初三数学人教版秋季班(教师版)第12讲 图形的相似--提高班
九年级数学27.1_图形的相似课件人教版

形成认识
2、两个相似多边形对应边的比也叫做这 两个多边形的相似比.
3、相似多边形的识别: 如果两个多边形对应边成比例,
对应角相等,那么这两个多边形相似.
下图是两个等边三角形,找出图形中的 成比例线段,并用比例式表示. 两个任意三角形是相似图形吗?
两个任意等腰三角形呢?
AC BC AB DH EH DE
都是相似的图形吗?为什么?
第一组:
1
2
3
第二组:
两两相似的几何图形
说说你的方法
归纳:如何画放大或缩小图形? (1)先取定一个点; (2)任何一个相应的部分都放大或 缩小相同的倍数。
画一画
把三角形ABC放大到原来的两倍(要求:放 大后的顶点在格点上)。
C
C`
A
B
A`
B`
练一练
把四边形ABCD放大1倍(要求:放 大后的顶点在格点上)。
图形 A
图形 B
图形 C
如果图形A与图形B相似,图形B与图形C相似, 那么图形A与图形C相似。
练一练
(1) (2)
(3)
下列各组图形 相似吗?
放大镜下的图形和 原来的图形相似吗?
放大镜下的角与原图 形中角是什么关系?
你看到过哈哈镜吗?哈哈镜中的形 象与你本人相似吗?
(C)
(A)
(B)
辩一辩 观察以下两组图案,它们
(5)
(6) (7) (8)
(9) (10)
观察下列图形,哪些是相似形?
?
⑴
⑵
⑶
⑷
⑸⑹
(7)
(8)
? (9)
(10) (11)
(12)
(13)
(14)
人教版九年级数学下册:27.1图形相似教案

1.理论介绍:首先,我们要了解图形相似的基本概念。图形相似是指两个图形的形状相同,但大小可以不同。它是几何学中的一个重要概念,广泛应用于现实生活中的各种问题。
2.案例分析:接下来,我们来看一个具体的案例。通过比较两个相似三角形的性质,展示图形相似在实际中的应用,以及它如何帮助我们解决问题。
-学会应用相似性质解决实际问题,例如计算未知长度、面积等。
-掌握位似图形的概念及其性质,理解位似变换对图形的影响。
-熟练解答教材中的典型例题,如相似三角形的判定、相似多边形的性质应用等。
举例解释:
-在讲解相似图形性质时,重点强调对应角和对应边的关系,通过具体图形让学生直观感受。
-在解决实际问题时,重点演示如何将现实问题转化为数学模型,运用相似性质求解。
3.重点难点解析:在讲授过程中,我会特别强调相似图形的定义和性质、相似比的概念这两个重点。对于难点部分,如相似三角形的判定,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与图形相似相关的实际问题,如相似图形在艺术、建筑等方面的应用。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用放大镜观察图形的相似变化,演示相似图形的基本原理。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了图形相似的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对图形相似的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版初中九年级数学课精品PPT教学课件-图形的相似

一块长3m,宽1.5m的矩形黑板,镶其外围的木 质边宽7.5cm.边框内外边缘所组成的矩形相似吗? 为什么?
解:∵ 矩形的每个内角都等于90o.
∴∠A=∠E=90°,∠B=∠F=90°,
∠C=∠G=90°,∠D=∠H=90°
∴它们的对应角相等.
∵EH:AD=300:(300+2×7.5)=20/21.
例题 题型1:判断两个多边形是否相似
3 正方形
4 菱形
3
4
解:∵ 正方形,菱形的四条边都相等. ∴ 它们的对应边成比例,k=3:4. ∵ 正方形的四个内角均为直角,而菱形的
内角有钝角有锐角. ∴ 它们的对应角不相等. ∴ 这一组图形不相似.
例题
3 正方形
6 长方形
3
8
解:∵ 正方形和矩形的四个内角都是直角. ∴ 它们的对应角相等. ∵ 对应边3:6≠3:8. ∴ 它们的对应边不成比例. ∴ 这一组图形不相似.
这两个图案中, 有没有相似的图形?
对应角有什么关系? 对应边有什么关系?
A 60° 正三角形
缩小
A1 60°
B
C
B1
C1
∠A=∠A1,∠C=∠C1
对应角相等
∠B=∠AB=BC=AC,A1B1=B1C1=A1C1
AB:A1B1=BC:B1C1=CD:C1D1
对应边成比例
对应角有什么关系?
A
F
A1
F1
新课导入
多啦A梦的2寸照片和4寸照片,他的形状 改变了吗?大小呢?
符合国家标准的两面共青团团旗的形状 相同吗?大小呢?
图形的相似
探究 你能来归归类吗?
知识要点
两个图形的形状完__全__相__同__,但图形的大小 位置 _不__一__定__相__同_,这样的图形叫做相似图形.
九年级数学下册27相似27.1图形的相似第1课时认识相似图形课件新人教版

自主探究
思考: 两个相似图形的大小可以相同吗? 两个相似图形的大小可以不同,也可以相同.
自主探究
特别提醒:
1.判断两个图形是否相似,关键看形状 是否相同,而与它们的大小无关.
2.两个图形相似,其中一个图形可以看 作由另一个图形放大或缩小得到的.
自主探究
2.探索
(1)如图,大五角星与小五角星是相似图形 吗?四颗小五角星是相似图形吗?
它们的形状都 相同.如果不相 同,将会造成
很大的误会.
自主探究
(2)中国地图有大小不一的,如在书本上的
与挂在墙上的,它们的形状相同吗?如果不同又会 有什么后果?
它们的形状相同.如果两张地图不相同,会给人 们的生活造成许多错觉,带来很多麻烦.
自主探究
定义: 我们把形状相同的图形称为相似图形.
思考:你能列举出生活中相似图形的例子吗?
大五角星与小五角星是相似图形,因为它们的形状 相同.四颗小五角星也是相似图形,它们形状相同、大 小也相同.所以
自主探究
(2)如图是一个女孩从平面镜和哈哈镜里看到 的不同的自己的形象,它们相似吗?
哈哈镜看到的图象有的被“压扁”了,有的 被“拉长”了,所以它们不相似.
自主探究
3.应用
例1(补充):观察下列图形,哪些是相似图形?
相似图形有: (1)与(7) (2)与(10) (3)与(6) (4)与(11)
自主探究
例2(补充):下列各组中是相似图形的是( C)
·
A
·
·
B
·
·
C
D
巩固练习
1.如图,从放大镜里看到的三角尺和原来的三 角尺相似吗?
它们是相似图形.
巩固练习
2.如图,图形(a)~(f )Байду номын сангаас,哪些与图形(1)或(2) 相似?
2023中考九年级数学分类讲解 - 第十二讲 圆(含答案)(全国通用版)

第十二讲圆专项一圆的相关概念及性质知识清单1.圆的定义及其相关概念圆:如图1,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做______.其固定的端点O叫做______,线段OA叫做______.弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做______,如图1,AC,BC是弦,BC是直径.弧:圆上任意两点间的部分叫做圆弧,简称弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.大于半圆的弧叫做______(用三个点表示,如图1中的ABC),小于半圆的弧叫做______(如图1中的AC).圆心角:顶点在______的角叫做圆心角(如图1中的∠AOB是AB所对的圆心角).圆周角:顶点在______上,并且两边都与圆相交的角叫做圆周角(如图1中的∠ACB是AB所对的圆周角).2.圆是轴对称图形,对称轴是_____________,由此可得垂径定理:垂直于弦的直径______弦,并且______弦所对的两条弧.推论:平分弦(不是______)的直径______弦,并且______弦所对的两条弧.3.圆是中心对称图形,对称中心是_____________,由此可得在同圆或等圆中,两个圆心角、两条弧、两条弦中如果有一组量相等,那么它们所对应的其余各组量________.4.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半,即∠BAC=12∠BOC(如图2).推论1:同弧或等弧所对的圆周角相等,即∠BAC=∠BDC(如图2).推论2:半圆(或直径)所对的圆周角是______,即∠BCA=90°(如图2);90°的圆周角所对的弦是直径.推论3:圆内接四边形的对角______.考点例析例1 往水平放置的半径为13 cm的圆柱形容器内装入一些水以后,截面图如图1所示.若水面宽度AB=24 cm,则水的最大深度为()A.5 cm B.8 cm C.10 cm D.12 cm图1分析:如图1,作与弦AB垂直的半径,先利用垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长.归纳:过圆心作弦的垂线可以构造垂径定理基本图形,常结合勾股定理求线段长.在图1所示的AB,OB,OD,CD四个量中,OB=OD+CD,2222ABOD OB⎛⎫+=⎪⎝⎭,利用这两个关系式,知道其中任何两个,其余两个都能求出来.例2 如图2,四边形ABCD是⊙O的内接四边形,∠ADC=150°,弦AC=2,则⊙O的半径等于.图2分析:根据圆内接四边形的性质可得∠ABC的度数,连接OA,OC,由圆周角定理求出∠AOC的度数,判断△OAC的形状后,可求⊙O的半径.例3如图3,已知AB是⊙O的直径,∠ACD是AD所对的圆周角,∠ACD=30°.