九年级数学专题05 位似(知识点串讲)(解析版)
专题05用配方法求解一元二次方程(题型易错点中考考法)(解析版)-九年级数学上册学与练(北师大版)

专题05用配方法求解一元二次方程(3个知识点7种题型2个易错点4种中考考法)【目录】倍速学习五种方法【方法一】脉络梳理法知识点1:用直接配平方法求解一元二次方程(重点)知识点2:用配方法求解一元二次方程(重点)知识点3:利用一元二次方程求解简单的实际问题(难点)【方法二】实例探索法题型1:用直接开平方法解一元二次方程题型2:用配方法解一元二次方程题型3:用配方法求字母的值题型4:用用配方法求代数式的最大(最小)值题型5:直接开平方法在实际生活中的应用题型6:用配方法判断三角形的形状题型7:利用配方法解决有关新定义问题【方法三】差异对比法易错点1混淆方程配方与代数式配方易错点2配方时,没有进行恒等式变形而导致错误【方法四】仿真实战法考法1:解一元二次方程-直接开平方法考法2:解一元二次方程-配方法考法3:换元法解一元二次方程考法4:配方法的应用【方法五】成果评定法【知识导图】【方法一】脉络梳理法知识点1:用直接配平方法求解一元二次方程(重点)形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(nx+m)2=p(p≥0)的形式,那么nx+m=±.注意:①等号左边是一个数的平方的形式而等号右边是一个非负数.②降次的实质是由一个二次方程转化为两个一元一次方程.③方法是根据平方根的意义开平方.【例1】(2022秋•江都区校级期末)方程x2=4的解是()A.x1=x2=2B.x1=x2=﹣2C.x1=2,x2=﹣2D.x1=4,x2=﹣4【解答】解:直接开平方得:x=±2,∴方程的解为:x1=2,x2=﹣2,故选:C.知识点2:用配方法求解一元二次方程(重点)(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx +c =0(a ≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±.【例2】用配方法解一元二次方程0422=-+x x .解:422=+x x 移常数项222)1(4)1(2+=++x x 两边配上一次项系数一半的平方5)1(2=+x 转化为n m x =+2)(的形式5151-=+=+x x 或转化为n m x =+2)(的形式解得1515--=-=x x 或求解所以原方程的根是151521--=-=x x 或.【例3】如何用配方法解方程04222=-+x x 解:4222=+x x 移常数项22=+x x 方程两边同除以二次项系数22221(2)21(+=++x x 两边配上一次项系数一半的平方25)21(2=+x 转化为n m x =+2)(的形式2102121021-=+=+x x 或开平方解得2121021210--=-=x x 或求解所以原方程的根是21210,2121022--=-=x x .知识点3:利用一元二次方程求解简单的实际问题(难点)一元二次方程是刻画现实问题的有效数学模型,有些通过列一元二次方程来解决的实际问题都可以利用配方法或直接开平方法来解决。
专题05二次函数的实际应用(含解析)2023年秋人教版数学九年级上册期中专题复习

专题05 二次函数的实际应用图形问题1.某校九年级数学兴趣小组在社会实践活动中,进行了如下的专题探究;一定长度的铝合金材料,将它设计成外观为长方形的框,在实际使用中,如果竖档越多,窗框承重就越大,如果窗框面积越大,采光效果就越好.小组讨论后,同学们做了以下试验:请根据以上图案回答下列问题:(1)在图案①中,如果铝合金材料总长度(图中所有黑线的长度和)为,当为,窗框的面积是______;(2)在图案②中,如果铝合金材料总长度为,试探究长为多少时,窗框的面积最大,最大为多少?(3)经过不断的试验,他们发现:总长度一定时,竖档越多,窗框的最大面积越小,试验证:当总长还是时,对于图案③的最大面积,图案④不能达到这个面积.2.工匠师傅准备从六边形的铁皮中,裁出一块矩形铁皮制作工件,如图所示.经测量,,与之间的距离为2米,米,米,6m AB 1m ABCD 2m 6m AB ABCD 6m ABCDEF AB DE ∥AB DE 3AB =1AF BC ==,.,,是工匠师傅画出的裁剪虚线.当的长度为多少时,矩形铁皮的面积最大,最大面积是多少?3.某建筑物的窗户如图所示,上半部分是等腰三角形,,,点、、分别是边、、的中点;下半部分四边形是矩形,,制造窗户框的材料总长为16米(图中所有黑线的长度和),设米,米.(1)求与之间的函数关系式,并求出自变量的取值范围;(2)当为多少时,窗户透过的光线最多(窗户的面积最大),并计算窗户的最大面积.图形运动问题4.如图(单位:cm ),等腰直角以2cm/s 的速度沿直线l 向正方形移动,直到与重合,当运动时间为x s 时,与正方形重叠部分的面积为y cm 2,下列图象中能反映y 与x 的函数关系的是( )90A B ∠=∠=︒135C F ∠=∠=︒MH H G GN MH MNGH ABC V AB AC =:3:4AF BF =G H F AB AC BC BCDE BE IJ MN CD ∥∥∥BF x =BE y =y x x x EFG V EF BC EFG V ABCD. .. ..如图,一个边长为的菱形,过点作直线沿线段向右平移,直至经过点时停止,在平移的过程中,若菱形在直线部分面积为,则与直线之间的函数图象大致为( )A . . ..的边长为,点O 为正方形的中心,出发沿运动,连接的运动速度为260︒A l AB ⊥AB l y y l 2cm BC 2cm/s....销售利润问题.某公司经销一种绿茶,每千克成本为元,市场调查发现,在一段时间内,销售量(千克)随销售单价x(元/千克)的变化而变化,具体关系如图所示,设这种绿茶在(1)求y与x的函数关系式;(2)如果物价部门规定这种绿茶的销售单价不得高于得2000元的销售利润,销售单价应定为多少元?(3)求销售单价为多少时销售利润最大?最大为多少元?8.某公司生产的某种时令商品每件成本为投球问题水平距离竖直高度(1)根据题意,填空:________________;(1)某运动员第一次发球时,测得水平距离与竖直高度水平距离竖直高度①根据上述数据,求抛物线解析式;增长率问题(m)x 0123(m)y 0 3.567.5=a x /mx 02461112/m y 2.38 2.62 2.7 2.62 1.721.4213.据省统计局公布的数据,合肥市2021年第一季度总值约为2.4千亿元人民币,若我市第三季度总值为千亿元人民币,平均每个季度增长的百分率为,则关于的函数表达式是( )A. B . C . D . 14.某厂家2022年2月份生产口罩产量为180万只,4月份生产口罩的产量为461万只,设从2月份到4月份该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A .B .C .D .15.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是,降价后的价格为元,原价为元,则y 与之间的函数关系式为( )A .B .C .D .16.目前,随着新冠病毒毒力减弱,国家对新冠疫情防控的政策更加科学化,人们对新冠病毒的认识更加理性.佩戴口罩可以阻断传播途径,在一定程度上能够有效防止感染新型冠状病毒肺炎.某药品销售店将购进一批A 、B 两种类型口罩进行销售,A 型口罩进价m 元每盒,B 型口罩进价30元每盒,若各购进m 盒,成本为1375元.(1)求A 型口罩的进价为多少元?(2)设两种口罩的售价均为x 元,当A 型口罩售价为30元时,可销售60盒,售价每提高1元,少销售5盒;B 型口罩的销量y (盒)与售价x 之间的关系为;若B 型口罩的销售量不低于A 型口罩的销售量的10倍,该药品销售店如何定价?才能使两种口罩的利润总和最高.17.重庆潼南某一蔬菜种植基地种植的一种蔬菜,它的成本是每千克元,售价是每千克元,年销量为万千克多吃绿色蔬菜有利于身体健康,因而绿色蔬菜倍受欢迎,十分畅销.为了获得更好的销量,保证人民的身体健康,基地准备拿出一定的资金作绿色开发,根据经验,若每年投入绿色开发的资金万元,该种蔬菜的年销量将是原年销量的倍,它们的关系如下表:GDP GDP y GDP x y x ()2.412y x =+()22.41y x =-()22.41y x =+()()2.4 2.41 2.41y x x =++++()21801461x -=()21801461x +=()24611180x -=()24611180x +=x y a x ()12y a x =-()21y a x =-()21y a x =-()21y a x =-3005y x =-2310.X m参考答案:,,米,四边形是平行四边形,又,90A B ∠=∠=︒Q AF BC ∴P 1AF BC ==Q ∴ABCF 90A B ∠=∠=︒Q重叠部分为三角形,面积如图,当时,重叠部分为梯形,面积∴图象为两段二次函数图象,第一段开口向上,第二段开口向下,函数的最大值为纵观各选项,只有C 选项符合.y =510x <≤12y =⨯,图象开口向上的抛物线的一部分;②当时,如图,③当时,如图,故选:.【点睛】此题考查了动点图象问题,涉及到解直角三角形等知识,解题的关键是不同取值范围内,图象和图形的对应关系,进而求解.6.D21332y x x x =⨯=12x <≤()1133132y x =⨯⨯+-=23x <≤()23323322y x =⨯--=-A∴,由题得,,∴,∵,由题得,∴.故选D .【点睛】本题考查了动点问题的函数图象的应用,求出分段函数的解析式是解题的关键.PE AD ⊥cm BQ t =cm AE PE t ==2cm QE AB ==cm BP BQ t ==212s t =(3)根据,即可作答.【详解】(1)解:设y 与x 的函数关系式为:,把,代入解析式得:,解得,∴y 与x 的函数关系式为;(2)根据题意,得;当时,,解得:,,∵这种商品的销售价不得高于90元/千克,∴,∴应将销售价定为70元/千克;(3),∵,∴当销售单价时,销售利润w 的值最大,最大值为2450元.【点睛】本题考查了二次函数的应用,属于常考题型,正确理解题意、得出二次函数的关系式是解题的关键.8.(1)(2)第18天的日销售利润最大为450元(3),1500元【分析】(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式,故可利用待定系数法可求解;(2)日利润=日销售量×每件利润,据此分别表示前20天和后20天的日利润,根据函数性质求最大值后比较得结论;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数性质求a 的取值范围,进而求解即可.()222340120002852450w x x x =-+-=--+()0y kx b k =+≠()50,140()80,80501408080k b k b +=⎧⎨+=⎩2240k b =-⎧⎨=⎩2240y x =-+()()()250502240234012000w x y x x x x =-⋅=--+=-+-2000w =22340120002000x x -+-=170x =2100x =70x =()222340120002852450w x x x =-+-=--+20-<85x =296m x =-+1a =②不能.当时,,该运动员第一次发球能过网,故答案为:不能;(2)判断:没有出界.第二次发球:,令,则,,解得舍,,,该运动员此次发球没有出界.【点睛】本题考查二次函数的应用,解题关键是正确求出函数解析式.13.C【分析】根据平均每个季度增长的百分率为,第二季度季度总值约为元,第三季度总值为元,则函数解析式即可求得.【详解】解:根据题意得:关于的函数表达式是:,故选:C .【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键.14.B【分析】利用4月份该厂家口罩产量月份该厂家口罩产量从2月份到4月份该厂家口罩产量的平均月增长率,即可得出关于x 的一元二次方程,此题得解.【详解】解:根据题意得,故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9x =()20.0294 2.7 2.2 2.24y =--+=<∴20.02(5) 2.88y x =--+0y =20.02(4) 2.880x --+=17(x =-)217x =21718x =<Q ∴GDP x GDP ()2.41x +GDP ()22.41x +y x ()22.41y x =+2=(1⨯+2)()21801461x +=。
中考数学考点大串讲(北师大版):专题05 投影与视图(基础30题2种题型)(解析版)

专题05投影与视图(基础30题2种题型)一、投影1.(2023秋·陕西西安·九年级高新一中校考阶段练习)正方形纸板在太阳光下的投影不可能是()A.平行四边形B.一条线段C.矩形D.梯形【答案】D【分析】根据平行投影的性质,进行判断即可.【详解】解:一张正方形纸板在太阳光线的照射下,形成影子不可能是梯形,故选:D.【点睛】本题考查平行投影.熟练掌握平行投影的性质,是解题的关键.2.(2023秋·七年级课时练习)下图中各投影是平行投影的是()A.B.C.D.【答案】C【分析】根据平行投影定义即可判断.【详解】解:只有C中的投影线是平行的,且影子长度与原物体长度比一致.故选:C.【点睛】本题考查了平行投影的知识,牢记平行投影的定义是解题的关键.3.(2023秋·七年级课时练习)中心投影的光线是()A.平行的B.从一点发出的C.不平行的D.向四面发散的【答案】B【分析】根据中心投影的定义即可解答.【详解】解:中心投影的光线是从一点发出的,故选:B.【点睛】本题主要考查了中心投影的定义,解题的关键是掌握中心投影的光线是从一点发出的.4.(2023秋·全国·九年级专题练习)正午时我们在太阳下的影子长度比下午时我们在太阳底下的影子的长度要.(长,短)【答案】短【分析】根据太阳光不同时刻照射时的角度,以及平行投影的性质判断即可.【详解】解:太阳光可理解为平行光线,正午时刻太阳光照射的角度更大,因此我们于地面形成的影子更短,而下午的时候,照射时的角度变小,在地面形成的影子就更长.故答案为:短.【点睛】本题考查投影,注意理解太阳光是平行光线,并且理解入射角度越大,形成的投影越短,角度越小,形成的投影越长.5.(2022秋·九年级单元测试)某学校操场上立着高度不同的甲、乙两种篮球架,那么在某一时刻的太阳光的照射下,甲种篮球架的高度与其影长的比(填“大于”“小于”或“等于”)乙种篮球架的高度与其影长的比.【答案】等于【分析】根据平行投影的性质进行求解即可.【详解】解:由平行投影的性质可知,在同一时刻物高和影长成正比,即在同一时刻的物高于影长的比值一定,∴甲种篮球架的高度与其影长的比等于乙种篮球架的高度与其影长的比,故答案为:等于.【点睛】本题主要考查了平行投影,熟知平行投影的性质是解题的关键.6.(2023秋·全国·九年级专题练习)由阳光形成的影子是投影,由灯光形成的影子是投影(选题“平行”或“中心”)【答案】平行中心【分析】由平行光线形成的投影是平行投影;由同一点(点光源)发出的光线所形成的投影是中心投影.