩形线圈.当一竖 直放置的条形磁铁从线圈中线 AB 正上方等高快速 经过时,若线圈始终不动,则关于线圈受到的支持 力N及在水平方向运动趋势的判断正确的是( )

高二物理椤次定律的应用3

高二物理椤次定律的应用3

解:感应电流的效果总要阻碍产生感应电流的原因,
ab 由受Φ磁=场B力S 向,左S减,小则则闭合B要电路的c面积要减小,a
增大才能阻碍磁通量的变化
,所以cd中的电流增大,与
电流的方向无关。
b d
例11、如图,一足够长的绝缘滑杆SS′上套一质量m 的
光滑弹性金属环,在滑杆的正下方放一很长的光滑水平 轨道,并穿过金属环的圆心O,现将质量为M的条形磁
线框在正中间位置B时,向外的磁通 b c
量减少到0,I 的方向为逆时针;
A BC
接着运动到C,向里的磁通量增加,I 的方向为逆时针;
ab边离开直导线后,向里的磁通量减少,I 的方向为顺时针。
所以,感应电流的方向先是顺时针,接着为逆时针, 然后又为顺时针。
例3.如图所示,一水平放置的圆形通电线圈I固定,
○○○○11ѡ5 ; 外链
例2. 导线框abcd与直导线在同一平面内,直导线中通
有恒定电流I,当线框自左向右匀速通过直导线的过程
中,线框中感应电流如何流动?
解:画出磁场的分布情况如图示:
ad
I
开始运动到A位置,向外的磁
通量增加,I 的方向为顺时针;
v
当dc边进入直导线右侧,直到
N S
例5. 如图所示,两个相同的铝环套在一根无限长的光 滑杆上,将一条形磁铁向左插入铝环(未穿出)的过程
中,两环的运动情况是:( C )
(A)同时向左运动,距离增大; (B)同时向左运动,距离不变; (C)同时向左运动,距离变小; (D)同时向右运动,距离增大。
v
N S
例6. 金属圆环的圆心为O,金属棒Oa、Ob可 绕O在环上转动,如图示,当外力使Oa逆时 针方向转动时,Ob将: ( B )

高二物理楞次定律及应用知识精讲

高二物理楞次定律及应用知识精讲

高二物理楞次定律及应用【本讲主要内容】楞次定律及应用楞次定律及熟练运用楞次定律【知识掌握】【知识点精析】1、实验:闭合电路的磁通量发生变化的情况:实线箭头表示原磁场方向,虚线箭头表示感应电流磁场方向。

分析:(甲)图:当把条形磁铁N极插入线圈中时,穿过线圈的磁通量增加,由实验可知,这时感应电流的磁场方向跟磁铁的磁场方向相反。

(乙)图:当把条形磁铁N极拔出线圈中时,穿过线圈的磁通量减少,由实验可知,这时感应电流的磁场方向跟磁铁的磁场方向相同。

(丙)图:当把条形磁铁S极插入线圈中时,穿过线圈的磁通量增加,由实验可知,这时感应电流的磁场方向跟磁铁的磁场方向相反。

(丁)图:当条形磁铁S极拔出线圈中时,穿过线圈的磁通量减少,由实验可知,这时感应电流的磁场方向跟磁铁的磁场方向相同。

通过上述实验:凡是由磁通量的增加引起的感应电流,它所激发的磁场一定阻碍原来磁通量的增加;凡是由磁通量的减少引起的感应电流,它所激发的磁场一定阻碍原来磁通量的减少。

在两种情况中,感应电流的磁场都阻碍了原磁通量的变化。

2、楞次定律:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

说明:对“阻碍”二字应正确理解.“阻碍”不是“阻止”,而只是延缓了原磁通量的变化,电路中的磁通量还是在变化的.例如:当原磁通量增加时,虽有感应电流的磁场的阻碍,磁通量还是在增加,只是增加得慢一点而已.实质上,楞次定律中的“阻碍”二字,指的是“反抗着产生感应电流的那个原因。