(1)求∠DAB的度数;(2)过点D作DE⊥AB,垂足为E,DE的延长线交⊙O于点F.若AB=4,求DF的长.图3分析:(1)连接BD,根据同弧所对的圆周角相等可得∠B=∠ACD=30°,再由AB是⊙O的直径,可得∠ADB=90°,进而可求∠DAB的度数;(2)在Rt△ABD中,根据30°角所对的直角边等于斜边的一半可得AD的长,在Rt△ADE中,DE=AD·sin∠DAE,再结合垂径定理可求出DF的长.解:归纳:在圆中经常构造直径所对的圆周角,利用圆周角定理与直角三角形的性质解题.跟踪训练1.如图,AB为⊙O的直径,C,D为⊙O上的两点.若∠ABD=54°,则∠C的度数为()A.34°B.36°C.46°D.54°第1题图2.P是⊙O内一点,过点P的最长弦的长为10 cm,最短弦的长为6 cm,则OP的长为()A.3 cm B.4 cm C.5 cm D.6 cm3.如图,四边形ABCD为⊙O的内接四边形,若四边形OBCD为菱形,则∠BAD的度数为()A.45°B.60°C.72°D.36°第3题图第4题图4.如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B,C在⊙O上,边AB,AC分别交⊙O于D,E 两点,点B是CD的中点,则∠ABE=.5.如图,AB为⊙O的弦,D,C为ACB的三等分点,AC∥BE.(1)求证:∠A=∠E;(2)若BC=3,BE=5,求CE的长.第5题图专项二与圆有关的位置关系知识清单1. 点与圆的位置关系设⊙O的半径为r,点P到圆心O的距离为d,则有点P在圆外⇔d___r;点P在____⇔d____r;点P在圆内⇔d____r.2. 直线与圆的位置关系设⊙O的半径为r,圆心O到直线l的距离为d,则有直线l与⊙O相交⇔d___r;直线l与⊙O相切⇔d___r;直线l与⊙O____⇔d___r.3. 切线的性质定理:圆的切线____于过切点的半径.4.切线的判定(1)和圆只有____个公共点的直线是圆的切线.(2)经过半径的外端并且____于这条半径的直线是圆的切线.(3)如果圆心到一条直线的距离____圆的半径,那么这条直线是圆的切线.5. 切线长定理(选学)切线长:经过圆外一点的圆的切线上,这点和切点之间____叫做这点到圆的切线长.定理:从圆外一点可以引圆的两条切线,它们的切线长____,这一点和圆心的连线____两条切线的夹角.6. 三角形的外接圆与内切圆外接圆内切圆圆心名称三角形的外心三角形的内心圆心位置三角形三条边的垂直平分线的交点三角形三条角平分线的交点性质三角形的外心到三角形三个顶点的距离相等三角形的内心到三角形三边的距离相等考点例析例1 如图1-①,正方形ABCD的边长为4,⊙O的半径为1.若⊙O在正方形ABCD内平移(⊙O可以与该正方形的边相切),则点A到⊙O上的点的距离的最大值为.①②图1分析:如图1-②,当⊙O平移最靠近点C,即当⊙O与CB,CD相切时,点A到⊙O上的点Q的距离最大,结合切线的性质定理和切线长定理求解.例2 如图2,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若CD=3,DE=52,求⊙O的直径.图2分析:(1)连接OD,根据直角三角形斜边上中线的性质与等腰三角形的性质,可证∠EDO=90°,从而判定DE与⊙O相切;(2)先在Rt△BDC中求出BC,BD的长,再借助相似三角形求出AC的长,即得⊙O的直径.解:归纳:切线的判定方法主要有两种:若直线与圆有交点,则连接过交点的半径,证其与直线垂直(连半径,证垂直);若不能确定直线与圆有交点,则过圆心向直线作垂线段,证圆心到直线的距离等于半径(作垂线,证半径).跟踪训练1.如图,∠BAC=36°,点O在边AB上,⊙O与边AC相切于点D,交边AB于点E,F,连接FD,则∠AFD的度数为()A.27°B.29°C.35°D.37°第1题图第2题图2.如图,P A,PB是⊙O的切线,A,B是切点.若∠P=70°,则∠ABO等于()A.30°B.35°C.45°D.55°3.如图,F A,GB,HC,ID,JE是五边形ABCDE的外接圆的切线,则∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=°.第3题图4.如图①,△ABC内接于⊙O,直线MN与⊙O相切于点D,OD与BC相交于点E,BC∥MN.(1)求证:∠BAC=∠DOC;(2)如图②,若AC是⊙O的直径,E是OD的中点,⊙O的半径为4,求AE的长.①②第4题图5.如图,△ABC内接于⊙O,AB是⊙O的直径,E为AB上一点,BE=BC,延长CE交AD于点D,AD =AC.(1)求证:AD是⊙O的切线;(2)若tan∠ACE=13,OE=3,求BC的长.第5题图专项三弧长与扇形面积的计算知识清单1.弧长公式:在半径为R的圆中,n°的圆心角所对的弧长l =_______.2.扇形面积公式:在半径为R的圆中,圆心角为n°的扇形的面积S=_______;在半径为R的圆中,圆心角所对的弧长为l的扇形的面积S=_______.考点例析例1如图1,传送带的一个转动轮的半径为18 cm,转动轮转n°,传送带上的物品A被传送12π cm,则n =.图1分析:物品A被传送的距离等于转动轮转n°的弧长,根据弧长公式求弧所对的圆心角的度数即为n值.例2 如图2,正六边形ABCDEF的边长为2,以A为圆心,AC的长为半径画弧,得EC,连接AC,AE,则图中阴影部分的面积为()A.2πB.4πC.33πD.233π图2分析:阴影部分是以AC为半径、以∠CAE为圆心角的扇形,借助正六边形的性质,分别求出AC的长与∠CAE的度数,根据扇形的面积公式计算.例3设圆锥的底面圆半径为r,圆锥的母线长为l,满足2r+l=6,这样的圆锥的侧面积()A.有最大值94πB.有最小值94πC.有最大值92πD.有最小值92π分析:根据扇形的面积公式结合关系式2r+l=6,列出圆锥的侧面积与r之间的函数解析式,再通过函数的性质求圆锥的侧面积的最大值或最小值.归纳:对于圆锥,要熟悉立体图形与展开图(平面图形)之间的对应关系:圆锥的侧面展开图为扇形,圆锥的母线长是扇形的半径,圆锥的底面周长是扇形的弧长.跟踪训练1.图①是一把扇形书法纸扇,图②是其完全打开后的示意图,外侧两竹条OA和OB的夹角为150°,OA 的长为30 cm,贴纸部分的宽AC为18cm,则CD的长为()A.5π cm B.10π cm C.20π cm D.25π cm①②第1题图2.如图,一根5 m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是()A.1712π m2B.7712π m2C.254π m2D.176π m2第2题图3.已知圆锥的母线长为10,高为8,则该圆锥的侧面展开图(扇形)的弧长为(用含π的代数式表示),圆心角为度.4.如图所示的网格中,每个小正方形的边长均为1,点A,B,D均在小正方形的顶点上,且点B,C在AD 上,∠BAC=22.5°,则BC的长为.第4题图专项四正多边形与圆知识清单1.正多边形和圆的关系:只要把一个圆分成相等的一些弧,就可以做出这个圆的______,这个圆就是这个正多边形的______.2.与正多边形有关的概念如图,已知正n边形的边长为a,半径为R,则这个正n边形的每个内角为180nn(-2),中心角α=______,边心距r=______,周长l=na,面积S=12 nar.考点例析例1 如图1,面积为18的正方形ABCD内接于⊙O,则AB的长度为()A.9πB.92πC.32πD.94π图1分析:连接OA,OB,则△OAB为等腰直角三角形.由正方形ABCD的面积为18,可求得边长AB,进而可得半径OA,根据弧长公式可求AB的长.例2(2021·河北)如图2,⊙O的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为A n(n为1~12的整数),过点A7作⊙O的切线交A1A11的延长线于点P.(1)通过计算比较直径和劣弧711A A的长度哪个更长;(2)连接A7A11,则A7A11和P A1有什么特殊位置关系?请简要说明理由;(3)求切线长P A7的值.图2分析:(1)利用弧长公式求劣弧711A A的长度,与直径比较大小;(2)先直觉观察猜想结论,再利用圆周角定理证明;(3)由切线的性质可得Rt△P A1A7,解此三角形可得P A7的值.解:跟踪训练1.(2021·贵阳)如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是()A.144°B.130°C.129°D.108°第1题图2.(2021·绥化)边长为4 cm的正六边形,它的外接圆与内切圆半径的比值是.3.(2021·湘潭)德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”如图①,点C把线段AB分成两部分,如果512CBAC=≈0.618,那么称点C为线段AB的黄金分割点.第3题图(1)特例感知:在图①中,若AB=100,求AC的长;(结果保留根号)(2)知识探究:如图②,作⊙O的内接正五边形;①作两条相互垂直的直径MN,AI;②作ON的中点P,以P为圆心,P A为半径画弧交OM于点Q;③以点A为圆心,AQ为半径,在⊙O上连续截取等弧,使弦AB=BC=CD=DE=AQ,连接AE;则五边形ABCDE为正五边形.在该正五边形作法中,点Q是否为线段OM的黄金分割点?请说明理由;(3)拓展应用:国旗和国徽上的五角星是革命和光明的象征,是一个非常优美的几何图形,与黄金分割有着密切的联系.延长题(2)中的正五边形ABCDE的每条边,相交可得到五角星,摆正后如图③,点E是线段PD的黄金分割点,请利用题中的条件,求cos72°的值.