【详解】由阳光形成的影子是平行投影,由灯光形成的影子是中心投影,故答案为:平行;中心【点睛】本题考查了中心投影和平行投影的概念,熟记概念是解题关键.7.(2023秋·九年级单元测试)把下列物体与它们的投影连接起来.【答案】见解析【分析】根据投影的定义解答即可.【详解】解:如图:【点睛】本题主要考查了投影,理解投影的定义成为解答本题的关键.8.(2022秋·陕西西安·九年级统考期末)如图,在路灯O(O为灯泡的位置)的同侧有两根高度相同的木棒AB与CD,请分别画出这两根木棒的影子.【答案】作图见解析【分析】根据中心投影的定义:由同一点(点光源)发出的光线形成的投影叫做中心投影,物体在灯光的照射下形成的影子就是中心投影,结合光沿直线传播,根据光源和木棒的高度作图即可得到答案.【详解】解:作图如下:影子BE与DF即为所求.【点睛】本题考查中心投影的特点与应用,解决本题的关键是根据光源和两根木棒的物高得影子长.9.(2022秋·陕西咸阳·九年级校考阶段练习)如图,小明和小丽分别站在路灯OA的两侧点B和点C的位置,已知BD为小明在路灯下的影子,请你画出小丽在路灯下的影子CE.【答案】图见解析【分析】作射线OF交直线BA于E,则线段CE即为所求作.【详解】解:如图,CE即为小丽在路灯下的影子.【点睛】本题考查作图-应用与设计作图,中心投影等知识,解题的关键是理解题意,灵活运用所学知识解决问题.二、视图10.(2022·安徽合肥·校考三模)下图是由6个相同的小正方体搭成的几何体,其左视图为()A.B.C.D.【答案】A【分析】根据三视图可进行求解.【详解】解:由图可知该几何体的左视图为;故选A.【点睛】本题主要考查三视图,解题的关键是熟知几何体的特征.11.(2023·浙江湖州·统考中考真题)已知某几何体的三视图如图所示,则该几何体可能是()A.B.C.D.【答案】D【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,从而得出答案.【详解】解:∵主视图和左视图是矩形,∴几何体是柱体,∵俯视图是圆,∴该几何体是圆柱,故D正确.故选:D.【点睛】本题主要考查了由三视图确定几何体的形状,主要考查学生空间想象能力.12.(2022秋·陕西·九年级校考期中)下图是一个拱形积木玩具,其主视图是()A.B.C.D.【答案】C【分析】根据从前面看到的图形是主视图,即可求解.【详解】解:根据题意得,其主视图是:故选C.【点睛】本题主要考查了简单几何体的三视图,掌握从前面看到的图形是主视图是解题的关键.13.(2022秋·广东深圳·九年级深圳市福田区石厦学校校考阶段练习)沿正方体相邻的三条棱的中点截掉一个角,得到如图所示的几何体,则它的左视图是()A.B.C.D.【答案】C【分析】根据左视图是从左面看到的图形判定则可.【详解】解:从左边看,是一个正方形,正方形的右上角有一条虚线.故选:C.【点睛】本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键.14.(2022·福建泉州·校考模拟预测)如图为某零件支架放置在水平面上,其中支架的两个台阶的高度和宽度相等,则其俯视图是()A.B.C.D.【答案】D【分析】根据从上面看得到的图形是俯视图,可得答案.【详解】解:从上面看,是一行两个相邻的矩形.故选:D.【点睛】本题考查了简单组合体的三视图,明确从上面看得到的图形是俯视图是解题的关键.15.(2021秋·黑龙江哈尔滨·九年级校考期中)如图所示的几何体是由五个小正方体组合而成的,它的左视图是()A.B.C.D.【答案】B【分析】从左边看几何体,所看到的是左视图,按左视图的定义进行判断即可.【详解】解:如图,左视图为故选:B.【点睛】本题考查了三视图的定义,理解定义会看出几何体的三视图是解题的关键.16.(2023·海南儋州·海南华侨中学校联考模拟预测)如图是由5个相同的小正方体搭成的几何体,这个几何体的主视图是()A.B.C.D.【答案】B【分析】根据主视图的意义,从正面看该组合体所得到的图形即可.【详解】主视图为从正面看到的图形,从正面看,第一列有1个小正方形,第二列有2个小正方形,第三列有1个小正方形,故选:B.【点睛】此题考查了简单组合体的三视图-主视图,掌握主视图的含义是解题关键.17.(2022秋·甘肃平凉·七年级统考期末)如图,是某立体图形的三视图,则该立体图形是.【答案】圆锥【分析】由正视图和左视图确定是锥体,再由俯视图确定具体形状.【详解】解:根据正视图和左视图为三角形判断出是锥体,根据俯视图是圆可判断出这个几何体应该是圆锥.故答案为:圆锥.【点睛】本题考查由三视图判断几何体,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.熟练掌握简单几何体的三视图是解题的关键.18.(2023秋·江苏徐州·七年级校考阶段练习)写出一个三视图中主视图、左视图、俯视图完全相同的几何体名称:【答案】球(答案不唯一)【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形解答即可.【详解】解:∵球体的主视图、左视图、俯视图都是圆形,∴这个几何体可以是球体.故答案为:球(答案不唯一).【点睛】本题考查了几何体的三视图,从前面看到的图形是主视图,从上面看到的图形是俯视图,从左边看到的图形是左视图.19.(2023秋·七年级课时练习)若干桶方便面摆放在桌子上,如图所示是它的三视图,则这一堆方便面共有桶.【答案】6【分析】根据三视图的知识,底层应有4桶方便面,第二层应有2桶,第三层有1桶.【详解】解:综合三视图,这堆方便面底层应该有314桶,第二层应该有2桶,因此共有426桶.故答案为:6.【点睛】本题考查由三视图判断几何体,能够综合三视图进行判断是解题的关键.20.(2022秋·广东茂名·七年级校考期中)从正面、左面、上面看一个几何体,看到形状图完全相同的几何体是(写两个几何体名称)【答案】正方体、球体【分析】根据简单几何体的三视图可得答案.【详解】解:从正面、左面、上面看一个几何体,看到形状图完全相同的几何体是:正方体、球体.【点睛】本题考查的是简单几何体的三视图,掌握柱体,球体,锥体的三视图是解本题的关键.21.(2023秋·全国·九年级专题练习)某圆柱体的实物图和它的主视图如图所示.若6,4AB BC ,则该圆柱体的侧面积等于.【答案】24【分析】首先求出圆柱底面圆的半径,然后利用圆柱的侧面积公式求解即可.【详解】∵4BC ,∴圆柱底面圆的半径为2,∴该圆柱体的侧面积等于22624 .故答案为:24 .【点睛】此题考查了圆柱的侧面积,解题的关键是熟练掌握圆柱的侧面积公式.22.(2023春·九年级单元测试)下图是某个几何体的三视图,则该几何体的名称是.【答案】三棱柱【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:根据主视图和左视图为矩形可得该几何体是柱体,再根据俯视图是三角形可得该几何体是三棱柱.故答案为:三棱柱.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.掌握三视图的相关概念是解题的关键.23.(2023秋·黑龙江大庆·九年级校联考期中)如图所示是由一些相同的小立方体搭成的几何体从正面、左面和上面看到的图形,则所搭这个几何体的小方体有个.【答案】5【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】解:从主视图和俯视图看第一列2个小立方体,第二列2个小立方体,第三列1个小立方体,则此几何体共有2215个小立方体.故答案为:5.【点睛】本题考查由三视图判断几何体.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.24.(2022秋·山西太原·七年级校考阶段练习)一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请画出从正面和左面看到的几何体的形状图.【答案】见解析【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,3;左视图有2列,每列小正方形数目分别为3,3.据此可画出图形.【详解】解:主视图有3列,每列小正方数形数目分别为3,2,3;左视图有2列,每列小正方形数目分别为3,3,作图如下:.【点睛】本题考查几何体的三视图画法,由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.25.(2022秋·广东深圳·七年级统考期中)请你在答题卷相应的位置上画出下面几何体的三视图.【答案】见解析【分析】主视图从左到右列正方形个数依次为2,1,1;左视图从左到右列正方形个数依次为2,1;俯视图从左到右列正方形个数依次为2,1,1.【详解】解:作图如下:【点睛】本题主要考查了三视图的画法,掌握三视图分别是从物体正面、左面、上面看到的平面图形.26.(2023秋·江西吉安·七年级校考期末)如图,这是由4个完全相同的小正方体组成的几何体.请分别在网格中画出从正面、左面和上面看到的形状图.【答案】见解析【分析】三视图的具体画法及步骤为:①确定主视图位置,画出主视图;②在主视图的正下方画出俯视图,注意与主视图“长对正”;③在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.【详解】解:如图所示:【点睛】本题主要考查了画三视图,画立体图形的三视图要循序渐进,不妨从熟悉的图形出发,对于一般的立体图要通过仔细观察和想象,再画它的三视图.要注意几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见的部分的轮廓线化成虚线.27.(2022秋·山东威海·九年级校联考期中)如图,一个零件形如一个圆柱体削去底面圆的四分之一部分的柱体,请画出该零件的三视图【答案】见解析.【分析】根据立体图形的三视图的特点,正视图:从正面观察立体图形,正视图的宽、高与立体图形的宽、高相等;左视图:从左面看立体图形,左视图的长、高与立体图形的长、高相等;俯视图:从上往下看立体图形,俯视图的宽、长与立体图形的宽、长相等;由此即可求解.【详解】解:如图所示:【点睛】本题主要考查立体图形的三视图,理解并掌握三视图的概念,及绘图方法是解题的关键.28.(2023秋·陕西西安·七年级西安市第三中学校考阶段练习)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【答案】见解析【分析】观察图形可知,从正面看到的图形是4列,分别为1,4,1,1个正方形;从左面看到的图形是3列,分别为3,1,1个正方形;从上面看到的图形是4列,分别为1,3,1,1个正方形;据此画图即可.【详解】解:由题意得,从正面看,从左面看,从上面看,【点睛】此题考查了从不同方向看几何体,并画出图形,准确画图是解题的关键.29.(2022春·九年级单元测试)填空:如图,A是一组立方块,请说出B,C各是其什么视图.【答案】B主视图,C俯视图【分析】根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案.【详解】解:从正面看左排三层,右排一层,B是主视图;从上面看,左一个,又一个,C是俯视图,故答案为:B主视图,C俯视图.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上面看得到的图形是俯视图.30.(2023春·九年级单元测试)一个几何体的三视图如图所示,请你画出这个几何体的立体图形.【答案】作图见解析【分析】观察三视图可知,该几何体为两个圆柱组合而成,进而可得立体图形.【详解】解:由题意知,画几何体的立体图形如下:【点睛】本题考查了由三视图还原几何体.解题的关键在于根据三视图确定几何体的形状.。
中考数学常见几何模型专题05 一线三等角(K型图)模型(从全等到相似)(解析版)

专题05 一线三等角(K 型图)模型(从全等到相似)全等三角形与相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。
模型1.一线三等角(K 型图)模型(全等模型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角 直角一线三等角(“K 型图”) 钝角一线三等角条件:A CED B ∠=∠=∠+ CE=DE证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE ⇒≅异侧型一线三等角:锐角一线三等角 直角一线三等角 钝角一线三等角条件:FAC ABD CED ∠=∠=∠+ 任意一边相等证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE ⇒≅1.(2022·湖南湘潭·中考真题)在ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,过点B 、C 分别作l 的垂线,垂足分别为点D 、E .(1)特例体验:如图①,若直线l BC ∥,AB AC ==BD 、CE 和DE 的长;(2)规律探究:①如图②,若直线l 从图①状态开始绕点A 旋转()045αα<<︒,请探究线段BD 、CE 和DE 的数量关系并说明理由;②如图③,若直线l 从图①状态开始绕点A 顺时针旋转()4590αα︒<<︒,与线段BC 相交于点H ,请再探线段BD 、CE 和DE 的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD 交线段AC 于点F ,若3CE =,1DE =,求BFC S △.【答案】(1)BD =1;CE =1;DE =2(2)①DE =CE +BD ;理由见解析;②BD =CE +DE ;理由见解析 (3)258BFC S ∆=【分析】(1)先根据得出90452ABC ACB ︒∠=∠==︒,根据l BC ∥,得出45DAB ABC ∠=∠=︒,45EAC ACE ∠=∠=︒,再根据90BDA CEA ∠=∠=︒,求出45ABD ∠=︒,45ACE ∠=︒,即可得出45DAB ABD EAC ACE ∠=∠=∠=∠=︒,最后根据三角函数得出1AD BD ==,1AE CE ==,即可求出2DE AD AE =+=;(2)①DE =CE +BD ;根据题意,利用“AAS”证明ABD CAE ∆∆≌,得出AD =CE ,BD =AE ,即可得出结论; ②BD =CE +DE ;根据题意,利用“AAS”证明ABD CAE ∆∆≌,得出AD =CE ,BD =AE ,即可得出结论;(3)在Rt△AEC 中,根据勾股定理求出5AC =,根据DF CE ∥,得出AD AF AE CF=,代入数据求出AF ,根据AC =5,算出CF ,即可求出三角形的面积.(1)解:△90BAC ∠=︒,AB AC =,△90452ABC ACB ︒∠=∠==︒, △l BC ∥,△45DAB ABC ∠=∠=︒,45EAC ACE ∠=∠=︒,△BD △AE ,CE △DE ,△90BDA CEA ∠=∠=︒,△904545ABD ∠=︒-︒=︒,904545ACE ∠=-=︒︒︒,△45DAB ABD EAC ACE ∠=∠=∠=∠=︒,△sin 1AD BD AB DAB ==⨯∠==,sin 1AE CE AC EAC ==⨯∠=,△2DE AD AE =+=.