”3﹑楞次定律的应用【解题方法指导】例1. 用一个接通灵敏电流计的螺线管,当磁铁S极移近或远离螺线管(如图所示)感应电流的方向如何?(1)先做演示实验,体会感应电流产生的真实性,再利用课件展示物理现象。

请同学们结合上节课的简单应用,完成基本操作程序:①判断原磁场方向;向上②判断磁通量是增加还是减少;甲增,乙减③判断感应电流的磁场方向;甲向上,乙向下④判断感应电流方向。

高二物理-楞次定律及其应用教案

高二物理-楞次定律及其应用教案

高二物理-楞次定律及其应用教案一、教学目标1.了解楞次定律的基本概念及公式;2.掌握楞次定律在电动机和发电机中的应用;3.通过练习题的实际应用,强化学生的掌握能力。

二、教学内容1.楞次定律的基本概念2.楞次定律的公式及应用3.电动机和发电机的应用4.练习题与答案分析三、教学重点1.了解楞次定律在电动机和发电机中的应用;2.掌握楞次定律的公式及应用。

四、教学方法1.讲授:通过讲解楞次定律的基本概念、公式及应用来让学生了解相关知识;2.解题:通过练习题的实际应用来让学生加深对知识的理解和掌握。

五、教学过程1.引入引导学生思考:你知道什么叫做电磁感应吗?通过引导学生讨论,让学生初步了解电磁感应。

2.讲解(1)楞次定律的概念:当磁通量Φ发生变化时,磁通量Φ对应的电动势ε也会发生变化,并且变化的方向是使其阻碍原因的变化。

(2)楞次定律的公式:ε=-NΔΦ/Δt其中,ε为感应电动势(单位为伏特),N为感应线圈的匝数,ΔΦ为磁通量的变化量,Δt为时间的变化量。

(3)楞次定律的应用:①电动机中的应用:电动机是通过电能转化成机械能的装置。

当电流在导线中流动时,会产生磁场。

这个磁场会与若干个铜轴扭在一起的转子产生作用力,从而使转子转动起来。

②发电机中的应用:发电机是通过机械能转化成电能的装置。

利用一定的能量,如风能、水能或汽油、煤等化学能,使转动转子的磁场与线圈之间相对运动,从而在线圈内感应出电动势,达到发电的目的。

3.练习题与答案分析(1)若在相邻的磁极间放置一个带导线的直杆,使导线在磁场中运动,导线产生的感应电动势方向符合楞次定律。

当导线向左移动时,打开一个带有负极标志的电源,导线的感应电动势的方向是(A:向上;B:向下;C:向左;D:向右)。

答案:B解析:当导线向左运动时,磁通量减小,导线中产生感应电动势,使它产生的磁通量增加。

题目中负极电源向右移动导线方向相反,故感应电动势方向为向下。

(2)一个圆形线圈中心处的磁通量可以表示为Φ=0.1cos(ωt)(其中,Φ的单位为Wb,t的单位为s,ω的单位为rad/s),线圈的匝数N=10,如果线圈的长度为0.1m,当线圈的平面与磁通量的方向垂直时,线圈中感应电动势的值为多少?答案:ε=-10sin(ωt)V解析:根据楞次定律公式,可以得到感应电动势的表达式为ε=-NΔΦ/Δt。