专项五圆中的数学思想1. 方程思想例1(2021·西宁)如图1,AB是⊙O的直径,弦CD⊥AB于点E,CD=10,BE=2,则⊙O的半径OC =.图1分析:先由垂径定理求得CE的长,再在Rt△OCE中由勾股定理得出关于半径的方程,解方程即可.2. 分类讨论思想例2(2021·朝阳)已知⊙O的半径是7,AB是⊙O的弦,且AB的长为3AB所对的圆周角的度数为.分析:弦AB所对圆周角的顶点可能在优弧上,也可能在劣弧上,所以需要分两种情况讨论.解答时,利用垂径定理构造直角三角形,借助三角函数求弦AB所对的圆心角的度数,再根据圆周角定理及其推论求弦AB 所对的圆周角的度数.3.转化思想例3 (2021·枣庄)如图2,正方形ABCD 的边长为2,O 为对角线的交点,点E ,F 分别为BC ,AD 的中点.以C 为圆心,2为半径作BD ,再分别以E ,F 为圆心,1为半径作圆弧BO ,OD ,则图中阴影部分的面积为( )A .π﹣1B .π﹣3C .π﹣2D .4﹣π图2分析:连接BD ,则OD 与线段OD 围成的图形面积等于OB 与线段OB 围成的图形面积,故阴影部分的面积等于扇形CBD 与直角三角形CBD 的面积之差.归纳:求不规则图形的面积,经常通过割补法或等积法将其转化为规则图形,再利用面积公式进行计算. 跟踪训练1.(2021·兴安盟)如图,两个半径长均为2的直角扇形的圆心分别在对方的圆弧上,扇形CFD 的圆心C 是AB 的中点,且扇形CFD 绕着点C 旋转,半径AE ,CF 交于点G ,半径BE ,CD 交于点H ,则图中阴影部分的面积等于( )A .2π﹣1B .2π﹣2C .π﹣1D .π﹣2第1题图2.(2021·青海)点P 是非圆上一点,若点P 到⊙O 上的点的最小距离是4 cm ,最大距离是9cm ,则⊙O 的半径是 .3.(2021·绥化)一条弧所对的圆心角为135°,弧长等于半径为5 cm 的圆的周长的3倍,则这条弧的半径为 cm .参考答案专项一圆的相关概念及性质例1 B 例2 2例3(1)连接BD.因为∠ACD=30°,所以∠B=∠ACD=30°.因为AB是⊙O的直径,所以∠ADB=90°.所以∠DAB=90°﹣∠B=60°.(2)因为∠ADB=90°,∠B=30°,AB=4,所以AD=12AB=2.因为∠DAB=60°,DE⊥AB,且AB是直径,所以EF=DE=AD·sin60°所以DF=2DE=1.B 2.B 3.B 4.13°5.(1)证明:因为AC∥BE,所以∠E=∠ACD.因为D,C为ACB的三等分点,所以BC CD AD==.所以∠ACD=∠A.所以∠E=∠A.(2)解:由(1)知BC CD AD==,所以∠D=∠CBD=∠A=∠E.所以BE=BD=5,BC=CD=3,△CBD∽△BDE.所以CB BDBD DE=,即355DE=,解得DE=253.所以CE=DE﹣CD=253﹣3=163.专项二与圆有关的位置关系例1 +1例2 (1)证明:连接OD.因为AC是⊙O的直径,所以∠ADC=90°,所以∠BDC=90°.因为E是BC的中点,所以DE=CE=BE,所以∠EDC=∠ECD.又OD =OC ,所以∠ODC =∠OCD .因为∠OCD +∠DCE =∠ACB =90°,所以∠ODC+∠EDC =90°,即∠EDO =90°.所以DE ⊥OD . 又OD 为⊙O 的半径,所以DE 与⊙O 相切.(2)解:由(1),得∠BDC =90°,DE =CE =BE .因为DE =52,所以BC =5.所以BD ==4. 因为∠BCA =∠BDC =90°,∠B =∠B ,所以△BCA ∽△BDC . 所以AC BC CD BD =,即534AC =.解得AC =154.所以⊙O 的直径为154. 1.A 2.B 3.1804.(1)证明:连接OB .因为直线MN 与⊙O 相切于点D ,所以OD ⊥MN .因为BC ∥MN ,所以OD ⊥BC .所以BD CD =.所以∠BOD =∠COD .因为∠BAC =12∠BOC ,所以∠BAC =∠DOC . (2)解:因为E 是OD 的中点,所以OE =DE =2.在Rt △OCE 中,CE =由(1)知OE ⊥BC ,所以BE =CE =又O 是AC 的中点,所以OE 是△ABC 的中位线.所以AB =2OE =4.因为AC 是⊙O 的直径,所以∠ABC =90°.在Rt △ABE 中,AE ==5.(1)证明:因为AB 是⊙O 的直径,所以∠ACB =90°,即∠ACE +∠BCE =90°.因为AD =AC ,BE =BC ,所以∠ACE =∠D ,∠BCE =∠BEC .又∠BEC =∠AED ,所以∠AED +∠D =90°.所以∠DAE =90°,即AD ⊥AE .因为OA 是⊙O 的半径,所以AD 是⊙O 的切线.(2)解:由(1),得tan ∠ACE =tan D =13,设AE =a ,则AD =AC =3a . 因为OE =3,所以OA =a +3,AB =2a +6,BE =BC =a +3+3=a +6.在Rt △ABC 中,由勾股定理,得AB 2=BC 2+AC 2,即(2a +6)2=(a +6)2+(3a )2,解得a 1=0(舍去),a 2=2.所以BC =a +6=8.专项三 弧长与扇形面积的计算例1 120 例2 A 例3 C1.B 2.B 3.12π 216 4.54π 专项四 正多边形与圆例1 C例2 (1)连接OA 7,OA 11.由题意,得∠A 7OA 11=120°,所以711A A 的长为12064180ππ⨯=>12.所以劣弧711A A 的长度更长.(2)P A 1⊥A 7A 11.理由:连接A 7A 11,OA 1.因为A 1A 7是⊙O 的直径,所以∠A 7A 11A 1=90°.所以P A 1⊥A 7A 11.(3)因为P A 7是⊙O 的切线,所以P A 7⊥A 1A 7,所以∠P A 7A 1=90°.因为∠P A 1A 7=60°,A 1A 7=12,所以P A 7=A 1A 7•tan 60°=1.A 23.解:(1)AC 的长为50.(2)点Q 是线段OM 的黄金分割点,理由如下:设⊙O 的半径为r ,则OP =12r ,所以PQ =AP=. 所以OQ =QP ﹣OP﹣12rr ,MQ =OM ﹣OQ =r.所以2MQ OQ =Q 是线段OM 的黄金分割点. (3)如图,作PH ⊥AE 于点H .由题可知,AH =EH .因为正五边形的每个内角都为(5﹣2)×180°÷5=108°,所以∠PEH =180°﹣108°=72°,即cos ∠PEH =cos72°=EH PE. 因为点E 是线段PD 的黄金分割点,所以DE PE=12. 又DE =AE ,HE =AH =12AE ,所以cos72°=111222AE EH AE DE PE PE PE PE==⨯=⨯.第3题图专项五圆中的数学思想例1 294例2 60°或120°例3 C1.D 2.6.5cm或2.5cm 3.40。
人教版九年级数学上册课件:27.1图形的相似

AB
8
B'
C'
反思:由三角形相似你想到什么?
学而不思则罔
回
头
一
看
我有哪些收获呢?
, 我
与大家共分享!
想
说
…
:如图,△ABC ∽△A' B' C' ,求∠α 的大
小和A' C'的长.
解:∵ △ABC ∽△A' B' C' ∴∠α= ∠A=60°;(对应角相等)
A
60°
10
8
AB AC ,(对应边成比例)
B
C
A' B' A'C'
A'
∴ A'C' AC A' B' 10 6 7.5
α 6
则∠C= 800
A
B
1O
2
D
3
C
1、记作: △AOB∽△ COD
2、△AOB与 △ COD 的相似
1
比为
3
△AOB与 △ COD 的相似且 ∠A=∠C
3、
对应边的比列式为:
CAOO= BDOO= CADB
2
4、 OB=
3
如图:△ADE∽△ABC
A D
E
B
C
1、AE和 AC , AB 和 AD , ED 和 CB
是对应边,对应比的比例式为
AAEC=
AADB =
DE BC
2、∠A和 ∠A ,∠AED和 ∠C ,∠ADE和∠B
是对应角.
如果相似比 k=1 ,这两个三角
形有怎样的关系?
定义3:类似地,如果 两个边数相同的多边 形的
部编人教版数学九年级下册优质课件 27.1图形的相似 课时1
新知探究
新知探究
比例的相关性质
跟踪训练 1.下列各组中的四条线段成比例的是( D ) A.6 cm,2 cm,1 cm,4 cm 1×6≠2×4 B.4 cm,5 cm,6 cm,7 cm 4×7≠5×6 C.3 cm,4 cm,5 cm,6 cm 3×6≠4×5 D.6 cm,3 cm,8 cm,4 cm 3×8=4×6
人教版-数学-九年级-下册
相似
27.1 图形的相似
知识回顾-课堂导入-新知探究-随堂练习-课堂小结-对接中考
知识回顾
什么样的图形是全等形?
形状相同,大小也相 同.
学习目标
1.能通过生活中的实例认识图形的相似,通过 观察直观地判断两个图形是否相似. 2.了解成比例线段的概念.
课堂导入
下图中的两个图形有什么关系?
实际的建筑物与它的模型是相似图形.
复印机把一个图形放大,放大后的图 形与原来的图形是相似图形.
新知探究
国旗上的大五角星与小五角星是相似图形吗? 四颗小五角星呢?
全等图形是特殊的相似图形,也就是说 全等图形一定是相似图形,但相似图形 不一定是全等图形.
新知探究
如图是一个女孩从平面镜和哈哈镜里看 到的自己的形象,这些镜压中扁的形象与拉自长 身相似相似吗?
关;
相似图形有特例,全等属于相似
形.
新知探究
相似图形的关系: 1. 图形的放大:
新知探究
相似图形的关系: 2. 图形的缩小:
新知探究
观察这四组相似图形,其中一个图形可 以看作由另一个图形怎样变换得到的?