(2)①DE =CE +BD ;理由如下:△BD △AE ,CE △DE ,△90BDA CEA ∠=∠=︒,△90DAB DBA ∠+∠=︒,△90BAC ∠=︒,△90DAB CAE ∠+∠=︒,△DBA CAE ∠=∠,△AB =AC ,△ABD CAE ∆∆≌,△AD =CE ,BD =AE ,△DE =AD +AE =CE +BD ,即DE =CE +BD ;②BD =CE +DE ,理由如下:△BD △AE ,CE △DE ,△90BDA CEA ∠=∠=︒,△90DAB DBA ∠+∠=︒,△90BAC ∠=︒,△90DAB CAE ∠+∠=︒,△DBA CAE ∠=∠,△AB =AC ,△ABD CAE ∆∆≌,△AD =CE ,BD =AE ,△BD =AE =AD +DE =CE +DE ,即BD =CE +DE .(3)根据解析(2)可知,AD =CE=3,△314AE AD DE =+=+=,在Rt△AEC 中,根据勾股定理可得:5AC =,△BD △AE ,CE △AE ,△DF CE ∥,△AD AF AE CF =,即345AF =,解得:154=AF , △155544CF AC AF =-=-=,△AB =AC =5,△1152552248BFC S CF AB ∆=⨯=⨯⨯=. 【点睛】本题主要考查了三角形全等的判定和性质,等腰三角形的判定和性质,勾股定理,平行线的性质,解直角三角形,根据题意证明ABD CAE ∆∆≌,是解题的关键.2.(2022·黑龙江·九年级期末)(1)如图(1),已知:在△ABC 中,△BAC =90°,AB =AC ,直线m 经过点A ,BD △直线m , CE △直线m ,垂足分别为点D 、E .证明△DE =BD +CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有△BDA =△AEC =△BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为△BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若△BDA =△AEC =△BAC ,试判断△DEF 的形状.【答案】(1)见解析(2)成立,证明见解析(3)△DEF为等边三角形,证明见解析【分析】(1)因为DE=DA+AE,故由全等三角形的判定AAS证△ADB△△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE;(2)成立,仍然通过证明△ADB△△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD;(3)由△ADB△△CEA得BD=AE,△DBA =△CAE,由△ABF和△ACF均等边三角形,得△ABF=△CAF=60°,FB=F A,所以△DBA+△ABF=△CAE+△CAF,即△DBF=△F AE,所以△DBF△△EAF,所以FD=FE,△BFD=△AFE,再根据△DFE=△DF A+△AFE=△DF A+△BFD=600得到△DEF是等边三角形.【详解】解:(1)证明:△BD△直线m,CE△直线m,△△BDA=△CEA=90°.△△BAC=90°,△△BAD+△CAE=90°.△△BAD+△ABD=90°,△△CAE=△ABD.又AB=AC,△△ADB△△CEA(AAS).△AE=BD,AD=CE.△DE=AE+AD=BD+CE;(2)成立.证明如下:△△BDA =△BAC=α,△△DBA+△BAD=△BAD +△CAE=180°-α.△△DBA=△CAE.△△BDA=△AEC=α,AB=AC,△△ADB△△CEA(AAS).△AE=BD,AD=CE.△DE=AE+AD=BD+CE;(3)△DEF为等边三角形.理由如下:由(2)知,△ADB△△CEA,BD=AE,△DBA =△CAE,△△ABF和△ACF均为等边三角形,△△ABF=△CAF=60°.△△DBA+△ABF=△CAE+△CAF.△△DBF=△F AE.△BF=AF,△△DBF△△EAF(SAS).△DF=EF,△BFD=△AFE.△△DFE=△DF A+△AFE=△DF A+△BFD=60°.△△DEF为等边三角形.【点睛】此题考查了全等三角形的性质和判定、等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定,等边三角形的性质和判定.3.(2022·江苏·九年级专题练习)【感知模型】“一线三等角”模型是平面几何图形中的重要模型之一,请根据以下问题,把你的感知填写出来:①如图1,ABC 是等腰直角三角形,90C ∠=︒,AE =BD ,则AED ≌_______;②如图2,ABC 为正三角形,,60BD CF EDF =∠=︒,则BDE ≌________;③如图3,正方形ABCD 的顶点B 在直线l 上,分别过点A 、C 作AE l ⊥于E ,CF l ⊥于F .若1AE =,2CF =,则EF 的长为________.【模型应用】(2)如图4,将正方形OABC 放在平面直角坐标系中,点O 为原点,点A 的坐标为(,则点C 的坐标为________. 【模型变式】(3)如图5所示,在ABC 中,90ACB ∠=︒,AC BC =,BE CE ⊥于E ,AD △CE 于D ,4cm DE =,6cm AD =,求BE 的长.A BADE BFDAE BD∠=∠⎧⎪∠=∠⎨⎪=⎩△△AED△△BDF(AAS) 答案为:△BDF;②△△ABC是等边三角形△△B=△C=60゜△△BDE+△BED=180゜−△B=120゜△△EDF=60゜△△BDE+△CDF=180゜−△EDF=120゜△△BED=△CDF在△BDE和△CFD中B CBED CDFBD CF∠=∠⎧⎪∠=∠⎨⎪=⎩△△BDE△△CFD(AAS)故答案为:△CFD;③△四边形ABCD是正方形△△ABC=90゜,AB=BC△△ABE+△CBF=180゜−△ABC=90゜△AE△l,CF△l△△AEB=△CFB =90゜△△ABE+△EAB=90゜△△EAB=△CBF在△ABE和△BCF中AEB CFBEAB CBFAB BC∠=∠⎧⎪∠=∠⎨⎪=⎩△△ABE△△BCF(AAS)△AE=BF=1,BE=CF=2△EF=BE+BF=2+1=3 故答案为:3;(2)分别过A、C作x轴的垂线,垂足分别为点D、E,如图所示△四边形OABC是正方形△△AOC=90゜,AO=OC△△COE+△AOD=180゜−△ACO=90゜△AD△x轴,CE△x轴△△CEO=△ADO =90゜△△ECO+△COE=90゜△△ECO=△AOD模型2.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1.(2022·四川·一模)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC中,AB AC=,D、A、E三点都在直线m上,并且有BDA AEC BACα∠=∠=∠=.试猜想DE、BD、CE有怎样的数量关系,请证明你的结论;(2)老师鼓励学习小组继续探索相似的情形.于是,学习小组又研究以下问题:如图2,△ABC中,(060)B Cαα∠=∠=<<︒.将一把三角尺中30°角顶点P放在BC边上,当P在BC边上移动时,三角尺中30°角的一条边始终过点A ,另一条边交AC 边于点Q ,P 、Q 不与三角形顶点重合.设CPQ β∠=.当β在许可范围内变化时,α取何值总有△ABP △△PCQ ?当α在许可范围内变化时,β取何值总有△ABP △△QCP ? (3)试探索有无可能使△ABP 、△QPC 、△ABC 两两相似?若可能,写出所有α、β的值(不写过程);若不可能,请说明理由.【答案】(1)DE AE AD BD CE =+=+;证明见解析;(2)30α=︒;75β=︒;(3)可能;30α=︒,30β=︒或52.5α=︒,75β=︒.【分析】(1)证明△ADB △△CEA (AAS ),由全等三角形的性质得出AE =BD ,AD =CE ,则可得出结论;(2)由β=△2或△1=△CQP ,即△2=30°+β-α=β,解得α=30°,即可求解;由β=△1或△2=△CQP ,同理可得:β=75°,即可求解;(3)①当α=30°,β=30°时,则△2=△B =α=30°,即可求解;②当β=75°,α=52.5°时,同理可解.【详解】解:(1)如图1,△BDA BAC α∠=∠=,△180DBA BAD BAD CAE ∠∠∠∠α+=+=︒-,△DBA CAE ∠=∠,在△ADB 和△CEA 中,DBA EAC BDA AEC BA AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ADB △△CEA (AAS ),△AE BD =,AD CE =, △DE AE AD BD CE =+=+;(2)在△ABP 中,2230APC B αβ∠=∠+∠=+∠=︒+,△1150β∠=︒-,同理可得:230βα∠=︒+-;由2β=∠或1CQP ∠=∠,即230βαβ∠=︒+-=,解得30α=︒,则△ABP △△PCQ ;△当β在许可范围内变化时,30α=︒时,总有△ABP △△PCQ ;由1β=∠或2CQP ∠=∠,同理可得:75β=︒.△当α在许可范围内变化时,75β=︒总有△ABP △△QCP ;(3)可能.①当30α=︒,30β=︒时,则230B α∠=∠==︒,则△ABP △△PCQ △△BCA ;②当75β=︒,52.5α=︒时,同理可得:115075ββ∠=︒-=︒=,23052.5βαα∠=︒+-=︒=,△△ABP △△CQP △△BCA .【点睛】本题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的性质是解本题的关键.2.(2022·河南新乡·二模)如图,△ABC 和△ADE 是有公共顶点A 的两个等腰直角三角形,△DAE =△BAC =90°,AD =AE ,AB =AC =6,D 在线段BC 上,从B 到C 运动,点M 和点N 分别是边BC ,DE 的中点.(1)【问题发现】若点D 是BC 边的中点时,BD MN= ,直线BD 与MN 相交所成的锐角的度数为 (请直接写出结果)(2)【解决问题]若点D 是BC 边上任意一点时,上述结论是否成立,请说明理由.(3)【拓展探究】在整个运动过程中,请直接写出N 点运动的路径长,及CN 的最小值.3.(2022·山东菏泽·三模)(1)问题:如图1,在四边形ABCD 中,点P 为AB 上一点,当90DPC A B ∠=∠=∠=︒时,求证:AD BC AP BP ⋅=⋅.(2)探究:若将90°角改为锐角或钝角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用:如图3,在ABC 中,AB =45B ∠=︒,以点A 为直角顶点作等腰Rt ADE △.点D 在BC上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若CE =CD 的长.)结论仍然成立,理由如下,BPD ∠=又BPD ∠=DPC BPC +∠DPC ∠=ADP ∴∽△(3)∠ABD DFE ∴∽,AB DF ∴ADE 是等腰直角三角形,,2AB =4DF =,45EFD ∠=135DEC =︒,EFC DEC ∴∽,FC EC CD∴=5EC =,()45FC CD FC FC ⋅=⋅+=,1FC ∴=【点睛】本题考查相似三角形的综合题,三角形的相似;能够通过构造45°角将问题转化为一线三角是解题的关键.模型3.一线三直角模型(相似模型)【模型解读与图示】“一线三直角”模型的图形,实则是“一线三等角”型的图形的特例,因为这种图形在正方形和矩形中出现的比较多,对它做一专门研究,这样的图形,因为有三个角是直角,就有两个角相等,再根据“等角的余角相等”可以得到另外一对角相等,从而判定两个三角形相似.1.(2022·湖南郴州·中考真题)如图1,在矩形ABCD 中,4AB =,6BC =.点E 是线段AD 上的动点(点E 不与点A ,D 重合),连接CE ,过点E 作EF CE ⊥,交AB 于点F .(1)求证:AEF DCE ∽;(2)如图2,连接CF ,过点B 作BG CF ⊥,垂足为G ,连接AG .点M 是线段BC 的中点,连接GM .①求AG GM +的最小值;②当AG GM +取最小值时,求线段DE 的长.【答案】(1)见解析(2)①5;②3DE =3DE =【分析】(1)证明出DCE AEF ∠=∠即可求解;(2)①连接AM .先证明132BM CM GM BC ====.确定出点G 在以点M 为圆心,3为半径的圆上.当A ,G ,M 三点共线时,AG GM AM +=.此时,AG GM +取最小值.在Rt ABM 中利用勾股定理即可求出AM ,则问题得解.②先求出AF ,求AF 的第一种方法:过点M 作∥MN AB 交FC 于点N ,即有CMN CBF ∽△△,进而有12MN CM BF CB ==.设AF x =,则4BF x =-,()142MN x =-.再根据∥MN AB ,得到AFG MNG ∽△△,得到AF AG MN GM =,则有()21342x x =-,解方程即可求出AF ;求AF 的第二种方法:过点G 作GH AB ∥交BC 于点H .即有MHG MBA ∽△△.则有GM GH MH AM AB MB==,根据5AM =,可得3543GH MH ==,进而求出125GH =,95MH =.由GH AB ∥得CHG CBF ∽△△,即可求出AF .求出AF 之后,由(1)的结论可得AF AE DE DC.设DE y =,则6AE y =-,即有164y y -=,解得解方程即可求出DE . (1)证明:如图1,△四边形ABCD 是矩形,△90A D ∠=∠=︒,△90CED DCE ∠+∠=︒.△EF CE ⊥,△90CED AEF ∠+∠=︒,△DCE AEF ∠=∠,△AEF DCE ∽;(2)①解:如图2-1,连接AM .△BG CF ⊥,△BGC 是直角二角形.△132BM CM GM BC ====. △点G 在以点M 为圆心,3为半径的圆上.当A ,G ,M 三点不共线时,由三角形两边之和大于箒三边得:AG GM AM +>,当A ,G ,M 三点共线时,AG GM AM +=.此时,AG GM +取最小值.在Rt ABM中,5AM ==.△AG GM +的最小值为5. ②(求AF 的方法一)如图2-2,过点M 作∥MN AB 交FC于点N ,△CMN CBF ∽△△.△12MN CM BF CB ==. 设AF x =,则4BF x =-,△()11422MN BF x ==-. △∥MN AB ,△AFG MNG ∽△△,△AF AG MN GM=, 由①知AG GM +的最小值为5、即5AM =,又△3GM =,△2AG =.△()21342xx =-,解得1x =,即1AF =.(求AF 的方法二)如图2-3,过点G 作GH AB ∥交BC 于点H .△MHG MBA ∽△△.△GM GH MH AM AB MB==, 由①知AG GM +的最小值为5,即5AM =,又△3GM =,△3543GH MH ==.△125GH =,95MH =. 由GH AB ∥得CHG CBF ∽△△,△GH CH FB CB =,即1293556FB +=,解得3FB =. △1AF AB FB =-=.由(1)的结论可得AF AE DE DC . 