高二物理课件-第四节楞次定律的应用 精品

高二物理课件-第四节楞次定律的应用 精品

例:如图所示,四根光滑的金属铝杆叠放在绝缘 水平面上,组成以个闭合回路,一条形磁铁的S极 正对着回路靠近,试分析:导体杆对水平面的压 力怎样变化?导体杆将怎样运动?
(2)方法总结: 电磁感应产生的效果总是要阻碍引起感应电流 的磁体(或导体)间的相对运动。 来拒去留
例2、如图所示,通有稳恒电流的螺线管竖直放置, 闭合铜环R沿螺线管的轴线加速下落,在下落过程 中,环面始终保持水平.铜环先后 经过轴线1、2、3位置时的加速度分 别为a1、a2、a3.位置2处于螺线管 的中心,位置1、3与位置2等距离则 C.a1=a3<a2 D.a3<a1<a2
3、如图4所示,固定在水平面上的两平行光滑的 金属导轨M、N,垂直放着两可滑动的导线ab、cd, 在导线框内,竖直放置一条形磁铁,当条形磁铁迅 速上抽的过程中,则导线ab、cd将( ) A、保持静止 B、相互靠近 C、相互远离 D、先靠近后远离
总结: 磁通量 磁通量变化 感应电动势 大小 法拉第电磁 感应定律 方向 楞次定律 电磁感应现象
一、楞次定律的内容: 阻碍 磁通量变化 磁场 步骤: 首先,明确原磁通量的变化方向; 然后,判断出感应电流的磁场方向; 最后,由右手定则,判断出感应电流方向。 二、应用举例: 1、特例:直导线在磁场中切割磁感线时的电流 中导体间相对运动方向的判定方法 (1)问题的提出:
E=BLV
右手定则

楞次定律应用-上课用-教案

楞次定律应用-上课用-教案

课题:楞次定律的应用学科:物理授课教师:李授课班级:高二1班一、教材分析1、楞次定律是高中课程标准实验教科书选修3—2第四章第三节课的教学内容,它是电磁学中的重要定律,也是本章的重点和难点。

电磁感应作为联系电场和磁场的纽带,不仅是学过的电场和磁场知识的综合和扩展,也是以后学习交流电、电磁振荡和电磁波的基础。

楞次定律是电磁感应规律的重要组成部分,是分析和处理电磁感应现象问题的两个重要支柱之一。

在实际教学中要引导学生在实验的基础上,自主学习总结规律。

2、楞次定律第一节采用探究式教学模式,通过学生动手实验,学生得出了楞次定律的内容,学会了如何去判断感应电流的方向.但是由于时间关系,楞次定律的使用步骤、右手定则都没有讲。

学生知道了楞次定律的内容,应用的时候可能还有一定的困难,本节课就是要解决这个问题,通过理论分析探究,实验验证等方式加深学生对楞次定律的理解和应用。

二、学情分析本节内容要求一定的理论理解应用水平,选择理论探究和学生自主学习是有益的尝试。

通过探究得出结论并进一步深化结论是学生学习的重点。

1.学生已经掌握了磁通量的概念,并会分析磁通量的变化。

2.已经知道了几种典型磁场的磁感线的分布。

3.学生已经利用(条形磁铁、电流计、线圈等)实验器材研究感应电流产生的条件,并探究了感应电流方向的判断方法,知道了楞次定律的内容,现在要加深理解,学会解决实际问题。

三、教学目标1、知识与技能(1)通过楞次定律的实例应用分析,体会楞次定律内容中“阻碍”二字的含义,探明“磁通量变化”的方式和途径。

(2)通过实验和理论探究,学生理解楞次定律的其他表述内涵和应该方法。

(3)掌握右手定则2、过程与方法(1)学生通过教师引导,体验楞次定律的应用步骤,理解并掌握右手定则。

(2)学生在老师指导下,动手实验操作,并确定观察重点,进行观察,分析得出结论。

(3)通过讨论分析总结,找出实验现象的共性,并总结出规律,培养学生抽象思维能力和创新思维能力。

高二物理竞赛资料——电磁感应(学生)