第12讲主从联动模型(解析版) 2020年中考数学几何模型能力提升篇(全国通用)
中考数学几何模型12:主从联动模型名师点睛① 当轨迹为直线时思考1如图,P 是直线BC 上一动点,连接AP ,取AP 中点Q ,当点P 在BC 上运动时, Q 点轨迹是?PQ ABCN CBAQP M揭秘:将点P 看成主动点,点Q 看成从动点,当P 点轨迹是直线时,Q 点轨迹也是一条直线.可以这样理解:分别过A 、Q 向BC 作垂线,垂足分别为M 、N ,在运动过程中,因为AP =2AQ ,所以QN 始终为AM 的一半,即Q 点到BC 的距离是定值,故Q 点轨迹是一条直线,且Q 点运动路径长为P 点运动路径长的一半.思考2如图,点C 为定点,点P 、Q 为动点,CP=CQ ,且∠PCQ 为定值,当点P 在直线 AB 上运动,请探究点Q 的运动轨迹.揭秘:当CP 与CQ 夹角固定,且AP =AQ 时,P 、Q 轨迹是同一种图形,且PP 1=QQ 1.可以这样理解:易知△CPP 1≌△CPP 1,则∠CPP 1=CQQ 1,故可知Q 点轨迹为一条直线.思考3如图,点C 为定点,点P 是直线AB 上的一动点,以CP 为斜边作Rt △CPQ ,且 ∠P=30°,当点P 在直线AB 上运动,请探究点Q 的运动轨迹.揭秘:条件CP 与CQ 夹角固定时,P 、Q 轨迹是同一种图形,且有11PP CP QQ CQ. 可以这样理解:由CPQ ∽△CP 1Q 1,易得△CPP 1≌△CPP 1,则∠CPP 1=CQQ 1,故可知Q 点轨迹为一条直线.总结条件:主动点、从动点与定点连线的夹角是定量; 主动点、从动点到定点的距离之比是定量.结论:① 主动点、从动点的运动轨迹是同样的图形;② 主动点路径做在直线与从动点路径所在直线的夹角等于定角③ 当主动点、从动点到定点的距离相等时,从动点的运动路径长等于主动点的运动路径长;轨迹是直线④ 当主动点、从动点到定点的距离不相等时,=从动点运动路径从动点到定点距离主动点运动路径主动点到定点距离.典题探究 启迪思维 探究重点例题1. 如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.A【分析】根据△DPF 是等边三角形,所以可知F 点运动路径长与P 点相同,P 从E 点运动到A 点路径长为8,故此题答案为8.变式练习>>>1.如图,在平面直角坐标系中,A (-3,0),点B 是y 轴正半轴上一动点,以AB 为边在AB 的下方作等边△ABP ,点B 在y 轴上运动时,求OP 的最小值.P 点轨迹,根据△ABP 是等边三角形且B 点在直线上运动,故可知P 点轨迹也是直线.取两特殊时刻:(1)当点B 与点O 重合时,作出P 点位置P 1;(2)当点B 在x 轴上方且AB 与x 轴夹角为60°时,作出P 点位置P 2.连接P 1P 2,即为P 点轨迹.根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12P P ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32.P 2P 1y xBAOPP 2P 1y xBAO例题2. 如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .GABC DEF G 2G 1E D CBAFHG 2G 1ED CBA【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.CG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值. 根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE ,所以CH =52,因此CG 的最小值为52.变式练习>>>2.(2017秋•江汉区校级月考)如图,△ABC 是边长为6的等边三角形,点E 在AB 上,点D 为BC 的中点,△EDM 为等边三角形.若点E 从点B 运动到点A ,则M 点所经历的路径长为 6 .【解答】解:当点E 在B 时,M 在AB 的中点N 处,当点E 与A 重合时,M 的位置如图所示, 所以点E 从点B 运动到点A ,则M 点所经历的路径为MN 的长, ∵△ABC 是等边三角形,D 是BC 的中点,∴AD ⊥BC ,∠BAD =30°, ∵AB =6, ∴AD ==3,∵△EDM 是等边三角形,∴AM =AD =3,∠DAM =60°, ∴∠NAM =30°+60°=90°, ∵AN =AB =3,在Rt △NAM 中,由勾股定理得:MN ===6,则M 点所经历的路径长为6, 故答案为:6.例题3. 如图,已知点A 是第一象限内横坐标为23的一个定点,AC ⊥x 轴于点M ,交直线y =-x 于点N ,若点P 是线段ON 上的一个动点,∠APB =30°,BA ⊥P A ,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.求当点P 从点O 运动到点N 时,点B 运动的路径长是________.yxN MPACBO【分析】根据∠P AB =90°,∠APB =30°可得:AP :AB =3:1,故B 点轨迹也是线段,且P 点轨迹路径长与B 点轨迹路径长之比也为3:1,P 点轨迹长ON 为26,故B 点轨迹长为22.变式练习>>>3.(2019•东台市模拟)如图,平面直角坐标系中,点A(0,﹣2),B(﹣1,0),C(﹣5,0),点D 从点B出发,沿x轴负方向运动到点C,E为AD上方一点,若在运动过程中始终保持△AED~△AOB,则点E运动的路径长为.【解答】解:如图,连接OE.∵∠AED=∠AOD=90°,∴A,O,E,D四点共圆,∴∠EOC=∠EAD=定值,∴点E在射线OE上运动,∠EOC是定值.∵tan∠EOD=tan∠OAB=,∴可以假设E(﹣2m,m),当点D与C重合时,AC==,∵AE=2EC,∴EC==,∴(﹣2m+5)2+m2=,解得m=或(舍弃),∴E(﹣,),∴点E的运动轨迹=OE的长=,故答案为.名师点睛②当轨迹为弧线时思考1如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.当点P在圆O上运动时,Q点轨迹是?A OPQ揭秘:Q点轨迹是一个圆,考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,1=2 QM AQPO AP.QPOA M小结:确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.轨迹是圆思考2:如图,P 是圆O 上一个动点,A 为定点,连接AP ,作AQ ⊥AP 且AQ =AP .当点P 在圆O 上运动时,Q 点轨迹是?OP QA揭秘: Q 点轨迹是个圆,可理解为将AP 绕点A 逆时针旋转90°得AQ ,故Q 点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP ⊥AQ ,可得Q 点轨迹圆圆心M 满足AM ⊥AO ;考虑AP =AQ ,可得Q 点轨迹圆圆心M 满足AM =AO ,且可得半径MQ =PO .即可确定圆M 位置,任意时刻均有△APO ≌△AQM .MA QPO思考3:如图,△APQ 是直角三角形,∠P AQ =90°,且AP =2AQ ,当P 在圆O 运动时,Q 点轨迹是?OPQA揭秘: 考虑AP ⊥AQ ,可得Q 点轨迹圆圆心M 满足AM ⊥AO ;考虑AP :AQ =2:1,可得Q 点轨迹圆圆心M 满足AO :AM =2:1.即可确定圆M 位置,任意时刻均有△APO ∽△AQM ,且相似比为2.OPQM A推理:(1)如图,P 是圆O 上一个动点,A 为定点,连接AP ,以AP 为一边作等边△APQ . 当点P 在圆O 上运动时,Q 点轨迹是和圆O 全等的一个圆.(2)如图,P 是圆O 上一个动点,A 为定点,连接AP ,以AP 为斜边作等腰直角△APQ . 当点P在圆O 上运动时,Q 点轨迹为按AP :AQ=AO :AM:1的比例缩放的一个圆.总结: 为了便于区分动点P 、Q ,可称点P 为“主动点”,点Q 为“从动点”.此类问题的必要条件:两个定量,即:①主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); ②主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).典题探究 启迪思维 探究重点例题4. 如图,点P (3,4),圆P 半径为2,A (2.8,0),B (5.6,0),点M 是圆P 上的动点,点C 是MB 的中点,则AC 的最小值是_______.OyxA B CM P【分析】M 点为主动点,C 点为从动点,B 点为定点.考虑C 是BM 中点,可知C 点轨迹:取BP 中点O ,以O 为圆心,OC 为半径作圆,即为点C 轨迹.当A 、C 、O 三点共线且点C 在线段OA 上时,AC 取到最小值,根据B 、P 坐标求O ,利用两点间距离公式求得OA ,再减去OC 即可.答案为32OOy xA BC M PO PMC BAxyO变式练习>>>4.如图,在等腰Rt △ABC 中,AC =BC =2P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当点P 从点A 运动至点B 时,点M 运动的路径长为________.B MPDO BM P【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.当然,若能理解M 点与P 点轨迹关系,可直接得到M 点的轨迹长为P 点轨迹长一半,即可解决问题.答案为2例题5. 如图,正方形ABCD中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.考虑DE ⊥DF 且DE =DF ,故作DM ⊥DO 且DM =DO ,F 点轨迹是以点M 为圆心,2为半径的圆.直接连接OM ,与圆M 交点即为F 点,此时OF 最小.可构造三垂直全等求线段长,再利用勾股定理求得OM ,减去MF 即可得到OF的最小值.答案为变式练习>>>5.△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.