设DE y =,则6AE y =-,△164y y -=,解得3y =3△036<<,036<,△3DE =或3DE =【点睛】本题主要考查了相似三角形的判定与性质、平行的性质、勾股定理以及一元二次方程的应用等知识,掌握相似三角形的判定与性质是解答本题的关键.2.(2022·山东济宁·二模)情境观察:将含45°角的三角板的直角顶点R 放在直线l 上,分别过两锐角的顶点M ,N 作l 的垂线,垂足分别为P , Q ,(1)如图1.观察图1可知:与NQ 相等的线段是______________,与NRQ ∠相等的角是_____ (2)问题探究直角ABC 中,90B ∠=︒,在AB 边上任取一点D ,连接CD ,分别以AC,DC为边作正方形ACEF和正方形CDGH ,如图2,过E ,H 分别作BC 所在直线的垂线,垂足分别为K ,L .试探究EK 与HL 之间的数量关系,并证明你的结论.(3)拓展延伸:直角ABC 中,90B ∠=︒,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作矩形ACEF 和矩形CDGH ,连接EH 交BC 所在的直线于点T ,如图3.如果AC kCE =,CD kCH =,试探究TE 与TH 之间的数量关系,并证明你的结论.【答案】(1)PR ,PMR ∠,(2)EK LH =,证明见解析;(3)ET HT =,证明见解析.【分析】(1)根据等腰直角三角形的性质得到,=MR RN ,90MRN ∠=︒,根据余角性质得到PMR NRQ ∠=∠,再证明MPR NRQ ≌△△,即可得到QN PR =,NRQ PMR ∠=∠;(2)证明ABC CEK ≌△△,得到EK BC =,再证明DCB CHL ≌△△,得到BC HL =,可得到EK LH =; (3)证明ACB ECM ∽△△,得到BC kEM =,证明BCD NHC ∽△△,得到BC kHN =,得到EM HN =,证明NHT EMT ≌△△即可得到ET HT =. (1)解:△MRN △是等腰直角三角形,△=MR RN ,90MRN ∠=︒,△MP PQ ⊥,NQ PQ ⊥,△90MPR NQR ∠=∠=︒,△90PMR MRP MRP NRQ ∠+∠=∠+∠=︒,△PMR NRQ ∠=∠,在MPR △和NRQ △中,PMR NRQ MPR NRQ MR NR ∠=∠⎧⎪∠=∠⎨⎪=⎩△MPR NRQ ≌△△,△QN PR =,NRQ PMR ∠=∠,故答案为:PR ,PMR ∠;(2)解:△四边形ACEF 是正方形,△AC CE =,90ACE ∠=︒,△EK BK ⊥△90B EKC ∠=∠=︒,△90BAC ACB ACB ECK ∠+∠=∠+∠=︒,△BAC ECK ∠=∠,在ABC 和CEK △中,BAC KCE B EKCAC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩△ABC CEK ≌△△,△EK BC =,在DCB和△3)解:过3.(2022·浙江·嘉兴一中一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC中,△ACB=90°,AC=BC,分别过A、B向经过点C直线作垂线,垂足分别为D、E,我们很容易发现结论:△ADC△△CEB.(1)探究问题:如果AC≠BC,其他条件不变,如图②,可得到结论;△ADC△△CEB.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y=12x与直线CD交于点M(2,1),且两直线夹角为α,且tanα=32,请你求出直线CD的解析式.(3)拓展应用:如图④,在矩形ABCD中,AB=4,BC=5,点E为BC边上一个动点,连接AE,将线段AE 绕点E顺时针旋转90°,点A落在点P处,当点P在矩形ABCD外部时,连接PC,PD.若△DPC为直角三角形时,请你探究并直接写出BE的长.由(1)可得:△NFO△△OEM,△NF OF NOOE ME MO==,△点M(2,1),△OE=2,ME=1,ON33NF OF33课后专项训练:1.(2022·贵州铜仁·三模)(1)探索发现:如图1,已知Rt ABC 中,90ACB ∠=︒,AC BC =,直线l 过点C ,过点A 作AD l ⊥,过点B 作BE l ⊥,垂足分别为D 、E .求证:CD BE =.(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点N 的坐标为()4,2,求点M 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线44y x =-+与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45︒后,所得的直线交x 轴于点R .求点R 的坐标.=35x+4.【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形2.(2022·广东·汕头市潮阳区教师发展中心教学研究室一模)(1)模型建立,如图1,等腰直角三角形ABC 中,△ACB=90°,CB=CA,直线ED经过点C,过A作AD△ED于D,过B作BE△ED于E.求证:△BEC△△CDA;(2)模型应用:①已知直线AB与y轴交于A点,与x轴交于B点,sin△ABO=35,OB=4,将线段AB绕点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x-5上的一点,若△APD是以D为直角顶点的等腰直角三角形,请求出所有符合条件的点D的坐标.和CDA中⎧⎪⎨⎪⎩①如图,过点中sin△ABO,AB=5m,)可证得CDB∆3.(2022·黑龙江·桦南县九年级期中)如图1,在ABC中,90ACB∠=︒,AC BC=,直线MN经过点C,且AD MN⊥于D,BE MN⊥于E.(1)由图1,证明:DE AD BE=+;(2)当直线MN绕点C旋转到图2的位置时,请猜想出DE,AD,BE的等量关系并说明理由;(3)当直线MN绕点C旋转到图3的位置时,试问DE,AD,BE又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由).【答案】(1)证明见解析;(2)DE AD BE =-,证明过程见解析;(3)DE BE AD =-,证明过程见解析【分析】(1)先证明△ADC △△CEB ,得到AD=CE ,DC=BE ,进而得到DE=CE+DC=AD+BE 即可;(2)同(1)中思路,证明△ADC △△CEB ,进而得到DE=CE -DC=AD -BE 即可;(3)同(1)中思路,证明△ADC △△CEB ,进而得到DE=DC -CE=BE -AD 即可.【详解】解:(1)证明:在ABC 中,△90ACB ∠=︒,△90ACD BCE ∠+∠=︒,△AD MN ⊥,△90ACD CAD ∠+∠=︒,△BCE =∠∠CAD ,又△AC BC =,90ADC CEB ∠=∠=,△()≌ADC CEB AAS ,△AD CE =,DC BE =,△直线MN 经过点C ,△DE CE DC AD BE =+=+;(2)DE ,AD ,BE 的等量关系为:DE AD BE =-,理由如下:△AD MN ⊥于D ,BE MN ⊥于E △90ADC BEC ACB ∠=∠=∠=︒,△90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒,△CAD BCE ∠=∠,在ADC 和CEB △中90CAD BCE ADC BEC AC CB ∠=∠⎧⎪∠=∠=⎨⎪=⎩,△()ADC CEB AAS △≌△△CE AD =,CD BE =,△DE CE CD AD BE =-=-;(3)当MN 旋转到图3的位置时,DE 、AD 、BE 所满足的等量关系是DE BE AD =-,理由如下: △AD MN ⊥于D ,BE MN ⊥于E △90ADC BEC ACB ∠=∠=∠=︒,△90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒,△CAD BCE ∠=∠,在ADC 和CEB △中90CAD BCE ADC BEC AC CB ∠=∠⎧⎪∠=∠=⎨⎪=⎩,△()ADC CEB AAS △≌△△CE AD =,CD BE =,△DE CD CE BE AD =-=-.【点睛】本题考查了全等三角形的判定方法、等腰直角三角形的性质及等角的余角相等等知识点,熟练掌握三角形全等的判定方法是求解的关键.4.(2022·山东·九年级课时练习)(1)课本习题回放:“如图①,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E , 2.5cm AD =, 1.7cm DE =.求BE 的长”,请直接写出此题答案:BE 的长为________. (2)探索证明:如图②,点B ,C 在MAN ∠的边AM 、AN 上,AB AC =,点E ,F 在MAN ∠内部的射线AD 上,且BED CFD BAC ∠=∠=∠.求证:ABE CAF ∆∆≌.(3)拓展应用:如图③,在ABC ∆中,AB AC =,AB BC >.点D 在边BC 上,2CD BD =,点E 、F 在线段AD 上,BED CFD BAC ∠=∠=∠.若ABC ∆的面积为15,则ACF ∆与BDE ∆的面积之和为________.(直接填写结果,不需要写解答过程)【答案】(1)0.8cm ;(2)见解析(3)5【分析】(1)利用AAS 定理证明△CEB △△ADC ,根据全等三角形的性质解答即可;(2)由条件可得△BEA =△AFC ,△4=△ABE ,根据AAS 可证明△ABE △△CAF ;(3)先证明△ABE △△CAF ,得到ACF ∆与BDE ∆的面积之和为△ABD 的面积,再根据2CD BD =故可求解.【详解】解:(1)△BE △CE ,AD △CE ,△△E =△ADC =90°,△△EBC +△BCE =90°.△△BCE +△ACD =90°,△△EBC =△DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△CEB △△ADC (AAS ),△BE =DC ,CE =AD =2.5cm .△DC =CE −DE ,DE =1.7cm ,△DC =2.5−1.7=0.8cm ,△BE =0.8cm 故答案为:0.8cm ;(2)证明:△△1=△2,△△BEA =△AFC .△△1=△ABE +△3,△3+△4=△BAC ,△1=△BAC ,△△BAC =△ABE +△3,△△4=△ABE .△△AEB =△AFC ,△ABE =△4,AB =AC ,△△ABE △△CAF (AAS ).(3)△BED CFD BAC ∠=∠=∠△△ABE +△BAE =△F AC +△BAE =△F AC +△ACF△△ABE =△CAF ,△BAE =△ACF又AB AC =△△ABE △△CAF ,△ABE CAF S S =△ACF ∆与BDE ∆的面积之和等于ABE ∆与BDE ∆的面积之和,即为△ABD 的面积,△2CD BD =,△ABD 与△ACD 的高相同则13ABD ABC S S =△△=5 故ACF ∆与BDE ∆的面积之和为5故答案为:5.【点睛】本题考查的是全等三角形的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.5.(2022·无锡市九年级月考)(1)如图1,直线m 经过等腰直角△ABC 的直角顶点A ,过点B 、C 分别作BD ⊥m ,CE ⊥m ,垂足分别是D 、E .求证:BD +CE =DE ;(2)如图2,直线m 经过△ABC 的顶点A ,AB =AC ,在直线m 上取两点 D 、E ,使∠ADB =∠AEC =α, 补充∠BAC = (用α表示),线段BD 、CE 与DE 之间满足BD +CE =DE ,补充条件后并证明; (3)在(2)的条件中,将直线m 绕着点A 逆时针方向旋转一个角度到如图3的位置,并改变条件∠ADB =∠AEC = (用α表示).通过观察或测量,猜想线段BD 、CE 与DE 之间满足的数量关系,并予以证明.【答案】(1)证明见详解,(2)∠BAC=α,证法见详解,(3)180º-α,DE=EC-BD,证明见详解.【分析】(1)根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA;(2)补充∠BAC=α.利用△ADB≌△CAE,即可得出三角形对应边之间的关系,即可得出答案;(3)180º-α,DE=CE-BD,根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA,即可得出三角形对应边之间的关系,即可得出答案.【详解】证明:(1)∵BD⊥m,CE⊥m,∠ABC=90°,AC=BC,∴△ADB和△AEC都是直角三角形,∴∠DBA+∠DAB=90°,∴∠ECA+∠EAC=90°,∵∠BAC=90°,∠DAB+∠EAC=90º,∴∠DAB=∠ECA,又∵∠ADB=∠CEA=90°,AB=BC,所以△ADB≌△CEA(AAS),BD=AE,DA=EC,DE=DA+AE=EC+BD,BD+CE=DE.(2)∵等腰△ABC中,AC=CB,∠ADB=∠BAC=∠CEA=α,∴∠DAB+∠EAC=180°-α,∠ECA+∠CAE=180º-α,∴∠DAB=∠ECA,∵∠ADB=∠CEA=α,AC=CB,∴△ADB≌△CEA(AAS),∴CE=AD,BD=AE,∴AD+BE=CE+CD,所以BD+CE=DE.(3)180º-α,数量关系为DE=CE-BD,∵∠ADB=∠AEC=180º-α,∠BAC=α,∴∠ABD+∠BAD=α,∠BAD+∠EAC=α,∴∠ABD=∠CAE,∵AB=AC,∴△BAD≌△ACE(AAS),∴AD=CE,BD=AE,∴DE=AD-AE=EC-BD.【点睛】点评:此题主要考查了三角形全等的证明,根据已知得出∠DAB=∠ECA,再利用全等三角形的判定方法得出是解决问题的关键.6.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在ABC中,△BAC=90°,ABAC=k,直线l经过点A,BD△直线I,CE上直线l,垂足分别为D、E.求证:BDAE=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在ABC中,ABAC=k,D、A、E三点都在直线l上,并且有△BDA=△AEC=△BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在ABC中,沿ABC的边AB、AC向外作矩形ABDE和矩形ACFG,ABAE=ACAG=12,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC与AI之间的数量关系:.【答案】(1)见解析(2)结论还成立,证明见解析(3)①见解析②BC=AI【分析】(1)由条件可证明△ABD△△CAE,可得BDAE=ABAC=k;(2)由条件可知△BAD+△CAE=180°−α,且△DBA+△BAD=180°−α,可得△DBA=△CAE,结合条件可证明△ABD△△CAE,同(1)可得出结论;(3)①过点G作GM∥AE交AI的延长线于点M,连接EM,证明△ABC△△GMA,再得到四边形AGME是平行四边形,故可求解;②由①得到BC=12AM,再根据四边形AGME是平行四边形得到BC=AI,故可求解.