高二物理竞赛资料——电磁感应(一)楞次定律的理解和应用【例1】如图所示,ab 是一个可以绕垂直于纸面的轴O 转动的闭合矩形导线框,当滑动变阻器的滑片P 自左向右滑动时,从纸外向纸里看,线框ab 将( )A.保持静止不动 B.逆时针转动 C.顺时针转动D.发生转动,但电源极性不明,无法确定转动方向(二)电磁感应中的电路问题【例2】如图所示,在倾角为300的光滑斜面上固定一光滑金属导轨CDEFG ,OH ∥CD ∥FG ,∠DEF =600,L AB OE FG EF DE CD ======21.一根质量为m 的导体棒AB 在电机牵引下,以恒定速度v 0沿OH 方向从斜面底端开始运动,滑上导轨并到达斜面顶端,AB ⊥OH .金属导轨的CD 、FG 段电阻不计,DEF 段与AB 棒材料与横截面积均相同,单位长度的电阻为r , O 是AB 棒的中点,整个斜面处在垂直斜面向上磁感应强度为B 的匀强磁场中.求:(1)导体棒在导轨上滑动时电路中电流的大小;(2)导体棒运动到DF 位置时AB 两端的电压.(三)电磁感应中的动力学问题【例3】如图所示,abcd 为质量M =2 kg 的导轨,放在光滑绝缘的水平面上,另有一根重量m =0.6 kg 的金属棒PQ 平行于bc 放在水平导轨上,PQ 棒左边靠着绝缘的竖直立柱ef (竖直立柱光滑,且固定不动),导轨处于匀强磁场中,磁场以cd 为界,左侧的磁场方向竖直向上,右侧的磁场方向水平向右,磁感应强度B 大小都为0.8 T.导轨的bc 段长L =0.5 m ,其电阻r =0.4Ω,金属棒PQ 的电阻 R =0.2Ω,其余电阻均可不计.金属棒与导轨间的动摩擦因数μ=0.2.若在导轨上作用一个方向向左、大小为F =2 N 的水平拉力,设导轨足够长,重力加速度g 取 10 m/s 2,试求:(1)导轨运动的最大加速度;(2)导轨的最大速度;(3)定性画出回路中感应电流随时间变化的图线.(四)电磁感应中的能量问题【例4】如图所示,固定的水平光滑金属导轨,间距为L,左端接有阻值为R的电阻,处在方向竖直、磁感应强度为B的匀强磁场中,质量为m的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略.初始时刻,弹簧恰处于自然长度,导体棒具有水平向右的初速度v0.在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触.(1)求初始时刻导体棒受到的安培力。

高二数学楞次定律知识点

高二数学楞次定律知识点高二数学-楞次定律知识点楞次定律是电磁学中的重要定律之一,它描述了通过一个闭合回路的电流所产生的磁场。

楞次定律由法国物理学家法拉第于1831年首次提出。

它为我们理解电磁感应现象以及电动机、变压器等电器设备的工作原理提供了重要的基础。

1. 楞次定律的表述楞次定律的数学表述为:在一个闭合回路中,磁场的感应电动势大小与被磁场线穿过的回路的面积的变化率成正比。

这可以用以下公式表示:ε = -dΦ/dt其中,ε表示感应电动势的大小,dΦ表示磁通量的变化量,dt 表示时间的变化量。

2. 楞次定律的应用楞次定律在电磁学和电器工程中有着广泛的应用。

以下是一些楞次定律的常见应用:2.1 电磁感应现象根据楞次定律,当一个闭合回路遭受磁场中磁通量的变化时,将会在回路中产生感应电动势。

这就是电磁感应现象的基础,也是电磁感应产生的原理。

2.2 电磁铁电磁铁是利用楞次定律的原理工作的电器装置。

当通电线圈产生磁场时,可以通过改变线圈的电流大小或者磁场的强度来控制电磁铁的吸力。

2.3 变压器变压器是利用楞次定律的原理工作的重要设备。

当电线圈的电流发生变化时,通过楞次定律可以计算出磁通量的变化率,从而得出变压器的电压变换关系。

2.4 发电机和电动机发电机和电动机也是利用楞次定律的原理工作的。

当发电机的转子旋转时,通过磁通量的变化引起线圈中的感应电动势,从而产生电能。

而电动机则是利用外加电源的电能驱动转子的旋转。

3. 楞次定律的实例分析为了更好地理解楞次定律的应用,我们来看一个实际的例子:一个导体棒在磁场中运动。

假设有一个导体棒被放置在一个恒定磁场中,并以一定的速度运动。

根据楞次定律,当导体棒穿过磁场线时,会在导体棒两端产生感应电动势。

如果导体棒形成一个闭合回路,就会有电流通过。

当导体棒的速度改变时,导体棒穿过磁场线的速率也会发生变化。

根据楞次定律的数学表述,感应电动势的大小与导体棒穿过磁场线的面积的变化率成正比。

楞次定律及其应用(精选6篇)