连接AM 并延长与圆M 交点即为所求的点O ,此时AO 最大,根据AB 先求AM ,再根据BC 与BO 的比值可得圆M 的半径与圆A 半径的比值,得到MO ,相加即得AO .答案为名师点睛③ 当轨迹为其他种类时根据刚才我们的探究,所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.典题探究 启迪思维 探究重点例题6. 如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数ky x=的图像上运动,若tan ∠CAB =2,则k 的值为( )CBAOyx NM xyOABCA .2B .4C .6D .8 【分析】∠AOC =90°且AO :OC =1:2,显然点C 的轨迹也是一条双曲线,分别作AM 、CN 垂直x 轴,垂足分别为M 、N ,连接OC ,易证△AMO ∽△ONC ,∴CN =2OM ,ON =2AM ,∴ON ·CN =4AM ·OM ,故k =4×2=8.【思考】若将条件“tan ∠CAB =2”改为“△ABC 是等边三角形”,k 会是多少?变式练习>>>6.(2017•深圳模拟)如图,反比例函数y =的图象上有一动点A ,连接AO 并延长交图象的另一支于点B ,在第二象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数y =的图象上运动,tan ∠CAB =2,则关于x 的方程x 2﹣5x +k =0的解为 x 1=﹣1,x 2=6 .【解答】解:连接OC ,过点A 作AE ⊥y 轴于点E ,过点C 作CF ⊥y 轴于点F ,如图所示, ∵由直线AB 与反比例函数y =的对称性可知A 、B 点关于O 点对称,∴AO =BO .又∵AC =BC ,∴CO ⊥AB . ∵∠AOE +∠AOF =90°,∠AOF +∠COF =90°, ∴∠AOE =∠COF , 又∵∠AEO =90°,∠CFO =90°, ∴△AOE ∽△COF ,∴==,∵tan ∠CAB ==2,∴CF =2AE ,OF =2OE .又∵AE •OE =,CF •OF =|k |,∴k =±6.∵点C 在第二象限,∴k =﹣6,∴关于x 的方程x 2﹣5x +k =0可化为x 2﹣5x ﹣6=0,解得x 1=﹣1,x 2=6. 故答案为:x 1=﹣1,x 2=6.例题7. 如图,A (-1,1),B (-1,4),C (-5,4),点P 是△ABC 边上一动点,连接OP ,以OP 为斜边在OP 的右上方作等腰直角△OPQ ,当点P 在△ABC 边上运动一周时,点Q 的轨迹形成的封闭图形面积为________.QCxyOA B P【分析】根据△OPQ 是等腰直角三角形可得:Q 点运动轨迹与P 点轨迹形状相同,根据OP :OQ =2:1,可得P 点轨迹图形与Q 点轨迹图形相似比为2:1,故面积比为2:1,△ABC 面积为1/2×3×4=6,故Q 点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.变式练习>>>7.(2017春•工业园区期末)如图,△ABC的面积为9,点P在△ABC的边上运动.作点P关于原点O的对称点Q,再以PQ为边作等边△PQM.当点P在△ABC的边上运动一周时,点M随之运动所形成的图形面积为()A.3 B.9 C.27 D.【解答】解:如图,∵点P从点A出发,沿△ABC的边从A﹣B﹣C﹣A运动一周,且点Q关于原点O与点P对称,∴点Q随点P运动所形成的图形是△ABC关于O的中心对称图形,以PQ为边作等边△PQM,M点对应的A,B,C的点分别为M a,M b,M c,∵△M b Q b B是等边三角形,∴M b O=OB,同理M c O=OC,∴==,∵∠COB+∠BOM c=90°,∠M c OM b+∠BOM c=90°∴∠COB=∠M c OM b,∴△M c OM b∽△COB,∴M b M c=BC,同理,M a M b=AB,M a M c=AC,∴△M a M b M c∽△ABC,∴△M a M b M c的面积=9×()2=27,即点M随点P运动所形成的图形的面积为27.故选:C.例题8. 如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.ABCDPE MPDCB ANE A BCD PM【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M 为圆心、2为半径的圆考虑到AP =2AD ,故P 点轨迹是以N 为圆心,22为半径的圆,即可求出PB 的取值范围. 答案为4-22422PB ≤≤+变式练习>>>8.(2018秋•新吴区期末)如图已知:正方形OCAB ,A (2,2),Q (5,7),AB ⊥y 轴,AC ⊥x 轴,OA ,BC 交于点P ,若正方形OCAB 以O 为位似中心在第一象限内放大,点P 随正方形一起运动,当PQ 达到最小值时停止运动.以PQ 的长为边长,向PQ 的右侧作等边△PQD ,求在这个位似变化过程中,D 点运动的路径长( )A .5B .6C .2D .4【解答】解:如图,连接OQ ,以OQ 为边向下作等边△OQH , 连接DH ,作QE ⊥OA 交OA 的延长线于E . ∵△OQH ,△PQD 都是等边三角形,∴QO =QH ,QP =QD ,∠OQH =∠PQD =60°, ∴∠OQP =∠HQD ,∴△OQP ≌△HQD (SAS ), ∴OP =DH ,∴点D 的运动路径的长=点P 的运动路径的长,∵直线OA 的解析式为y =x ,Q (5,7),QE ⊥OA ,∴直线EQ使得解析式为y=﹣x+12,由,解得,∴E(6,6),∵P(1,1),∴PE=5,根据垂线段最短可知,当点P与点E重合时,PQ的长最短,∴点P的运动路径的长为5,∴点D的运动路径的长为5,故选:A.例题9. (2019秋•硚口区期中)如图,一副含30°和45°角的三角板ABC和EDF拼合在一个平面上,边AC 与EF重合,BC=4cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动,当点E从点A滑动到点C时,点D运动的路径长为(24﹣12)cm.【解答】解:∵BC=4cm,∠A=30°,∠DEF=45°,∴AC=BC=12cm,AB=2BC=8cm,ED=DF=AC=6cm,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC于点M,如图所示:∴∠MD'N=90°,且∠E'D'F'=90°,∴∠E'D'N=∠F'D'M,在△D'NE'和△D'MF'中,,∴△D'NE'≌△D'MF'(AAS),∴D'N=D'M,且D'N⊥AC,D'M⊥CM,∴CD'平分∠ACM,即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED﹣CD=(12﹣6)cm,∴当点E从点A滑动到点C时,点D运动的路径长=2×(12﹣6)=(24﹣12)cm;故答案为:(24﹣12).变式练习>>>9.(2018•金华模拟)如图,Rt△ABC中,BC=4,AC=8,Rt△ABC的斜边在x轴的正半轴上,点A与原点重合,随着顶点A由O点出发沿y轴的正半轴方向滑动,点B也沿着x轴向点O滑动,直到与点O 重合时运动结束.在这个运动过程中.(1)AB中点P经过的路径长π.(2)点C运动的路径长是8﹣12.【解答】解:(1)如图1,∵∠AOB=90°,P为AB的中点,∴OP=AB,∵AB=4,∴OP=2,∴AB中点P运动的轨迹是以O为圆心,以OP为半径的圆弧,即AB中点P经过的路径长=×2×2π=π;(2)①当A从O到现在的点A处时,如图2,此时C′A⊥y轴,点C运动的路径长是CC′的长,∴AC′=OC=8,∵AC′∥OB,∴∠AC′O=∠COB,∴cos∠AC′O=cos∠COB==,∴=,∴OC′=4,∴CC′=4﹣8;②当A再继续向上移动,直到点B与O重合时,如图3,此时点C运动的路径是从C′到C,长是CC′,CC′=OC′﹣BC=4﹣4,综上所述,点C运动的路径长是:4﹣8+4﹣4=8﹣12;故答案为:(1)π;(2)8﹣12.达标检测领悟提升强化落实1. (2018秋•黄冈期中)在△ABC中,∠BAC=90°,AB=AC=2cm,线段BC上一动点P从C点开始运动,到B点停止,以AP为边在AC的右侧作等边△APQ,则Q点运动的路径为2cm.【解答】解:如图,Q点运动的路径为QQ′的长,∵△ACQ和△ABQ′是等边三角形,∴∠CAQ=∠BAQ′=60°,AQ=AC=AQ′=2cm,∵∠BAC=90°,∴∠QAQ′=90°,由勾股定理得:QQ′===2,∴Q点运动的路径为2cm;故答案为:2.2.如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是.【解答】解:E的运动路径是线段EE'的长;∵AB=4,∠DCA=30°,∴BC=,当F与A点重合时,在Rt△ADE'中,AD=,∠DAE'=30°,∠ADE'=60°,∴DE'=,∠CDE'=30°,当F与C重合时,∠EDC=60°,∴∠EDE'=90°,∠DEE'=30°,在Rt△DEE'中,EE'=;故答案为.3.(2019•铜山区二模)如图,已知点M(0,4),N(4,0),开始时,△ABC的三个顶点A、B、C分别与点M、N、O重合,点A在y轴上从点M开始向点O滑动,到达点O结束运动,同时点B沿着x 轴向右滑动,则在此运动过程中,点C的运动路径长4.【解答】解:过点C'作C'D⊥x轴,C'E⊥y轴∵点M(0,4),N(4,0),∴OM=ON,∵∠CA'C'+45°=∠EAB+∠MGB=45°+∠MGB,∴∠EA'C'=∠B'GB,∵∠B'GB+∠GB'B=45°,∠GB'B+∠DB'C'=45°,∴∠EA'C'=∠DB'C',又∵A'C'=B'C',∴Rt△A'C'E≌Rt△B'C'D(HL),∴EC'=DC',∴C'在第四象限的角平分线上,∴C的运动轨迹是线段AC,∴C的运动路径长为4;故答案为4;3.(2018•宝应县三模)在Rt△ABC中,∠C=90°,AC=2,BC=2,若P是以AB为直径所作半圆上由A沿着半圆向B运动的一点,连接CP,过P向下作PM⊥CP,且有PM=0.5CP,如图示,求点P运动过程中,点M的运动路径长是π.【解答】解:如图,∵点P的运动轨迹是半圆,PM⊥CP,且有PM=0.5CP,可见点M的运动轨迹是半圆.