【详解】(1)如图1,△BD△直线l,CE△直线l,△△BDA=△CEA=90°,△△BAC=90°,△△BAD+△CAE=90°△△BAD+△ABD=90°,△△CAE=△ABD△△ABD=△CAE,△BDA=△CEA,△△ADB△△CEA,△BDAE =ABAC=k;(2)成立,证明如下:如图2,△△BDA=△BAC=α,△△DBA+△BAD=△BAD+△CAE=180°−α,△△DBA=△CAE,△△ABD=△CAE,△BDA=△CEA△△ADB△△CEA,△BDAE =ABAC=k;(3)①过点G作GM∥AE交AI的延长线于点M,连接EM7.(2022·湖北武汉·模拟预测)[问题背景](1)如图1,ABC 是等腰直角三角形,AC BC =,直线l 过点C ,AM l ⊥,BN l ⊥,垂足分别为M ,N .求证:AMC CNB △≌△;[尝试应用](2)如图2,AC BC =,90ACB ∠=︒,N ,B ,E 三点共线,CN NE ⊥,45E ∠=︒,1CN =,2BN =.求AE 的长;[拓展创新](3)如图3,在DCE 中,45CDE ∠=︒,点A ,B 分别在DE ,CE 上,AC BC =,90ACB ∠=︒,若1tan 2DCA ∠=,直接写出AE AD 的值为 .在AMC和△△()AMC CNB AAS≌2)如图2AM NH⊥于M,)可知:AMC BNC≌,45DAM DFN=∠=∠=a,△32AF a=,8.(2022·黑龙江齐齐哈尔·三模)数学实践课堂上,张老师带领学生们从一道题入手,开始研究,并对此题做适当变式,尝试举一反三,开阔学生思维.(1)原型题:如图1,AB BD ⊥于点B ,CD BD ⊥于点D ,P 是BD 上一点,AP PC =,AP PC ⊥,则ABP △≌△________,请你说明理由.(2)利用结论,直接应用:①如图2,四边形ABCD 、EFGH 、NHMC 都是正方形,边长分别为a 、b 、c ,A 、B 、N 、E ,F 五点在同一条直线上,则CBN △≌△________,c =________(用含a 、b 的式子表示).②如图3,四边形ABCD 中,AB DC ,AB BC ⊥,2AB =,4CD =,以BC 上一点O 为圆心的圆经过A 、D 两点,且90AOD ∠=︒,则圆心O 到弦AD 的距离为________.(3)弱化条件,变化引申:如图4,M 为线段AB 的中点,AE 与BD 交于点C ,45DME A B ∠=∠=∠=︒,且DM交AC 于点F ,ME 交BC 于点G ,连接FG ,则AMF 与BGM 的关系为:________,若AB =3AF =,则FG =________.∽AMF BGM,即可求出长度,即可求出FG(1)解:ABP PDC△≌△△中在ABP△和PDC Array在AOB和△Rt AOB 中,AOD △中,12OE ⨯⨯=10=△圆心解:AMF 与BGM 的关系为:相似,45︒△AMD AFM +∠∠B =∠△∽AMF BGM △AM BG 45B ∠=︒△90ACB ∠=︒△AC 84433=-=△FG FC =【点睛】本题考查了全等三角形的判定和性质、正方形的性质、同角的余角相等、勾股定理、相似三角形9.(2022•郑州一模)如图,在平面直角坐标系xOy 中.边长为4的等边△OAB 的边OA 在x 轴上,C 、D 、E 分别是AB 、OB 、OA 上的动点,且满足BD =2AC ,DE ∥AB ,连接CD 、CE ,当点E 坐标为 时,△CDE 与△ACE 相似.【分析】因为DE ∥AB 得到∠DEC =∠ACE ,所以△CDE 与△ACE 相似分两种情况分类讨论.【解答】解:∵DE ∥AB ,∴∠DEC =∠ACE ,△ODE ∽△OBA ,∴△ODE 也是等边三角形,则OD =OE =DE ,设E (a ,0),则OE =OD =DE =a ,BD =AE =4﹣a .∵△CDE 与△ACE 相似,分两种情况讨论:①当△CDE ∽△EAC 时,则∠DCE =∠CEA ,∴CD ∥AE ,∴四边形AEDC 是平行四边形,∴AC =a ,, ∵BD =2AC ,∴4﹣a =2a ,∴a =.∴E ;②当△CDE ∽△AEC 时,∠DCE =∠EAC =60°=∠B ,∴∠BCD +∠ECA =180°﹣60°=120°, 又∵∠BDC +∠BCD =180°﹣∠B =120°,∴∠BCD +∠ECA =∠BDC +∠BCD ,∴∠ECA =∠BDC ,∴△BDC ∽△ACE ,∴,∴BC =2AE =2(4﹣a )=8﹣2a , ∴8﹣2a +2=4,∴a =.∴.综上所述,点E 的坐标为或.【点评】本题主要考查相似三角形,考虑分类讨论是本题的关键.10.(2022•广东中考模拟)(1)模型探究:如图1,D 、E 、F 分别为ABC ∆三边BC 、AB 、AC 上的点,且B C EDF α∠=∠=∠=,BDE ∆与CFD ∆相似吗?请说明理由.(2)模型应用:ABC ∆为等边三角形,其边长为8,E 为边AB 上一点,F 为射线AC 上一点,将AEF ∆沿EF 翻折,使点A 落在射线CB 上的点D 处,且2BD =.①如图2,当点D 在线段BC 上时,求AE AF 的值; ②如图3,当点D 落在线段CB 的延长线上时,求BDE ∆与CFD ∆的周长之比.【答案】(1)~∆∆BDE CFD ,见解析;(2)①57AE AF =;②BDE ∆与CFD ∆的周长之比为13. 【分析】 (1)根据三角形的内角和得到BED CDF ∠=∠,即可证明;(2)①设AE x =,AF y =,根据等边三角形的性质与折叠可知DE AE x ==,DF AF y ==,60EDF A ∠=∠=,根据三角形的内角和定理得BED CDF ∠=∠,即可证明~∆∆BDE CFD ,故BD BE DE CF CD FD ==,再根据比例关系求出AE AF的值; ②同理可证~∆∆BDE CFD ,得BD BE DE CF CD FD==,得28810x x y y -==-,再得到13x y =,再根据相似三角形的性质即可求解. 【详解】解(1)~∆∆BDE CFD ,理由:B C EDF α∠=∠=∠=,在BDE ∆中,180B BDE BED ∠+∠+∠=,180180BDE BED B α∴∠+∠=-∠=-,180BDE EDF CDF ∠+∠+∠=,180180BDE CDF EDF α∴∠+∠=-∠=-,BED CDF ∴∠=∠,B C ∠=∠,~BDE CFD ∴∆∆; (2)①设AE x =,AF y =,ABC ∆是等边三角形,60A B C ∴∠=∠=∠=,8AB BC AC ===, 由折叠知,DE AE x ==,DF AF y ==,60EDF A ∠=∠=,在BDE ∆中,180B BDE BED ∠+∠+∠=,180120BDE BED B ∴∠+∠=-∠=,180120BDE BED B ∠+∠=-∠=,180BDE EDF CDF ∠+∠+∠=,180120BDE CDF EDF ∴∠+∠=-∠=,BED CDF ∴∠=∠,60B C ∠=∠=,~BDE CFD ∴∆∆,BD BE DE CF CD FD∴==, 8BE AB AE x =-=-,8CF AC AF y =-=-,6CD BC BD =-=2886x x y y -∴==-,()()2868y x y x y x ⎧=-⎪∴⎨=-⎪⎩,105147x y ∴==,57AE AF ∴=; ②设AE x =,AF y =,ABC ∆是等边三角形, 60A ABC ACB ∴∠=∠=∠=,8AB BC AC ===, 由折叠知,DE AE x ==,DF AF y ==,60EDF A ∠=∠=,在BDE ∆中,180ABC BDE BED ∠+∠+∠=,180120BDE BED ABC ∴∠+∠=-∠=,180BDE EDF CDF ∠+∠+∠=,180120BDE CDF EDF ∴∠+∠=-∠=,BED CDF ∴∠=∠,60ABC ACB ∠=∠=,120DBE DCF ∴∠=∠=,~BDE CFD ∴∆∆,BD BE DE CF CD FD∴== 8BE AB AE x =-=-,8CF AF AC y =-=-,10CD BC BD =+=,28810x x y y -∴==-,2(8)10(8)y x y x y x =-⎧∴⎨=-⎩,13x y ∴=. ~BDE CFD ∆∆.BDE ∴∆与CFD ∆的周长之比为13DE x DF y ==. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知等边三角形的性质及相似三角形的判定与性质.11.(2022·山西晋中·一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①,在ABC 中,90ACB ∠=︒,AC BC =,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:ADC CEB △≌△.(1)探究问题:如果AC BC ≠,其他条件不变,如图②,可得到结论;ADC CEB △∽△.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线12y x =与直线CD 交于点()2,1M ,且两直线夹角为α,且3tan2α=,请你求出直线CD的解析式.(3)拓展应用:如图④,在矩形ABCD中,3AB=,5BC=,点E为BC边上—个动点,连接AE,将线段AE绕点E顺时针旋转90︒,点A落在点P处,当点P在矩形ABCD 外部时,连接PC,PD.若DPC△为直角三角形时,请你探究并直接写出BE的长.NF OF NO90△△ABE△△EFP 12.(2022·山东青岛·九年级期中)【模型引入】我们在全等学习中所总结的“一线三等角、K型全等”这一基本图形,可以使得我们在观察新问题的时候很迅速地联想,从而借助已有经验,迅速解决问题.【模型探究】如图,正方形ABCD中,E是对角线BD上一点,连接AE,过点E作EF△AE,交直线CB于点F.(1)如图1,若点F在线段BC上,写出EA与EF的数量关系并加以证明;(2)如图2,若点F在线段CB的延长线上,请直接写出线段BC,BE和BF的数量关系.【模型应用】(3)如图3,正方形ABCD中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH△AE 于F,过H作HG△BD于G.则下列结论:①AF=FH;②△HAE=45°;③BD=2FG;④△CEH的周长为。
专题05一元二次方程的概念及解法(知识点串讲)(解析版)

专题05一元二次方程的概念及解法知识框架重难突破一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.备注:识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常数项.备注:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.(2)若a -b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a -b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.例1.(2020·山东省初二期中)下列方程中,关于x 的一元二次方程是( ) A .20ax bx c ++= B .21120x x+-=C .x (x -3)=2+x 2D x 2-【答案】D【解析】解:A 、当a ≠0,b 、c 为常数时,是一元二次方程,故此选项错误; B 、是分式方程,故此选项错误; C 、是一元一次方程,故此选项错误; D 、是关于x 的一元二次方程,故此选项正确; 故选:D .练习1.(2020·河北联邦国际学校初二期中)方程:①2113x x-=,②22250x xy y -+=,③2710x +=,④202y =中,一元二次方程是( ). A .①和② B .②和③ C .③和④ D .①和③【答案】C【解析】解:①2113x x-=不是一元二次方程; ②22250x xy y -+=不是一元二次方程; ③2710x +=是一元二次方程;④202y =是一元二次方程.综上:一元二次方程是③和④ 故选C .练习2.(2020·重庆巴蜀中学初二月考)如果(2)20mm xx ++-=是关于x 的一元二次方程,那么m 的值为________. 【答案】2【解析】解:(2)20mm xx ++-=是关于x 的一元二次方程,∴202m m +≠⎧⎨=⎩,解得:2m =. 故答案为:2.例2.(2020·哈尔滨市松雷中学校初二月考)方程2x 2﹣6x ﹣5=0的二次项系数、一次项系数、常数项分别为( ) A .6、2、5 B .2、﹣6、5 C .2、﹣6、﹣5 D .﹣2、6、5【答案】C【解析】试题分析:一元二次方程ax 2+bx+c=0(a ,b ,c 是常数且a≠0)的a 、b 、c 分别是二次项系数、一次项系数、常数项.方程2x 2﹣6x ﹣5=0的二次项系数、一次项系数、常数项分别为2、﹣6、﹣5. 故选C练习1.(2020·重庆南开中学初二月考)将一元二次方程﹣3x 2﹣2=﹣4x 化成一般形式ax 2+bx+c =0(a >0)后,一次项和常数项分别是( ) A .﹣4,2 B .﹣4x ,2 C .4x ,﹣2 D .3x 2,2【答案】B【解析】解:把一元二次方程-3x 2-2=-4x 化成一般形式ax 2+bx+c=0得: -3x 2+4x -2=0, ∵a >0, ∴3x 2-4x+2=0,∴一次项和常数项分别是:-4x ,2, 故选:B .例3.(2019·北京人大附中初二期中)若关于x 的一元二次方程22(3)130m x x m m -+++-=有一个根为1,则实数m 的值_____________. 【答案】5-【解析】∵关于x 的一元二次方程22(3)130m x x m m -+++-=有一个根为1,∴231130m m m -+++-=, 整理得:22150m m +-=, 即()()530m m +-=, 解得:5m =-或3m =, ∵30m -≠, ∴5m =-. 故答案为:5-.练习1.(2019·长沙市开福区青竹湖湘一外国语学校初二期中)若关于x 的一元二次方程260ax bx ++=的一个根为2x =-,则代数式841a b -+的值为________. 【答案】-11【解析】将2x =-代入方程260ax bx ++=得:4260a b -+=, ∴84120a b -+=, ∴84111a b -+=-. 故答案为:﹣11.练习2.(2020·海门市东洲中学初二期中)已知关于x 的方程260x x p --=的一个根是1,则p =_____________; 【答案】-5【解析】解:∵关于x 的方程260x x p --=的一个根是1,∴160p --=, 解得:5p =-, 故答案为:-5.二、一元二次方程的解法1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.备注:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.配方法解一元二次方程(1)配方法解一元二次方程(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.