楞次定律及其应用(精选6篇)楞次定律及其应用篇1教学目标知识目标理解楞次定律的内容,初步掌握利用楞次定律判断感应电流方向的方法;能力及情感目标1、通过学生实验,培养学生的动手实验能力、分析归纳能力;2、通过对科学家的介绍,培养学生严肃认真,不怕艰苦的学习态度.3、从楞次定律的因果关系,培养学生的逻辑思维能力.4、从楞次定律的不同的表述形式,培养学生多角度认识问题的能力和高度概括的能力.教学建议教材分析楞次定律是高中物理中的重点内容,由于此定律所牵涉的物理量和物理规律较多,只有对原磁场方向、原磁通量变化情况、感应电流的磁场方向、以及安培定则和右手螺旋定则进行正确的判定和使用,才能得到正确的感应电流的方向.所以这部分内容也是电学部分的一个难点.为了突破此难点,可以通过教学软件,用计算机进行形象化演示,将变化过程逐步分解,通过设疑——突破疑点——理解深化,由浅入深的进行教学.教法建议在复习部分,先让学生明确闭合电路的磁通量发生变化可以产生感应电流,用计算机动态模拟导体切割情景,让学生顺利地用右手定则判断出感应电流的方向,马上在原题的基础上变切割为磁场增强,在此设疑:用这种方法改变磁通量所产生的感应电流,还能用右手定则判断吗?如果不能,我们应该用什么方法判断呢?使学生带着疑问进入新课教学中去.在新课教学部分,充分运用学生实验和媒体资源分析相结合的教学方法,帮助学生自己发现规律,了解规律,所设计的软件紧密联系实验过程,将动态演示和定格演示相结合,做到动中有静,静中有动,以达到传统教学方法所不能达到的效果.另外,在得到规律之后,为了突破难点,首先利用软件演示和教师讲解相结合的方法帮助学生理解“阻碍”和“变化”的含义,然后重现刚才学生实验的动态过程,让学生自己总结出利用楞次定律判断感应电流方向的步骤,并提供典型例题,通过形成性练习,使学生会应用新知识解决问题.在对定律的深化部分,将演示实验、学生讨论、软件演示有机的结合起来,使学生从力学和能量守恒的角度加深对楞次定律的理解.建议本节课的教学方法为现代化教学手段---计算机与传统的教学方法进行有机的结合,以实现教学过程和效果的优化为宗旨,采用计算机模拟动态演示、学生实验讨论、教师讲解的方式达到预定的教学目标.设计的软件紧扣教学目标,为完成教学任务服务,充分突出现代化教学手段的优势.楞次定律的方案一、教学目标1、理解楞次定律的内容2、理解楞次定律和能量守恒相符合3、会用楞次定律解答有关问题4、通过实验的探索,培养学生的实验操作、观察能力和分析、归纳、总结的逻辑思维能力.二、教学重点:对楞次定律的理解.三、教学难点:对楞次定律中的“阻碍”和“变化”的理解.四、教学媒体:1、计算机、电视机(或大屏幕投影);2.、线圈、条形磁铁、导线、干电池、蹄形磁铁、灵敏电流计、楞次定律演示器.五、课堂教学结构模式:探究式教学六、教学过程:复习:1、提问:产生感应电流的条件是什么?电脑演示例题:请同学回忆右手定则的内容,并判断闭合电路的一部分导体切割磁感线时所产生感应电流的方向.引入:电脑设置新情景并提出问题引起学生思考:如果用其它方式改变磁通量,从而产生感应电流,如何判断感应电流的方向呢?