当PC是直径时,CM也是的直径,∴PC=AB=4时,PM=2,∴CM==2,∴的长=•π=π,故答案为π4.如图,已知线段AB=8,O为AB的中点,P是平面内的一个动点,在运动过程中保持OP=2不变,连结BP,将PB绕点P逆时针旋转90°到PC,连结BC、AC,则线段AC长的最大值是2.【解答】答案为:625.(2017•江阴市二模)如图,线段AB为⊙O的直径,点C在AB的延长线上,AB=4,BC=2,点P是⊙O上一动点,连接CP,以CP为斜边在PC的上方作Rt△PCD,且使∠DCP=60°,连接OD,则OD长的最大值为2+1.【解答】解:如图,作△COE,使得∠CEO=90°,∠ECO=60°,则CO=2CE,OE=2,∠OCP=∠ECD,∵∠CDP=90°,∠DCP=60°,∴CP=2CD,∴==2,∴△COP∽△CED,∴==2,即ED=OP=1(定长),∵点E是定点,DE是定长,∴点D在半径为1的⊙E上,∵OD≤OE+DE=2+1,∴OD的最大值为2+1,故答案为.6.(2018•建湖县一模)如图,在平面直角坐标系中,A(4,0)、B(0,﹣3),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为 1.5.【解答】解:解法一:如图,取点D(﹣4,0),连接PD,∵C是AP的中点,O是AD的中点,∴OC是△APD的中位线,∴OC=PD,连接BD交⊙B于E,∵OD=4,OB=3,∴BD=5,当点P与点E重合时,PD最小为5﹣2=3,故OC的最小值为1.5;解法二:当点P运动到AB的延长线上时,即如图中点P1,C1是AP1的中点,当点P在线段AB上时,C2是中点,取C1C2的中点为D,点C的运动路径是以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,设线段AB交⊙B于Q,Rt△AOB中,OA=4,OB=3,∴AB=5,∵⊙B的半径为2,∴BP1=2,AP1=5+2=7,∵C1是AP1的中点,∴AC1=3.5,AQ=5﹣2=3,∵C2是AQ的中点,∴AC2=C2Q=1.5,C1C2=3.5﹣1.5=2,即⊙D的半径为1,∵AD=1.5+1=2.5=AB,∴OD=AB=2.5,∴OC=2.5﹣1=1.5,故答案为:1.5.7.(2016•江岸区校级模拟)如图,线段AB=2,C是AB上一动点,以AC、BC为边在AB同侧作正△ACE、正△BCF,连EF,点P为EF的中点.当点C从A运动到B时,P点运动路径长为1.【解答】解:如图,分别延长AE、BF交于点H.∵∠A=∠FCB=60°,∴AH∥CF,∵∠B=∠ECA=60°,∴CE∥BH,∴四边形ECFH为平行四边形,∴EF与HC互相平分.∵P为CH的中点,∴P正好为EF中点,即在P的运动过程中,P始终为CH的中点,所以P的运行轨迹为三角形HAB的中位线MN.∵AB=2,∴MN=1,即P的移动路径长为1,故答案为:18.(2019秋•江岸区校级月考)如图,正△ABC中,AB=2,AD⊥BC于D,P,Q分别是AB,BC上的动点,且PQ=AD,点M在PQ的右上方且PM=QM,∠M=120°,当P从点A运动到点B时,M运动的路径长为3﹣.(看成固定三角板滑动处理/或反其道而行之)【解答】解:如图1中,作ME⊥AB于E,MF⊥BC于F,连接BM.∵△ABC是等边三角形,∴∠ABC=60°,∵∠MEB=∠MFB=90°,∴∠EMF=∠PMQ=120°,∴∠PME=∠QMF,∵MP=MQ,∴△MEP≌△MFQ(AAS),∴ME=MF,∴BM平分∠ABC,∴点M的在射线BM上运动.如图2中,由题意,当PQ∥AC时,BM的值最大,最大值BM====2,当P1Q1落在BC上时,得到BM1的值最小,最小值BM1===1,设BM交AC于G,点M的运动路径是G→M→M1∴点M的运动路径的长=MG+MM1=BM﹣BG+BM﹣BM1=2﹣+2﹣1=3﹣.故答案为3﹣.9.如图,点P(t,0)(t>0)是x轴正半轴上的一定点,以原点为圆心作半径为1的弧分别交x轴.y轴于A,B两点,点M是上的一个动点,连结PM,作∠MPM1=90°,∠PMM1=60°,当P是x轴正半轴上的任意一点时,点M从点A运动至点B,M1的运动路径长是π.【解答】解:如图作PH⊥x轴,使得PH=OP.∵∠APH=∠MPM1,∴∠OPM=∠HPM1∵==,∴△PHM1∽△POM,∴==,∵OM=1,∴HM1=.即点M1的运动路径为圆心为H,半径为的弧,∵∠AOB=90°,∴点M1的运动的弧的圆心角为90°其长度为×2π×=π,∴M1的运动路径长=π.故答案为:π.10.(2017秋•宜兴市期末)如图,在平面直角坐标系中,有一条长为10的线段AB,其端点A、点B分别在y轴、x轴上滑动,点C为以AB为直径的⊙D上一点(C始终在第一象限),且tan∠BAC=.则当点A从A0(0,10)滑动到O(0,0),B从O(0,0)滑动到B0(10,0)的过程中,点C运动的路径长为20﹣6.【解答】解:如图1中,作射线OC.∵tan∠BAC=,∴∠CAB是定值,∵∠COB=∠CAB,∴∠COB是定值,∴点C在射线OC上运动.如图2中,当线段AB在y轴上时,设OC1=k,A1C1=2k,则有:k2+4k2=102,∴k=2∴OC1=2,如图2中,四边形A2OB2C2是矩形时,OC2=AB=10,此时OC2的值最大,当线段AB在x轴上时,同法可得OC3=4,观察图形可知,点C的运动轨迹是C1→C2→C3,∴点C的运动路径为:(10﹣2)+(10﹣4)=20﹣6,故答案为20﹣6.。
人教版九年级数学上学期《相似形》提高试题(附答案)
《相似形》提高试题(一)选择题:(每题2分,共24分)1.梯形两底分别为m、n,过梯形的对角线的交点,引平行于底边的直线被两腰所截得的线段长为………………………………………………………………………()(A)mnnm+(B)nmmn+2(C)nmmn+(D)mnnm2+【提示】设所要求的线段长为x,则有nxmx22+=1.【答案】B.2.如图,在正三角形ABC中,D,E分别在AC,AB上,且ACAD=31,AE=BE,则有………………………………………………………………………………………()(A)△AED∽△BED(B)△AED∽△CBD(C)△AED∽△ABD(D)△BAD∽△BCD【提示】AE=21BC,AD=21CD.【答案】B.3.P是Rt△ABC斜边BC上异于B、C的一点,过点P作直线截△ABC,使截得的三角形与△ABC 相似,满足这样条件的直线共有……………………………………()(A)1条(B)2条(C)3条(D)4条【提示】所截得的三角形为直角三角形,过P点分别作△ABC三边的垂线,可作3条.【答案】C.4.如图,∠ABD=∠ACD,图中相似三角形的对数是……………………………()(A)2(B)3(C)4(D)5【提示】△AOB∽△COD,△AOD∽△BOC,△P AC∽PDB,△P AD∽△PCB.【答案】C.5.如图,ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出△ABP与△ECP相似的是……………………………………………………()(A)∠APB=∠EPC(B)∠APE=90°(C)P是BC的中点(D)BP︰BC=2︰3【提示】当P是BC的中点时,△EPC为等腰直角三角形.【答案】C .6.如图,△ABC 中,AD ⊥BC 于D ,且有下列条件:(1)∠B +∠DAC =90°;(2)∠B =∠DAC ;(3)AD CD =ABAC; (4)AB 2=BD ·BC其中一定能够判定△ABC 是直角三角形的共有………………………………( ) (A )3个 (B )2个 (C )1个 (D )0个【提示】∵ ∠B =∠DAC ,∴ (1)错,(2)对. 【答案】A .7.如图,将△ADE 绕正方形ABCD 顶点A 顺时针旋转90°,得△ABF ,连结EF 交AB 于H ,则下列结论中错误的是………………………………………………( )(A )AE ⊥AF (B )EF ︰AF =2︰1 (C )AF 2=FH ·FE (D )FB ︰FC =HB ︰EC【提示】先检验A 、B 、D 的正确性. 【答案】C .8.如图,在矩形ABCD 中,点E 是AD 上任意一点,则有…………………( )(A )△ABE 的周长+△CDE 的周长=△BCE 的周长 (B )△ABE 的面积+△CDE 的面积=△BCE 的面积 (C )△ABE ∽△DEC (D )△ABE ∽△EBC【提示】作EF ⊥BC ,垂足为F . 【答案】B .9.如图,在□ABCD 中,E 为AD 上一点,DE ︰CE =2︰3,连结AE 、BE 、BD ,且AE 、BD 交于点F ,则S △DEF ︰S △EBF ︰S △ABF 等于……………………………( ) (A )4︰10︰25 (B )4︰9︰25 (C )2︰3︰5 (D )2︰5︰25【提示】△DEF ∽△ABF ,S △DEF ︰S △BEF =DF ︰BF =DE ︰AB . 【答案】A .10.如图,直线a ∥b ,AF ︰FB =3︰5,BC ︰CD =3︰1,则AE ︰EC 为( ).(A )5︰12 (B )9︰5 (C )12︰5 (D )3︰2【提示】EC AE =CD AG =BDAG4. 【答案】C .11.如图,在△ABC 中,M 是AC 边中点,E 是AB 上一点,且AE =41AB ,连结EM 并延长,交BC 的延长线于D ,此时BC ︰CD 为……………………………( ) (A )2︰1 (B )3︰2 (C )3︰1 (D )5︰2【提示】过C 点作CF ∥BA 交ED 于F 点,则AE =CF . 【答案】A .12.如图,矩形纸片ABCD 的长AD =9 cm ,宽AB =3 cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长和折痕EF 的长分别为………………………………( )(A )4 cm 、10cm (B )5 cm 、10cm(C )4 cm 、23 cm (D )5 cm 、23 cm【提示】连结BD 交EF 于O 点,则EF =2FO ,EF ⊥BD .由Rt △BOF ∽Rt △BCD , 可得BC OB =OCOF,求出OF 的长.又 DE >21AD . 【答案】B . (二)填空题:(每题2分,共20分)13.