备注:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式 (2)配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.备注:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.3、公式法解一元二次方程(1)一元二次方程的求根公式 一元二次方程,当时,.(2)一元二次方程根的判别式 一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.(3)用公式法解一元二次方程的步骤2222()a ab b a b ±+=±用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.备注:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程,用配方法将其变形为:.①当时,右端是正数.因此,方程有两个不相等的实根:.② 当时,右端是零.因此,方程有两个相等的实根:.③ 当时,右端是负数.因此,方程没有实根.4、因式分解法解一元二次方程(1)用因式分解法解一元二次方程的步骤 (1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. (2)常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 备注:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于20 (0)ax bx c a ++=≠2224()24b b ac x a a -+=240b ac ∆=->1,2x =240b ac ∆=-=1,22b x a =-240b ac ∆=-<0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.例1.(2019·湖南省师大附中梅溪湖中学初三期末)一元二次方程240x -=的解是( ) A .x 1=2,x 2=-2 B .x =-2 C .x =2 D .x 1=2,x 2=0【答案】A【解析】原方程移项可得:24x =, 解得:12x =,22x -=, 故选:A.练习1.(2019·上海市市西初级中学初二期中)关于x 的方程2221b x x -=-的解是________.【答案】x 1=21b +,x 2=-21b +【解析】2221b x x -=-2221b x x +=()2211bx +=2211x b =+ ∴±故x 1=21b +,x 2=-21b +故答案为:x 1=,x 2=-例2.(2019·北京人大附中初二期中)用配方法解方程2640x x ++=时,原方程变形为( ) A .2(3)9x += B .2(3)14x += C .2(3)5x += D .2(3)6x +=【答案】C【解析】方程2640x x ++=, 变形得:264x x +=-,配方得:222666422x x ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,即2(3)5x +=, 故选:C .练习1.(2020·哈尔滨市松雷中学校初二月考)将方程2410x x -+=化成()2x m n +=的形式是( ) A .()2112x -=B .()223x -=C .()210x -=D .()224x -=【答案】B【解析】解:∵x 2-4x+1=0, ∴x 2-4x=-1, ∴x 2-4x+4=-1+4, ∴()223x -=. 故选B .例3.(2020·扬州市梅岭中学初二期中)关于代数式 −x 2+4x -2 的取值,下列说法正确的是( ) A .有最小值-2 B .有最大值2 C .有最大值−6 D .恒小于零【答案】B【解析】解:−x 2+4x -2=22(2)42(2)2x x --+-=--+∵2(2)0x --≤,∴2(2)22x --+≤,当且仅当2x =时等号成立,∴−x 2+4x -2有最大值2 故选B .练习1.(2019·重庆西南大学附中初二期中)代数式22244619x xy y x -+++的最小值是( ) A .10 B .9 C .19 D .11【答案】A 【解析】解:2222244619(3)(2)10x xy y x x x y -+++=++-+∵22(3)0,(2)0x x y +≥-≥∴代数式22244619x xy y x -+++的最小值是10. 故选:A .练习2.(2020·江阴市敔山湾实验学校初一期中)“a 2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x 2+4x +5=x 2+4x +4+1=(x +2)2+1,∵(x +2)2≥0,∴(x +2)2+1≥1,∴x 2+4x +5≥1.试利用“配方法”解决下列问题:(1)填空:x 2﹣4x +5=(x )2+ ; (2)已知x 2﹣4x +y 2+2y +5=0,求x +y 的值; (3)比较代数式:x 2﹣1与2x ﹣3的大小. 【答案】(1)﹣2,1;(2)1;(3)x 2﹣1>2x ﹣3 【解析】解:(1)x 2﹣4x+5=(x ﹣2)2+1; (2)x 2﹣4x+y 2+2y+5=0, (x ﹣2)2+(y+1)2=0, 则x ﹣2=0,y+1=0, 解得x =2,y =﹣1, 则x+y =2﹣1=1; (3)x 2﹣1﹣(2x ﹣3) =x 2﹣2x+2 =(x ﹣1)2+1, ∵(x ﹣1)2≥0, ∴(x ﹣1)2+1>0, ∴x 2﹣1>2x ﹣3.例4.(2020·温州外国语学校初二月考)x =是下列哪个一元二次方程的根( ) A .23210x x +-= B .22410x x +-= C .2x 2x 30--+= D .23210x x --= 【答案】D 【解析】解:对于一元二次方程()200++=≠ax bx c a ,方程的根为:x =.因为x =3a =,2b =-,1c =-,所以对应的一元二次方程是:23210x x --=.故选:D .练习1.(2019·高唐县赵寨子中学初三月考)用公式法解231x x -+=时,先求出a 、b 、c 的值,则a 、b 、c 依次为( )A .1-,3,1-B .1,3-,1-C .1-,3-,1-D .1-,3,1 【答案】A【解析】把方程231x x -+=化为一元二次方程的一般形式为2310x x -+=,∴a =1,b =−3,c =1.但选项里没有这组值,方程两边同乘以−1,得:2310x x -+-=,此时a =−1,b =3,c =−1.故选:A.练习2.(2020·兰州市外国语学校初三二模)方程x 2+x ﹣1=0的一个根是( )A .1﹣√5B .1−√52C .﹣1+√5D .√5−12 【答案】D【解析】∵a =1,b =﹣1,c =﹣1,∴△=b 2﹣4ac =12﹣4×(﹣1)=5,则x =-1±√52×1, 所以x 1=-1+√52 ,x 2=-1-√52 . 故选:D .例5.(2020·天津初三一模)方程x 2+x -12=0的两个根为( )A .x 1=-2,x 2=6B .x 1=-6,x 2=2C .x 1=-3,x 2=4D .x 1=-4,x 2=3【答案】D【解析】试题分析:将x 2+x ﹣12分解因式成(x+4)(x ﹣3),解x+4=0或x ﹣3=0即可得出结论. x 2+x ﹣12=(x+4)(x ﹣3)=0, 则x+4=0,或x ﹣3=0, 解得:x 1=﹣4,x 2=3.练习1.(2020·浙江省初三其他)已知三角形的两边长分别是3和4,第三边是方程x 2﹣12x+35=0的一个根,则此三角形的周长是( )A .12B .14C .15D .12或14 【答案】A【解析】:解方程212350,x x -+= 得125,7x x ==,即第三边的边长为5或7. ∵1<第三边的边长<7,∴第三边的边长为5.∴这个三角形的周长是3+4+5=12.故选A.练习2.(2020·浙江省初二月考)方程(1)(1)2(1)x x x -+=+的解是________.【答案】121,3x x =-=【解析】解:由(1)(1)2(1)x x x -+=+,可得(1)(1)2(1)0x x x -+-+=,所以(1)(12)0x x +--=,即(1)(3)0x x +-=,所以10x +=或30x -=,解得11x =-,23x =,故答案为:11x =-,23x =.例6.(2020·海门市东洲中学初二期中)用指定的方法解下列方程:(1)用配方法解方程:22830x x -+=;(2)用公式法解方程:5x 2+2x ﹣1=0;(3)用因式分解法解方程:2450x x -=+【答案】(1)12x =+,22x =(2)1x =,2x =;(3)121,5x x ==-. 【解析】(1)22830x x -+=()22430x x -+=()2244830x x -+-+=()2225x -= ()2522x -=2x -=22x =±故方程的解为122x =+,222x =-; (2)5x 2+2x ﹣1=0125b x a --±===故方程的解为1x =,2x =; (3)2450x x -=+()()150x x -+=解得,121,5x x ==-故方程的解为121,5x x ==-.练习1.(2020·重庆市璧山来凤中学校初三月考)解下列方程: (1)3x 2﹣2x ﹣1=0(2)(x ﹣1)2﹣16=0【答案】(1)x =1或x =13-;(2)x =5或x =﹣3.【解析】(1)∵3x 2﹣2x ﹣1=0,∴(x ﹣1)(3x +1)=0,∴x =1或13x =﹣;(2)∵(x ﹣1)2﹣16=0,∴(x ﹣1)2=16,∴x ﹣1=±4,∴x =5或x =﹣3。
专题05 三角形中位线(知识点串讲)(解析版)

专题05 三角形中位线重难突破三角形中位线1.三角形中位线:连接三角形两边中点的线段叫做三角形的中位线.2.三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.3.相关结论:顺次连接任意四边形中点所得到的四边形是平行四边形.(连接原四边形一条对角线,由中位线定理可证)4.拓展:①梯形的中位线等于上底加下底和的一半. (连接梯形一条对角线,由中位线定理可证)②过三角形一边的中点作另一边的平行线,与第三边交于一点,则这两点之间的线段为三角形的中位线. 如图,过△ABC的边AB的中点作平行于边BC的直线,交边AC于点E,则DE为△ABC的中位线.典例1.(2018春•定兴县期末)如图所示,已知P、R分别是四边形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么EF的长()A.逐渐增大B.逐渐变小C.不变D.先增大,后变小【答案】C【解析】解:∵E、F分别是PA、PR的中点,∴EF AR,∴EF的长不变,故选:C.【点睛】根据三角形中位线定理得到EF AR,判断即可.本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.典例2.(2018春•柳州期末)在Rt△ABC中,∠ACB=90°,AE,BD是角平分线,CM⊥BD于M,CN ⊥AE于N,若AC=6,BC=8,则MN=___.【答案】2【解析】解:延长CM交AB于G,延长CN交AB于H,∵∠ACB=90°,AC=6,BC=8,∴AB=10,在△BMC和△BMG中,,∴△BMC≌△BMG,∴BG=BC=8,CM=MG,∴AG=2,同理,AH=AC=6,CN=NH,∴GH=4,∴MN GH=2,故答案为:2.【点睛】延长CM交AB于G,延长CN交AB于H,证明△BMC≌△BMG,得到BG=BC=8,CM=MG,同理得到AH=AC=6,CN=NH,根据三角形中位线定理计算即可.典例3.(2018春•成都期末)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE =2,则AC的长等于______.【答案】见解析【解析】解:过D点作DF∥BE,∵AD是△ABC的中线,AD⊥BE,∴F为EC中点,AD⊥DF,∵AD=BE=2,则DF=1,AF,∵BE是△ABC的角平分线,AD⊥BE,∴△ABG≌△DBG,∴G为AD中点,∴E为AF中点,∴AE=EF=CF,∴AC AF.故答案为:.【点睛】过D点作DF∥BE,则DF BE=1,F为EC中点,在Rt△ADF中求出AF的长度,根据已知条件易知G为AD中点,因此E为AF中点,则AC AF.典例4.(2018春•吉州区期末)如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,E为BC中点.求DE的长.【答案】见解析【解析】解:如图,延长BD与AC相交于点F,∵AD平分∠BAC,BD⊥AD,∴∠DAB=∠DAF,AD=AD,∠ADB=∠ADF,∴△ADB≌△ADF,∴AF=AB,BD=DF,∵AB=6,AC=10,∴CF=AC﹣AF=AC﹣AB=10﹣6=4,∵E为BC中点,∴DE是△BCF的中位线,∴DE CF4=2.【点睛】延长BD与AC相交于点F,根据等腰三角形的性质可得BD=DF,再利用三角形的中位线平行于第三边并且等于第三边的一半可得DE CF,然后求解即可.典例5.(2018春•濮阳期末)已知等边三角形ABC的边长为a分别以这个三角形的三边中点为顶点作一个三角形,记为△A1B1C1,再以△A1B1C1各边中点为顶点做三角形记为△A2B2C2,…依次做下去,求△A5B5C5的周长.【答案】见解析【解析】解:等边△ABC的边长为a,∴等边△ABC的周长为3a.∵A2、B2分别是边A1B1、B1C1的中点,∴A2B2是△A1B1C1的中位线,∴A2B2A1B1.同理,A2C2A1C1,C2B2C1B1.∴△A2B2C2的周长等边△A1B1C1的周长.同理,△A3B3C3的周长△A2B2C2的周长等边△A1B1C1的周长.…,∴△A n B n∁n的周长△A1B1C1的周长.∴△A5B5C5的周长.【点睛】据三角形中位线定理知,△A2B2C2的各边的边长是△A1B1C1的各边边长的,△A3B3C3是△A2B2C2的各边的边长的,找出规律即可得出结论.本题考查了等边三角形的性质、三角形中位线定理.三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.典例6.(2018春•南山区期末)如图,△ABC中,AB>AC,AD,AE分别是其角平分线和中线,过点C作CG⊥AD于点F,交AB于点G,连接EF,则①EF∥AB;②∠BCG(∠ACB﹣∠ABC);③EF (AB﹣AC);④(AB﹣AC)<AE(AB+AC).其中正确的是()A.①②③④B.①②C.②③④D.①③④【答案】A【解析】解:∵AD平分∠BAC,∴∠GAF=∠CAF,∵CG⊥AD,∴∠AFG=∠AFC=90°,在△AFG和△AFC中∴△AFG≌△AFC(ASA),∴GF=CF,∵AE为△ABC的中线,∴BE=CE,∴EF∥AB,故①正确;∵△AFG≌△AFC,∴∠AGC=∠ACB,∵∠AGC=∠B+∠BCG,∴∠ACG=∠B+∠BCG,∴∠BCG=∠ACB﹣∠ACG=∠ACB﹣(∠B+∠BCG),∴2∠BCG=∠ACB﹣∠B,∴∠BCG(∠ACB﹣∠B),故②正确;∵△AFG≌△AFC,∴AC=AG,∴BG=AB﹣AG=AB﹣AC,∵F、E分别是CG、BC的中点,∴EF BG,∴EF(AB﹣AC),故③正确;∵∠AFG=90°,∴∠EAF<90°,∵∠AFE=∠AFG+∠EFG>90°,∴∠AFE>∠EAF,∴AE>EF,∵EF(AB﹣AC),∴(AB﹣AC)<AE,延长AE到M,使AE=EM,连接BM,∵在△ACE和△MBE中∴△ACE≌△MBE(SAS),∴AC=BM,在△ABM中,AM<AB+AC,∵AE=EM,∴2AE<AB+AC,∴AE(AB+AC),即(AB﹣AC)<AE(AB+AC),故④正确;故选:A.