新课教学(一)、通过旧知识给出新结论:即利用右手定则判断闭合电路的一部分导体切割磁感线而产生的感应电流的方向给出结果:当原磁通量增加时感应电流的磁场与原磁场方向相反;当原磁通量减少时感应电流的磁场与原磁场方向相同.(二)、学生实验:实验内容见附表一.实验准备1、查明电流表指针的偏转方向与电流方向的关系,搞清螺线管导线的绕向.2、通过学生分析实验结果和电脑的演示,使学生发现自己的实验结果与上述结论相一致.当穿过闭合电路的磁通量发生变化时,电路中就有感应电流产生.现在,我们再来根据实验的结果来得出判断感应电流方向的规律.由于电流方向和它所形成的磁场方向是有确定的规律的,因此,如果能够确定感应电流的磁场的方向,便能够确定感应电流的方向.附表:动作原磁场方向(向上、向下)原磁通量变化情况(增大、减小)感应电流方向(俯视:顺、逆时针)感应电流磁场方向(向上、向下)与方向的关系(相同、相反)极向下插入极不动极向上抽出极向下插入极不动极向上抽出(三)、楞次定律内容的教学部分:1、通过前人所做实验的大量性来说明此结论的普遍性.2、通过电脑软件模拟实验过程, 进一步分析实验的结论, 根据实验现象所反映的物理本质的规律,请学生得出确定感应电流方向的具有普遍意义的规律并加以叙述,教师予以评价、修正,在此基础上得出楞次定理的完善表述.得到楞次定律的内容:电流的磁场总是阻碍引起感应电流的磁通量的变化3、通过电脑演示,使学生进一步理解“阻碍”和“变化”的含义.感应电流的磁场总是要阻碍引起感应电流的磁通量的变化,而不是阻碍引起感应电流的磁场.因此,不能认为感应电流的磁场的方向和引起感应电流的磁场方向相反.这里的“阻碍”体现为:当引起感应电流的磁通量增加时,感应电流的磁场方向与引起感应电流的磁场方向相反,感应电流的磁通量阻碍了引起感应电流的磁通量的增加;当引起感应电流的磁通量减少时,感应电流磁场方向与引起感应电流的磁场方向相同,感应电流的磁通量阻碍了引起感应电流的磁通量的减少;当回路中的磁通量不变时,则没有“变化”需要阻碍,故此时没有感应电流的磁场,也就没有感应电流.(四)、楞次定律的应用教学部分:通过软件教学模拟实验过程,并加以引导,使学生独立思考:总结出利用楞次定律判断感应电流方向的步骤.练习部分:⑴ 方形区域内为匀强磁场,在矩形线圈从左到右穿过的整个过程中,判断感应电流的方向⑵ 无限长通电直导线旁有一个矩形线圈,当线圈远离直导线时,判断感应电流的方向⑶ A、B两个线圈套在一起,线圈A中通有电流,方向如图,当线圈A 中的电流突然增强时,B中的感应电流方向如何?(五)、定律的深化部分:1、楞次定演示器进行演示实验引起学生的思考.2、通过学生的讨论和电脑软件的演示对实验现象进行分析,得到实验现象产生的原因.3、深化:从导体和磁体的相对运动的角度上看:电磁感应的效果是阻碍它们的相对运动;②楞次定律是能量守恒定律在电磁感应现象中的具体表现.从能量转换的角度来分析:螺线管中用楞次定理得出的感应电流所形成的磁场,在螺线管上端为极,这个极将排斥外来的条形磁铁的运动,条形磁铁受此排斥力的作用而运动速度逐渐减小,即动能要减少;要维持其运动速度则需要有外力对磁铁做功.