已知线段a =6 cm ,b =2 cm ,则a 、b 、a +b 的第四比例项是_____cm ,a +b 与a -b 的比例中项是_____cm . 【提示】6︰2=8︰x ;y 2=8×4.【答案】38;42. 14.若c b a +=a c b +=bc a +=-m 2,则m =______.【提示】分a +b +c ≠0和a +b +c =0两种情况.【答案】±1.15.如图,在△ABC 中,AB =AC =27,D 在AC 上,且BD =BC =18,DE ∥BC 交AB 于E ,则DE=_______.【提示】由△ABC ∽△BCD ,列出比例式,求出CD ,再用△ABC ∽△AED . 【答案】10.16.如图,□ABCD 中,E 是AB 中点,F 在AD 上,且AF =21FD ,EF 交AC 于G ,则AG ︰AC =______.【提示】延长FE 交CB 延长线于H 点,则AF =BH ,考虑△AFG ∽△CHG . 【答案】1︰5.17.如图,AB ∥CD ,图中共有____对相似三角形.【提示】分“”类和“”类两类. 【答案】6对.18.如图,已知△ABC ,P 是AB 上一点,连结CP ,要使△ACP ∽△ABC ,只需添加条件______(只要写出一种合适的条件).【提示】∵ ∠A 为公共角,∴ 考虑∠A 的两边或其他内角相等.【答案】∠B =∠ACP ,或∠ACB =∠APC ,或AC 2=AP ·AB .19.如图,AD 是△ABC 的角平分线,DE ∥AC ,EF ∥BC ,AB =15,AF =4,则DE 的长等于________.【提示】DE =AE ,CF =DE ,并考虑AB AE =ACAF. 【答案】6.20.如图,△ABC 中,AB =AC ,AD ⊥BC 于D ,AE =EC ,AD =18,BE =15,则△ABC 的面积是______.【提示】作EF ∥BC 交AD 于F .设BE 交AD 于O 点,先求出OD 长和OB 长,最后用勾股定理求出BD 的长. 【答案】144. 21.如图,直角梯形ABCD 中,AD ∥BC ,AC ⊥AB ,AD =8,BC =10,则梯形ABCD 面积是_________.【提示】作AE ∥DC 交BC 于E 点,由Rt △ABE ∽Rt △CBA ,依次算出BE 、AB 的长,最后求出AE 的长,即可求出梯形面积. 【答案】36.22.如图,已知AD ∥EF ∥BC ,且AE =2EB ,AD =8 cm ,AD =8 cm ,BC =14 cm ,则S 梯形AEFD ︰S 梯形BCFE =____________.【提示】延长EA ,与CD 的延长线交于P 点,则△APD ∽△EPF ∽△BPC . 【答案】1320. (三)画图题:(4分)23.方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.请你在图示的10×10的方格纸中,画出两个相似但不全等的格点三角形,并加以证明(要求所画三角形是钝角三角形,并标明相应字母).【提示】先任意画一个格点钝角三角形,然后三边都扩大相同的倍数,画出另一个格点钝角三角形. (四)证明题:(每题7分,共28分)24.如图,△ABC 中,CD ⊥AB 于D ,E 为BC 中点,延长AC 、DE 相交于点F ,求证BC AC =DFAF.【提示】过F 点作FG ∥CB ,只需再证GF =DF . 【答案】方法一:作FG ∥BC 交AB 延长线于点G .∵ BC ∥GF ,∴BC AC =GFAF.又 ∠BDC =90°,BE =EC , ∴ BE =DE . ∵ BE ∥GF , ∴GFDF =BEDE =1.∴ DF =GF . ∴BC AC =DF AF.方法二:作EH ∥AB 交AC 于点H . ∵BC AC =BE AH,DFAF =DEAH ,∠BDC =90°,BE =EC ,∴ BE =DE . ∴BC AC =DFAF.25.如图,在△ABC 中,AB =AC ,延长BC 至D ,使得CD =BC ,CE ⊥BD 交AD 于E ,连结BE 交AC 于F ,求证AF =FC .【提示】先证△BCF ∽△DBA ,再证AC FC =21. 【答案】∵ BC =CD ,EC ⊥BD ,∴ BE=DE ,∠FBC =∠D . 又 AB =AC ,∴ ∠BCF =∠DBA . ∴ ∠BCF ∽△DBA .∴AB FC =DBBC. 又 BD =2BC ,AB =AC ,∴ AC FC =BC BC 2=21. ∴FC =21AC .因此 AF =FC .26.已知:如图,F 是四边形ABCD 对角线AC 上一点,EF ∥BC ,FG ∥AD .求证:AB AE +CDCG=1.【提示】利用AC =AF +FC .【答案】∵ EF ∥BC ,FG ∥AD ,∴ AB AE =AC AF ,CD CG =CACF. ∴AB AE +CD CG =AC AF +CA CF =ACAC=1. 27.如图,BD 、CE 分别是△ABC 的两边上的高,过D 作DG ⊥BC 于G ,分别交CE 及BA 的延长线于F 、H ,求证:(1)DG 2=BG ·CG ;(2)BG ·CG =GF ·GH .【提示】(1)证△BCG ∽△DCG ;(2)证Rt △HBG ∽Rt △CFG . 【答案】(1)DG 为Rt △BCD 斜边上的高,∴ Rt △BDG ∽Rt △DCG .∴ DG CG =BGDG,即DG 2=BG ·CG . (2)∵DG ⊥BC ,∴ ∠ABC +∠H =90°,CE ⊥AB . ∴ ∠ABC +∠ECB =90°.∴ ∠ABC +∠H =∠ABC +∠ECB . ∴ ∠H =∠ECB .又 ∠HGB =∠FGC =90°, ∴Rt △HBG ∽Rt △CFG .∴GF BG =GCGH,∴ BG ·GC =GF ·GH .(五)解答题:(每题8分,共24分)28.如图,∠ABC =∠CDB =90°,AC =a ,BC =b .(1)当BD 与a 、b 之间满足怎样的关系时,△ABC ∽△CDB ?(2)过A 作BD 的垂线,与DB 的延长线交于点E ,若△ABC ∽△CDB .求证四边形AEDC 为矩形(自己完成图形).【提示】利用三角形相似,推出BD =ab2.【答案】(1)∵ ∠ABC =∠CDB =90°,∴ 当BC AC =BD BC时,△ABC ∽△CDB . 即 b a =BDb .∴ BD =a b 2.即当BD =ab 2时,△ABC ∽△CDB .∵ △ABC ∽△CDB , ∴ ∠ACB =∠CBD . ∴ AC ∥ED . 又 ∠D =90°, ∴ ∠ACD =90°. ∴ ∠E =90°.∴ 四边形AEDC 为矩形.29.如图,在矩形ABCD 中,E 为AD 的中点,EF ⊥EC 交AB 于F ,连结FC(AB >AE ).(1)△AEF 与△EFC 是否相似?若相似,证明你的结论;若不相似,请说明理由;(2)设BCAB=k ,是否存在这样的k 值,使得△AEF ∽△BFC ,若存在,证明你的结论并求出k 的值;若不存在,说明理由.【提示】(1)如图,证明△AFE ≌△DGE ,证出∠AFE =∠EFC .(2)证明∠ECG =30°,∠BCF =30°. 【答案】如图,是相似.【证明】延长FE ,与CD 的延长线交于点G .在Rt △AEF 与Rt △DEG 中, ∵ E 是AD 的中点, ∴ AE =ED .∵ ∠AEF =∠DEG , ∴ △AFE ≌△DGE . ∴ ∠AFE =∠DGE . ∴ E 为FG 的中点. 又 CE ⊥FG , ∴ FC =GC . ∴ ∠CFE =∠G . ∴ ∠AFE =∠EFC .又 △AEF 与△EFC 均为直角三角形, ∴ △AEF ∽△EFC .① 存在.如果∠BCF =∠AEF ,即k =BCAB =23时,△AEF ∽△BCF .证明:当BC AB =23时,DEDC=3,∴ ∠ECG =30°.∴ ∠ECG =∠ECF =∠AEF =30°. ∴ ∠BCF =90°-60°=30°.又 △AEF 和△BCF 均为直角三角形, ∴ △AEF ∽△BCF .② 因为EF 不平行于BC , ∴ ∠BCF ≠∠AFE .∴ 不存在第二种相似情况.30.如图,在Rt △ABC 中,∠C =90°,BC =6 cm ,CA =8 cm ,动点P 从点C 出发,以每秒2 cm 的速度沿CA 、AB 运动到点B ,则从C 点出发多少秒时,可使S △BCP =41S △ABC?【提示】先求CP ,再求DP .【答案】当点P 从点C 出发,运动在CA 上时,若S △BCP =41S △ABC,则21·CP ·BC =41·21AC ·BC , ∴ CP =41·AC =2(cm ). 故由点P 的运动速度为每秒2 cm ,它从C 点出发1秒时,有S △BCP =41S △ABC.当点P 从点C 出发运动到AB 上时,如图,可过点P 作PD ⊥BC 于D .若S △BCP =41S △ABC,则21PD ·BC =41·21AC ·BC .∴ PD =41AC =2(cm ). ∵ Rt △BAC ∽Rt △BPD , ∴AB BP =ACPD. 又 AB =22BC AC +=10, 故BP =8102⋅=25,AP =AB -BP =10-25=7.5.也就是说,点P 从C 出发共行15.5 cm ,用去7.75秒,此时S △BCP =41S △ABC.答:1秒或7.75秒.。
人教版初三数学第27章《相似》总结与习题
初中数学九年级知识点总结:27相似一、知识框架二、知识点、概念总结 1. 相似:每组图形中的两个图形形状相同,大小不同,具有相同形状的图形叫相似图形。
相似图形强调图形形状相同,与它们的位置、颜色、大小无关。
相似图形不仅仅指平面图形,也包括立体图形相似的情况。
我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.2.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。
互为相似形的三角形叫做相似三角形相似形的识别:对应边成比例,对应角相等。
成比例线段(简称比例线段):对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dcb a (或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。