【点睛】求出F为CG中点,根据三角形的中位线性质即可判断①,求出∠ACG=∠AGC=∠B+∠BCG,即可判断②;根据三角形中位线性质即可判断③,求出2AE<AB+BC和AE>EF,即可判断④.巩固练习1.(2018春•坪山区期末)如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF的周长为()A.12 B.11 C.10 D.9【答案】D【解析】解:∵点D,E分别AB、BC的中点,∴DE AC=3.5,同理,DF BC=3,EF AB=2.5,∴△DEF的周长=DE+EF+DF=9,故选:D.2.(2018春•抚顺期末)如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=25°,则∠EPF的度数是()A.100°B.120°C.130°D.150°【答案】C【解析】解:∵P是对角线BD的中点,E,F分别是AB,CD的中点,∴PE AD,PF BC,∵AD=BC,∴PE=PF,∴∠PFE=∠PEF=25°,∴∠EPF=130°,故选:C.3.(2018春•颍东区期末)如图在△ABC中,M是BC中点,AP是∠A平分线,BP⊥AP于P,AB=12,AC=22,则MP长为()A.3 B.4 C.5 D.6【答案】C【解析】解:延长BP交AC于N.∵AP是∠BAC的角平分线,BP⊥AP于P,∴∠BAP=∠NAP,∠APB=∠APN=90°,∴△ABP≌△ANP(ASA),∴AN=AB=12,BP=PN,∴CN=AC﹣AN=22﹣12=10,∵BP=PN,BM=CM,∴PM是△BNC的中位线,∴PM CN=5.故选:C.4.(2018春•开江县期末)如图,将腰长为4的等腰直角三角形放在直角坐标系中,顺次连接各边中点得到第1个三角形,再顺次连接各边中点得到第2个三角形,……如此操作下去,那么第5个三角形直角顶点的坐标为()A.(,)B.()C.()D.()【答案】B【解析】解:由题意:第1个三角形的直角顶点坐标:(﹣2,2);第2个三角形的直角顶点坐标:(﹣1,1);第3个三角形的第1个三角形的直角顶点坐标:(,);第4个三角形的直角顶点坐标:(,);第5个三角形的直角顶点坐标:(,);故选:B.5.(2017秋•洪雅县期末)如图,在△ABC中,AB=5,AC=3,AD是角平分线,AE是中线,过点C作CG⊥AD于点F,交AB于点G,连接EF,则线段EF的长为___.【答案】1【解析】解:∵AD是其角平分线,CG⊥AD于F,∴△AGC是等腰三角形,∴AG=AC=3,GF=CF,∵AB=5,AC=3,∴BG=2,∵AE是中线,∴BE=CE,∴EF为△CBG的中位线,∴EF BG=1 故答案为:1.。
九年级数学位似人教实验版五四制知识精讲
九年级数学位似人教实验版五四制【本讲教育信息】一. 教学内容:位似二. 重点、难点:1. 重点:位似图形及位似变换中对应点的变化规律。
2. 难点:位似变换中对应点的变化规律,用坐标描述位似变换。
三. 具体内容:1. 位似图形详解:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称位似比。
如图所示,相似三角形△ABC 与C B A '''∆的对应顶点所在的直线C C B B A A ''',,都经过点O ,△ABC 和C B A '''∆是位似图形,点O 是位似中心。
警示:(1)位似图形必须满足两个条件:① 两个图形是相似图形;② 两个相似图形,每组对应点所在直线都经过同一个点,二者缺一不可。
(2)位似图形一定是相似图形,而相似图形不一定是位似图形,位似图形是相似图形的特例。
2. 利用位似变换把图形放大或缩小详解:把一个图形缩放的方法有多种,我们可以利用位似将一个图形放大或缩小,这是一个比较简单的方法。
画位似图形的一般步骤为:① 确定位似中心;② 分别连接并延长位似中心和能代表原图的关键点;③ 根据相似比,确定能代表所作的位似图形的关系键点;④ 顺次连接上述各点,得到放大或缩小的图形,借助橡皮筋、方格纸、将点图等简易工具可将图形放大或缩小,借助计算机也可很好地将一个图形放大或缩小。
警示:(1)画一个图形的位似图形时,位似中心的选取是任意的,这个点可以在图形的内部或外部或在图形上,对于具体问题要考虑画图方便且符合要求。
(2)由于位似中心选择的任意性,因此作已知图形的位似图形的结果是不唯一的。
3. 用坐标描述位似变换详解:在平面直角坐标系中,图形经过平移、旋转、轴对称后,各点的坐标会发生相应变化,同样,图形经过位似变换后,点的坐标也会发生相应变化。
2022届中考数学一轮复习知识点串讲专题05 平面直角坐标系【含答案】
2022届中考数学一轮复习知识点串讲专题05 平面直角坐标系【思维导图】【知识要点】知识点一平面直角坐标系的基础有序数对概念:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a ,b)。
【注意】a、b的先后顺序对位置的影响。
平面直角坐标系的概念:在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系。
两轴的定义:水平的数轴叫做x轴或横轴,通常取向右为正方向;竖直的数轴叫做y轴或纵轴,通常取向上方向为正方向。
平面直角坐标系原点:两坐标轴交点为其原点。
坐标平面:坐标系所在的平面叫坐标平面。
象限的概念:x轴和y轴把平面直角坐标系分成四部分,每个部分称为象限。
按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限。
【注意】坐标轴上的点不属于任何象限。
点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b分别叫做点A的横坐标和纵坐标,有序数对A(a,b)叫做点A的坐标,记作A(a,b)。
知识点二 点的坐标的有关性质(考点) 性质一 各象限内点的坐标的符号特征性质二 坐标轴上的点的坐标特征 1.x 轴上的点,纵坐标等于0; 2.y 轴上的点,横坐标等于0; 3.原点位置的点,横、纵坐标都为0. 性质三 象限角的平分线上的点的坐标1.若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; 2.若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上 性质四 与坐标轴平行的直线上的点的坐标特征 1.在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;象限 横坐标x 纵坐标y 第一象限 正 正 第二象限 负 正 第三象限 负 负 第四象限正负XyPmnOyPmnOXYA Bm2.在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;性质五 点到坐标轴距离在平面直角坐标系中,已知点P ),(b a ,则 1.点P 到x 轴的距离为b ; 2.点P 到y 轴的距离为a ;3.点P 到原点O 的距离为PO = 22b a +性质六 平面直角坐标系内平移变化性质七 对称点的坐标1. 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;P (b a ,)abxyOXXY CDnXyP1Pnn -mO2. 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3.点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;小结:【考查题型】考查题型一 用有序数对表示位置【解题思路】要确定位置坐标,需根据题目信息、明确行和列的实际意义是解答本题的关键.典例1.(2020·湖北宜昌市中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).坐标轴上 点P (x ,y ) 连线平行于 坐标轴的点 点P (x ,y )在各象限 的坐标特点 象限角平分线上 的点 X 轴 Y 轴 原点 平行X 轴平行Y 轴第一象限 第二象限 第三象限 第四象限 第一、三象限 第二、四象限 (x,0) (0,y )(0,0)纵坐标相同横坐标不同横坐标相同纵坐标不同x >0 y >0 x <0 y >0 x <0 y <0 x >0 y <0(m,m) (m,-m)XyP2P mm -nOXy P3Pnm -nOn -A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列【答案】B【分析】由于撤走一排,则四人所在的列数不变、排数减一,据此逐项排除即可.【详解】解:A. 小李现在位置为第1排第4列,故A选项错误;B. 小张现在位置为第3排第2列,故B选项正确;C. 小王现在位置为第2排第3列,故C选项错误;D. 小谢现在位置为第4排第4列,故D选项错误.故选:B.变式1-1.(2018·广西柳州市中考模拟)初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)【答案】C【详解】根据题意知小李所对应的坐标是(7,4).故选C.变式1-2.(2017·北京门头沟区一模)小军邀请小亮去他家做客,以下是他俩的对话:小军:“你在公交总站下车后,往正前方直走400米,然后右转直走300米就到我家了”小亮:“我是按照你说的走的,可是走到了邮局,不是你家…”小军:“你走到邮局,是因为你下公交车后朝向东方走的,应该朝向北方走才能到我家…”根据两人的对话记录,从邮局出发走到小军家应( ) A .先向北直走700米,再向西走100米 B .先向北直走100米,再向西走700米 C .先向北直走300米,再向西走400米 D .先向北直走400米,再向西走300米 【答案】A【分析】根据对话画出图形即可得出答案.【详解】解:如图所示:从邮局出发走到小军家应:向北直走700米,再向西直走100米.故选:A .考查题型二 求点的坐标典例2.(2020·天津中考真题)如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是()0,0,()0,6,点C 在第一象限,则点C 的坐标是( )A .()6,3B .()3,6C .()0,6D .()6,6【答案】D【分析】利用O ,D 两点的坐标,求出OD 的长度,利用正方形的性质求出OB ,BC 的长度,进而得出C 点的坐标即可.【详解】解:∵O ,D 两点的坐标分别是()0,0,()0,6,∴OD =6,∵四边形OBCD 是正方形,∴OB ⊥BC ,OB =BC =6 ∴C 点的坐标为:()6,6,故选:D .变式2-1.(2020·山东滨州市·中考真题)在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为( ) A .()4,5- B .(5,4)-C .(4,5)-D .(5,4)-【答案】D【分析】根据点到坐标轴的距离及点所在的象限解答即可. 【详解】设点M 的坐标为(x ,y ), ∵点M 到x 轴的距离为4, ∴4y =, ∴4y =±,∵点M 到y 轴的距离为5, ∴5x =, ∴5x =±,∵点M 在第四象限内, ∴x=5,y=-4,即点M 的坐标为(5,-4) 故选:D.变式2-2.(2020·湖北襄阳市模拟)如图,四边形ABCD 为菱形,点A 的坐标为()4,0,点C 的坐标为()4,4,点D 在y 轴上,则点B 的坐标为( )A .(4,2)B .(2,8)C .(8,4)D .(8,2)【答案】D【分析】根据菱形的性质得出D 的坐标(0,2),进而得出点B 的坐标即可. 【详解】连接AC ,BD ,AC 、BD 交于点E ,∵四边形ABCD 是菱形,OA =4,AC =4, ∴ED =OA =EB =4,AC =2EA =4, ∴BD =8,OD =EA =2 ∴点B 坐标为(8,2), 故选:D .变式2-3.(2020·广东二模)已知点2,24()P m m +-在x 轴上,则点Р的坐标是( ) A .()4,0 B .()0,8C .()4,0-D .()0,8-【答案】A【分析】根据点P 在x 轴上,即y=0,可得出m 的值,从而得出点P 的坐标. 【详解】解:∵点2,24()P m m +-在x 轴上, ∴240m -=, ∴2m =;∴2224m +=+=, ∴点P 为:(4,0); 故选:A .变式2-4.(2020·广西一模)点M (3,1)关于y 轴的对称点的坐标为( ) A .(﹣3,1) B .(3,﹣1)C .(﹣3.﹣1)D .(1,3)【答案】A【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案. 【详解】点M (3,1)关于y 轴的对称点的坐标为(﹣3,1),故选:A . 考查题型三 点的坐标的规律探索【解题思路】考查坐标的规律探索,解题的关键是根据题意找到坐标的变化规律.典例3.(2019·山东中考真题)如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2019的坐标为( )A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(1,505)【答案】A【分析】观察图形可以看出A 1﹣﹣A 4;A 5﹣﹣﹣A 8;…每4个为一组,由于2019÷4=504…3,A 2019在x 轴负半轴上,纵坐标为0,再根据横坐标变化找到规律即可解答.【详解】解:观察图形可以看出A 1﹣﹣A 4;A 5﹣﹣﹣A 8;…每4个为一组, ∵2019÷4=504…3 ∴A 2019在x 轴负半轴上,纵坐标为0, ∵A 3、A 7、A 11的横坐标分别为0,﹣2,﹣4, ∴A 2019的横坐标为﹣(2019﹣3)×12=﹣1008. ∴A 2019的坐标为(﹣1008,0). 故选A .变式3-1.(2019·山东菏泽市·中考真题)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ……第n 次移动到点n A ,则点2019A 的坐标是( )A .()1010,0B .()1010,1C .()1009,0D .()1009,1【答案】C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点2019A 的坐标. 【详解】()10,1A ,()21,1A ,()31,0A ,()42,0A ,()52,1A ,()63,1A ,…,201945043÷=⋅⋅⋅,所以2019A 的坐标为()50421,0⨯+, 则2019A 的坐标是()1009,0, 故选C .变式3-2.(2019·辽宁阜新市·中考真题)如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C 100的坐标为( )A .121200,5⎛⎫ ⎪⎝⎭B .