可见,电磁感应现象中线圈的电能是外部的机械能通过做功转化而来的.因此,楞次定理与能量转换与守恒规律是相符合的.反之,我们可以设想一下,若感应电流方向与用楞次定理判断得出的方向相反,则螺线管的磁场将与条形磁铁相互吸引,这样条形磁铁的速度会愈来愈大.也就是说在电路获得电能的同时,磁铁的动能也增加了.这时,对于电路和磁铁组成的系统来说,它将找不到是由什么能量转化而来的,电能和动能是凭空产生了,这显然与自然界最基本的规律之一—能量守恒定律相违背.(六)、小结:总结楞次定律的三种表述方式:表述一:感应电流的磁场总是阻碍引起感应电流的磁通量的变化;表述二:导体和磁体发生相对运动时,感应电流的磁场总是阻碍相对运动;表述三:感应电流的方向,总是阻碍引起它的原电流的变化;作业 : 书后练习(七)、板书设计:内容:感应电流的磁场总是阻碍引起感应电流的磁通量的变化,这就是楞次定律.应用:判断感应电流方向的步骤:1确定原磁场方向;2判断穿过闭合电路磁通量的变化情况;3根据楞次定律判断感应电流的磁场方向;4根据安培定则判断感应电流的磁场方向.楞次定律及其应用篇2教学目标知识目标理解楞次定律的内容,初步掌握利用楞次定律判断感应电流方向的方法;能力及情感目标1、通过学生实验,培养学生的动手实验能力、分析归纳能力;2、通过对科学家的介绍,培养学生严肃认真,不怕艰苦的学习态度.3、从楞次定律的因果关系,培养学生的逻辑思维能力.4、从楞次定律的不同的表述形式,培养学生多角度认识问题的能力和高度概括的能力.教学建议教材分析楞次定律是高中物理中的重点内容,由于此定律所牵涉的物理量和物理规律较多,只有对原磁场方向、原磁通量变化情况、感应电流的磁场方向、以及安培定则和右手螺旋定则进行正确的判定和使用,才能得到正确的感应电流的方向.所以这部分内容也是电学部分的一个难点.为了突破此难点,可以通过教学软件,用计算机进行形象化演示,将变化过程逐步分解,通过设疑——突破疑点——理解深化,由浅入深的进行教学.教法建议在复习部分,先让学生明确闭合电路的磁通量发生变化可以产生感应电流,用计算机动态模拟导体切割情景,让学生顺利地用右手定则判断出感应电流的方向,马上在原题的基础上变切割为磁场增强,在此设疑:用这种方法改变磁通量所产生的感应电流,还能用右手定则判断吗?如果不能,我们应该用什么方法判断呢?使学生带着疑问进入新课教学中去.在新课教学部分,充分运用学生实验和媒体资源分析相结合的教学方法,帮助学生自己发现规律,了解规律,所设计的软件紧密联系实验过程,将动态演示和定格演示相结合,做到动中有静,静中有动,以达到传统教学方法所不能达到的效果.另外,在得到规律之后,为了突破难点,首先利用软件演示和教师讲解相结合的方法帮助学生理解“阻碍”和“变化”的含义,然后重现刚才学生实验的动态过程,让学生自己总结出利用楞次定律判断感应电流方向的步骤,并提供典型例题,通过形成性练习,使学生会应用新知识解决问题.在对定律的深化部分,将演示实验、学生讨论、软件演示有机的结合起来,使学生从力学和能量守恒的角度加深对楞次定律的理解.建议本节课的教学方法为现代化教学手段---计算机与传统的教学方法进行有机的结合,以实现教学过程。