黄金分割:用一点P 将一条线段AB 分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618…。
这种分割称为黄金分割,分割点P 叫做线段AB 的黄金分割点,较长线段叫做较短线段与全线段的比例中项。
3.相似三角形的判定方法:根据相似图形的特征来判断。
(对应边成比例,对应角相等)○1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;○2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;○4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似;○4.直角三角形相似判定定理:○1.斜边与一条直角边对应成比例的两直角三角形相似。
○2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
5. 一定相似的三角形(1)两个全等的三角形一定相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12讲图形的相似知识点1:相似多边形及性质相似图形:我们把形状相同的图形叫相似图形.两个图形相似,其中一个图形可以看成是由另一个图形放大或缩小得到的.如图所示的几组图形都是形状相同,大小不同的图形,因此这几组图形分别都是相似图形.当两个图形的形状相同,大小相同,这两个图形也是相似图形,它们是特殊的相似图形:全等图形.相似多边形:两个边数相同的多边形,如果他们的角分别相等,边成比例,那么这两个多边形叫相似多边形,相似多边形对应边的比叫做相似比.相似多边形的性质:相似多边形的对应角相等,对应边成比例.相似图形周长的比等于相似比,相似图形面积比等于相似比的平方.【典例】1.图中的两个多边形相似吗?说说你判断的理由.【解析】解:不相似.理由:∵∠D=360°﹣135°﹣95°﹣72°=58°,∠E=360°﹣135°﹣95°﹣59°=71°,∴两个四边形中不可能有“对应角相等”,又∵没法判定对应边成比例,∴不相似.2.两个相似多边形的一对对应边的边长.分别是15cm和12cm.(1)它们的周长相差24cm,求这两个多边形的周长;(2)它们的面积相差270cm2,求这两个多边形的面积.【解析】解:(1)设较大多边形的周长是x cm.则∵两个相似多边形的一组对应边分别是15cm和12cm,∴两个相似多边形的相似比是15:12=5:4,又∵相似多边形的周长的比等于相似比,∴x:(x﹣24)=5:4,解得:x=120,较小多边形的周长120﹣24=96(cm);答:两个多边形的周长分别为120cm,96cm;(2)设较大多边形的面积为acm2,由题意得:a:(a﹣270)=25:16,解得:a=750,则较小多边形的面积为750﹣270=480(cm2).答:两个多边形的面积分别为750cm2,480cm2.【方法总结】相似图形:所谓形状相同,就是与图形的大小,位置无关,与摆放角度,摆放方向也无关.有些图形之间虽然只有很小的形状差异,但也不能认为是形状相同相似多边形:(1)在相似多边形中,对应变成比例,对应角相等,这两个条件必须同时成立,才能说明这两个多边形是相似多边形;(2)相似多边形的性质可以用来确定两个相似多边形中未知的边的长度或未知的角的度数;(3)相似比得值与两个多边性的前后顺序有关;(4)相似比1:1的两个相似多边形是全等多边形;【随堂练习】1.(2018秋•博野县期末)如图所示,长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是( )A .228cmB .227cmC .221cmD .220cm【解答】解:依题意,在矩形ABDC 中截取矩形ABFE ,则矩形ABDC ∽矩形FDCE , 则AB BDDF DC=, 设DF xcm =,得到: 686x =解得: 4.5x =, 则剩下的矩形面积是:24.5627cm ⨯=. 故选:B .2.(2019•河北一模)如图所示的四边形,与选项中的一个四边形相似,这个四边形是( )A .B .C .D .【解答】解:作AE BC ⊥于E , 则四边形AECD 为矩形, 1EC AD ∴==,3AE CD ==,4BE ∴=,由勾股定理得,5AB ==,∴四边形ABCD 的四条边之比为1:3:5:5,C 选项中,四条边之比为1:3:5:5,故选:C .3.(2018秋•北海期末)如图,E ,F 分别为矩形ABCD 的边AD ,BC 的中点,若矩形ABCD 与矩形EABF 相似,1AB =,则矩形ABCD 的面积是( )A .4B .2CD【解答】解:矩形ABCD 与矩形EABF 相似, ∴AE AB AB AD=,即1121ADAD =,解得,AD =,∴矩形ABCD 的面积2AB AD ==,故选:D .4.(2018秋•南山区期末)下列说法不正确的是( ) A .所有矩形都是相似的B .若线段5a cm =,2b cm =,则:5:2a b =C .若线段AB ,C 是线段AB 的黄金分割点,且AC BC >,则AC D .四条长度依次为lcm ,2cm ,2cm ,4cm 的线段是成比例线段【解答】解:所有矩形对应边的比不一定相等,不一定都是相似的,A 不正确,符合题意; 若线段5a cm =,2b cm =,则:5:2a b =,B 正确,不符合题意;线段AB =,C 是线段AB 的黄金分割点,且AC BC >,则)AC cm=,C 正确,不符合题意;四条长度依次为lcm ,2cm ,2cm ,4cm 的线段是成比例线段,D 正确,不符合题意; 故选:A .知识点2平行线分线段成比例1比例性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅(其中b 叫做比例中项) 2 更比性质(交换比例的内项或外项):3反比性质(把比的前项、后项交换):a cb d b d ac =⇔=.4合、分比性质:a c a b c db db d ±±=⇔=. 5等比性质:如果)0(≠++++====n f d b n mf e d c b a ,那么b a n f d b m e c a =++++++++6如果四条线段a,b,c,d 满足a cb d=,则四条线段a,b,c,d 称为比例线段。
(有先后顺序,不可颠倒) 7平行线分线段成比例定理:三条平行线截两条直线, 所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF =====或或或或等. 注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。
【典例】1.已知a ,b ,c ,d 是四条线段,试判断的它们是不是成比例线段. (1)a=1mm ,b=0.8cm ,c=0.02cm ,d=4cm ; (2)a=1cm ,b=0.4cm ,c=40cm ,d=3cm .【解析】解:(1)∵0.02×4=0.08,1mm=0.1cm,0.1×0.8=0.08,0.08=0.08,∴它们是成比例线段;(2)∵0.4×40=16,1×3=4,16≠4,∴它们不是成比例线段.2.如图,△ABC∽△ADE,AD=8cm,BD=4cm,BC=15cm,EC=7cm.(1)DE∥BC吗?为什么?(2)求DE,AE的长.(3)你还能发现哪些线段成比例?【解析】解:(1)DE∥BC.理由如下:∵△ABC∽△ADE,∴∠B=∠ADE,∴DE∥BC;(2)∵△ABC∽△ADE,∴==,即==,∴DE=10cm,AE=14cm;(3)成比例线段还有:=.3.如图,l1//l2//l3,AB=3,AD=2,DE=4,EF=7.5,求BC、BF的长.【解析】解:∵l1//l2//l3,AB AD∴=BC DE∵AB=3,AD=2,DE=4,23∴=,解得BC=6,4BC∵l1//l2//l3,BF AB EF AC∴=37.536BF ∴=+,解得BF =2.5. 【方法总结】1.由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.2.比例的合比性质做题时可扩展为:比例式中等号左右两个比的前项,后项之间 发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c dc b a b a ccd a a b d c b a3.等比性质①此性质的证明运用了“设K 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:b a f d b ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 4.平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.【随堂练习】1.(2019•香坊区二模)如图,直线123////l l l ,直线AC 分别交直线1l 、2l 、3l 于点A 、B 、C ,直线DF 分别交直线1l 、2l 、3l 于点D 、E 、F ,直线AC 、DF 交于点P ,则下列结论错误的是( )A .AB DEBC EF=B .PA PDPC PF=C .PA PEPB PF=D .PB ACPE DF=【解答】解:123////l l l ,∴AB DEBC EF=,A 正确,不符合题意; PA PDPC PF=,B 正确,不符合题意; PA PDPB PE=,C 错误,符合题意; PB PC PAPE PF PD==, ∴PB ACPE DF=,C 正确,不符合题意; 故选:C .2.(2019•南岗区模拟)如图,如果123////l l l ,那么下列比例式中,错误的是( )A .AD BCAF BE=B .DF CEAF BE=C .AD DFBC CE=D .AD CDAF EF=【解答】解:123////l l l ,∴AD BC AF BE =,DF ECAF EB =, ∴AD AFBC BE=, 故选:D .3.(2018秋•嘉兴期末)如图,直线////a b c ,直线AC 分别交a ,b ,c 于点A ,B ,C :直线DF 分别交a ,b ,c 于点D ,E ,F .若23AB BC =,则(DE DF = )A .23B .25 C .35D .32【解答】解:23AB BC =, ∴25AB AC =, ////a b c ,。