高二楞次定律知识点总结

高二楞次定律知识点总结楞次定律(Faraday's Law)是电磁感应的基本定律之一,它描述了磁场变化时导线中感应电动势的产生。

高二学生在学习物理的过程中,需要掌握楞次定律的相关知识点。

本文将对楞次定律的重要概念、公式和应用进行总结。

1. 楞次定律的基本概念楞次定律是由英国物理学家迈克尔·法拉第在1831年提出的。

该定律表明,当一导体中的磁通量发生变化时,产生在导体中的感应电动势的大小与磁通量的变化速率成正比。

楞次定律的表达式为:ε = -dΦ/dt其中,ε表示感应电动势,dΦ表示磁通量的变化量,dt表示时间的变化量。

负号表示感应电动势的方向与磁通量变化的方向相反。

2. 楞次定律的公式楞次定律可以通过两种形式的公式来表达,一种是在闭合回路中的情况,另一种是在开放回路中的情况。

(1)在闭合回路中,根据法拉第电磁感应定律,感应电动势等于导线中的电流乘以闭合回路的环路积分:ε = -dΦ/dt = ∮ B·dl其中,ε表示感应电动势,dΦ表示磁通量的变化量,B表示磁感应强度,dl表示回路中的微小长度元素。

(2)在开放回路中,根据法拉第电磁感应定律,感应电动势等于磁感应强度与导线长度之积的变化率:ε = -dΦ/dt = B·l其中,ε表示感应电动势,dΦ表示磁通量的变化量,B表示磁感应强度,l表示导线长度。

3. 楞次定律的应用楞次定律在电磁感应以及电动机、发电机等方面有着广泛的应用。

(1)电磁感应:根据楞次定律,当一个磁场相对于一个导体发生变化时,会在导体中产生感应电动势,从而产生感应电流。

这是电磁感应的基本原理。

(2)电动机:电动机通过将动磁场与电流的交互作用转化为机械能。

当通电的导体在磁场中运动时,根据楞次定律,感应电动势会使导体受到力的作用,产生电流,从而驱动电机旋转。

(3)发电机:发电机利用楞次定律的原理将机械能转化为电能。

通过机械装置使导体在磁场中产生相对运动,产生感应电动势,从而产生电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I感
S N
当N极远离线圈时,线圈上感应电流 在线圈的右侧表现为S极,线圈和条 形磁铁的相互作用表现为引力。
I感
S N
对楞次定律的理解
3.楞次定律也指出了电磁感应现象中 的能量转换关系。
楞次定律指出:感应电流的磁场总是在 阻碍着引起感应电流的磁通量的变化, 为维持感应电流,就必须克服这个阻碍 做功,这部分功的消耗就是感应电流的 能量的来源。
产生反方向的磁场
A.磁铁靠近线圈时,电流方向是逆时针的 B.磁铁靠近线圈时,电流方向是顺时针的 C.磁铁向上平动时,电流方向是逆时针的 D.磁铁向上平动时,电流方向是顺时针的
感应电流的磁场
【例题2】
如图所示,当滑动变阻器R的滑片向右 滑 动 时 , 则 流 过 R′ 的 电 流 方 向 是 _____ 。
【例题1】
如图所示,当条形磁铁做下列运动时,线圈 中的感应电流方向应是(从左向右看): A.磁铁靠近线圈时,电流方向是逆时针的 B.磁铁靠近线圈时,电流方向是顺时针的 C.磁铁向上平动时,电流方向是逆时针的 D.磁铁向上平动时,电流方向是顺时针的
从左侧看
B原
I感
磁铁靠近线圈 时磁通量增大
阻碍磁通量增大
磁通量增大
插 入 线 阻碍磁通量增大 圈
B感
N
产生反方向的磁场
+G
_
感应电流的磁场
I感
B原
从右侧看
B原
B感
I感
B原
S N
磁通量增大 阻碍磁通量增大 产生反方向的磁场 感应电流的磁场
楞次定律的应用
磁通量变化 阻碍磁通量变化
产生反方向或同方 向的磁场
安培定则
(右手螺旋定则)
感应电流的磁场
对楞次定律的理解
1、“阻碍”二字的意思不应理解为“阻 止”。 原磁通量增加,感应电流就产生一个与原 磁场方向相反的磁场,以阻碍磁通量增加; 原磁通量减少,感应电流就产生一个与原 磁场方向相同的磁场,以阻碍磁通量减少。
对楞次定律的理解
2、感应电流的效果总是要阻碍引起感应 电流的原因
当N极接近线圈时,线圈上 感应电流在线圈的右侧表 现为N极,线圈和条形磁铁 的相互作用表现为斥力
B原
B感 I感
滑动变阻器R的滑片向右 滑动时,A中电流减小
A的磁场减弱
B中磁通量减小
R’中感应电流方向从b 到a
B中感应磁场方向与原 磁场方向相同
楞次定律及ቤተ መጻሕፍቲ ባይዱ应用
我们的思考
在 电 流 的 周 围 有 磁 场
在 磁 场 的 周 围 有 电 流 吗
由 磁 生 电 的 条 件 是 什 么



感应电流的方向










感应电流的大小

楞次定律
感应电流具有这样的方向,就 是感应电流的磁场总要阻碍引 起感应电流的磁通量的变化
研究几种现象
S
相关文档
最新文档