()600,0C .12600,5⎛⎫ ⎪⎝⎭D .()1200,0【答案】B【分析】根据三角形的滚动,可得出:每滚动3次为一个周期,点C 1,C 3,C 5,…在第一象限,点C 2,C 4,C 6,…在x 轴上,由点A ,B 的坐标利用勾股定理可求出AB 的长,进而可得出点C 2的横坐标,同理可得出点C 4,C 6的横坐标,根据点的横坐标的变化可找出变化规律“点C 2n 的横坐标为2n×6(n 为正整数)”,再代入2n=100即可求出结论.【详解】解:根据题意,可知:每滚动3次为一个周期,点C 1,C 3,C 5,…在第一象限,点C 2,C 4,C 6,…在x 轴上.∵A(4,0),B(0,3), ∴OA=4,OB=3, ∴22OA OB +,∴点C 2的横坐标为4+5+3=12=2×6, 同理,可得出:点C 4的横坐标为4×6,点C 6的横坐标为6×6,…, ∴点C 2n 的横坐标为2n×6(n 为正整数), ∴点C 100的横坐标为100×6=600,∴点C 100的坐标为(600,0).故选:B .考查题型四 判断点的象限【解题思路】各象限内点的坐标的符号特征需记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).典例4.(2020·湖南株洲市·中考真题)在平面直角坐标系中,点(,2)A a 在第二象限内,则a 的取值可以..是( )A .1B .32-C .43D .4或-4 【答案】B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数即可判断.【详解】解:∵点(,2)A a 是第二象限内的点,∴0a <,四个选项中符合题意的数是32-, 故选:B变式4-1.(2020·江苏扬州市中考真题)在平面直角坐标系中,点()22,3P x +-所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【分析】直接利用各象限内点的坐标特点分析得出答案.【详解】∵x 2+2>0,∴点P (x 2+2,−3)所在的象限是第四象限.故选:D . 变式4-2.(2020·湖北黄冈市·中考真题)在平面直角坐标系中,若点(,)A a b -在第三象限,则点(,)B ab b -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【分析】根据点(,)A a b -在第三象限,可得0a <,0b -<,进而判定出点B 横纵坐标的正负,即可解决.【详解】解:∵点(,)A a b -在第三象限,∴0a <,0b -<,∴0ab ->,∴点B 在第一象限,故选:A .变式4-4.(2020·湖南邵阳市·中考真题)已知0,0a b ab +>>,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是( )A .(),a bB .(),a b -C .(),a b --D .(),a b -【答案】B 【分析】根据0,0a b ab +>>,得出0,0a b >>,判断选项中的点所在的象限,即可得出答案.【详解】∵0,0a b ab +>>∴0,0a b >>选项A:(),a b 在第一象限选项B:(),a b -在第二象限选项C:(),a b --在第三象限选项D:(),a b -在第四象限小手盖住的点位于第二象限故选:B考查题型五 点坐标的有关性质1.坐标轴上的点的坐标特征1.(2017·四川中考模拟)如果点P(a -4,a)在y 轴上,则点P 的坐标是( )A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)【解析】由点P(a−4,a)在y 轴上,得a−4=0,解得a=4,P 的坐标为(0,4),故选B.2.(2018·广西柳州十二中中考模拟)点P (m +3,m +1)在x 轴上,则点P 坐标为() A .(0,﹣4) B .(4,0) C .(0,﹣2) D .(2,0)【答案】D【详解】解:∵点P (m+3,m+1)在x 轴上,∴y =0,∴m+1=0,解得:m =﹣1,∴m+3=﹣1+3=2,∴点P 的坐标为(2,0).故选:D .3.(2019·甘肃中考真题)已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( )A .(40),B .(04),C .40)(-,D .(0,4)-【答案】A【详解】 解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,解得:2m =,24m ∴+=,则点P 的坐标是:()4,0.故选:A .4.(2019·甘肃中考模拟)已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)【答案】A【详解】解:∵点P(m+2,2m﹣4)在x轴上,∴2m﹣4=0,解得:m=2,∴m+2=4,则点P的坐标是:(4,0).故选:A.5.(2019·广东华南师大附中中考模拟)如果点P(m+3,m+1)在平面直角坐标系的x轴上,则m=() A.﹣1 B.﹣3 C.﹣2 D.0【答案】A【详解】由P(m+3,m+1)在平面直角坐标系的x轴上,得m+1=0.解得:m=﹣1,故选:A.2.象限角的平分线上的点的坐标1.已知点A(-3+a,2a+9)在第二象限角平分线上,则a=_________【答案】-2【详解】∵点A在第二象限角平分线上∴它的横纵坐标互为相反数则-3+a+2a+9=0解得a=-22.(2018·广西中考模拟)若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是( )A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(-2,2)或(2,-2)【答案】C【解析】已知点M在第一、三象限的角平分线上,点M到x轴的距离为2,所以点M到y轴的距离也为2.当点M 在第一象限时,点M的坐标为(2,2);点M在第三象限时,点M的坐标为(-2,-2).所以,点M的坐标为(2,2)或(-2,-2).故选C.3.与坐标轴平行的直线上的点的坐标特征1.(2019·广西中考模拟)已知点A(a﹣2,2a+7),点B的坐标为(1,5),直线AB∥y轴,则a的值是()A.1 B.3 C.﹣1 D.5【答案】B【详解】解:∵AB∥y轴,∴点A横坐标与点A横坐标相同,为1,可得:a -2=1,a=3故选:B.2.(2018·天津中考模拟)如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等【答案】A【解析】试题解析:∵直线AB平行于y轴,∴点A,B的坐标之间的关系是横坐标相等.故选A.3.(2019·广东华南师大附中中考模拟)已知点A(5,﹣2)与点B(x,y)在同一条平行于x轴的直线上,且B到y轴的距离等于4,那么点B是坐标是()A.(4,﹣2)或(﹣4,﹣2)B.(4,2)或(﹣4,2)C.(4,﹣2)或(﹣5,﹣2)D.(4,﹣2)或(﹣1,﹣2)【答案】A【详解】∵A(5,﹣2)与点B(x,y)在同一条平行于x轴的直线上,∴B的纵坐标y=﹣2,∵“B到y轴的距离等于4”,∴B的横坐标为4或﹣4.所以点B的坐标为(4,﹣2)或(﹣4,﹣2),故选A.4.(2019·江苏中考模拟)若线段AB∥x轴且AB=3,点A的坐标为(2,1),则点B的坐标为()A.(5,1)B.(﹣1,1)C.(5,1)或(﹣1,1)D.(2,4)或(2,﹣2)【答案】C【详解】∵AB∥x轴且AB=3,点A的坐标为(2,1)∴点B的坐标为(5,1)或(﹣1,1)5.(2018·江苏中考模拟)已知点M(﹣1,3),N(﹣3,3),则直线MN与x轴、y轴的位置关系分别为()A.相交,相交B.平行,平行C.垂直,平行D.平行,垂直【答案】D【详解】由题可知,M、N两点的纵坐标相等,所以直线MN与x轴平行,与y轴垂直相交.故选:D.4.点到坐标轴距离1.(2018·天津中考模拟)已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5【答案】A【解析】∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.2.(2018·江苏中考真题)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-【答案】C【解析】由题意,得x=-4,y=3, 即M 点的坐标是(-4,3),故选C .3.(2017·北京中考模拟)点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( ) A .(﹣3,4)B .( 3,﹣4)C .(﹣4,3)D .( 4,﹣3) 【答案】C【详解】由点且到x 轴的距离为3、到y 轴的距离为4,得|y|=3,|x|=4.由P 是第二象限的点,得x=-4,y=3.即点P 的坐标是(-4,3),故选C .4.(2012·江苏中考模拟)在平面直角坐标系中,点P (-3,4)到x 轴的距离为( )A .3B .-3C .4D .-4【答案】C【详解】∵|4|=4,∴点P (-3,4)到x 轴距离为4.故选C .5.平面直角坐标系内平移变化1.(2019·山东中考真题)在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)【答案】A【解析】已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.2.(2019·北京中考模拟)在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1)将线段AB 平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A.(-5,4) B.(4,3) C.(-1,-2) D.(-2,-1)【答案】A【详解】∵点A(4,﹣1)向左平移6个单位,再向上平移3个单位得到A′(﹣2,2),∴点B(1,1)向左平移6个单位,再向上平移3个单位得到的对应点B′的坐标为(﹣5,4).故选A.3.(2015·广西中考真题)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5) B.(-8,5) C.(-8,-1) D.(2,-1)【答案】D【解析】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.4.(2016·四川中考真题)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)【答案】C【解析】因为4-0=4,10-6=4,所以由点A到点A1的平移是向右平移4个单位,再向上平移4个单位,则点B的对应点1B的坐标为(1,1)故选C.5.(2018·武汉市东西湖区教育局中考模拟)在坐标系中,将点P( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标()A .(2,4)B .(1,5)C .(1,-3)D .(-5,5)【答案】B【详解】 将点P ( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标(1,5).故选B.6.对称点的坐标1.(2019·广东中考模拟)在平面直角坐标系中.点P (1,﹣2)关于x 轴的对称点的坐标是( ) A .(1,2) B .(﹣1,﹣2) C .(﹣1,2) D .(﹣2,1)【答案】A【解析】点P (1,-2)关于x 轴的对称点的坐标是(1,2),故选A .2.(2019·山东中考模拟)已知点P (a +1,2a ﹣3)关于x 轴的对称点在第二象限,则a 的取值范围是( ) A .﹣1<a <B .﹣<a <1C .a <﹣1D .a >【答案】C【详解】依题意得P 点在第三象限, ∴, 解得:a <﹣1.故选C .3.(2014·广西中考真题)已知点A (a ,2013)与点B (2014,b )关于x 轴对称,则a+b 的值为( ) A .﹣1B .1C .2D .3 【答案】B【解析】关于x 轴对称的两个点的特点是,x 相同即横坐标,y 相反即纵坐标相反,故a=2014,b=-2013,故a+b=1 4.(2018·广西中考模拟)已知点P(a +l ,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( ) A .a 1<-B .31a 2-<<C .3a 12-<<D .3a 2> 【答案】B【解析】∵点P(a+1,2a-3)关于x轴的对称点在第一象限,∴点P在第四象限。
2024年中考专区 一轮复习 专题05透镜及其应用(解析版)
专题05 透镜及其应用2023年考点与往年变化不大,考法上更加注重对学生能力的考查,在生活生产实例中运用物理知识解决问题。
如:探究凸透镜成像规律的实验及结论仍是高频考点,占分比较重;近视眼和远视眼、照相机、放大镜、投影仪等的原理也是常考点;另外还有结合其他知识点综合考查,与电磁的结合,与声现象等的结合。
预测今年中考考点不会变化太大,考点还是会延续之前的考点。
考查方式会进一步突出对能力的考查,即用所学知识解决问题,情景设置上更加新颖、贴近生活、加入最近科技信息,考有所依,学有所用。
(建议用时:20分钟)一、单选题1.(2023·江苏扬州·二模)张老师从实验室中拿给你一个凸透镜,用它不能解决的问题是()A.把天上的星星放大B.把文字放大C.把文字缩小D.让一张干纸片着火【答案】A【详解】A.天上的星星一定处于凸透镜的2倍焦距以外,所以此时通过凸透镜只能成一个倒立缩小的实像,故不可能将天上的星星放大,故A符合题意;B.当将字放到凸透镜的1倍焦距以内时,此时看到的就是一个正立放大的虚像,故B不符合题意;C.当将字放到凸透镜的2倍焦距以外时,此时看到的就是一个倒立、缩小的实像,故C不符合题意;D.由于凸透镜对光线有会聚的作用,所以它可以让一张干纸片着火,故D不符合题意。
故选A。
2.(2023·江苏镇江·一模)日环食是天空中壮观的景观,火红的太阳逐渐变成了一个金色的“指环”(如图),下列现象与此成因相同的是()A.手影B.倒影C.放大镜D.光的色散【答案】A【详解】日环食是光沿直线传播的现象。
A.手影是光沿直线传播的现象,故A符合题意;B.倒影属于平面镜成像,是光的反射现象,故B不符合题意;C.放大镜是光的折射现象,故C不符合题意;D.光的色散是太阳光经过三棱镜分解成七种颜色的光,是光的折射现象,故D不符合题意。
故选A。
3.(2023·江苏徐州·一模)将一凸透镜正对太阳,可在距透镜20cm处得到一个最小、最亮的光斑,若将一个物体放在此透镜前30cm处,则可在透镜另一侧得到()A.倒立、缩小的实像B.正立、缩小的实像C.倒立、放大的实像D.正立、放大的虚像【答案】C【详解】把一个凸透镜对准太阳光,可在距凸透镜20cm处得到一个最小、最亮的光斑,所以焦距f=20cm。
九年级数学下教案-位似(第5课时)
位似(第5课时)【学习目标】1、了解位似图形的定义,知道位似图形的性质,并能判断哪些图形是位似图形;2、能利用坐标变换作位似图形,并利用作位似图形的方法将一个图形放大或缩小。
【自学指导】1、请写出位似图形的定义2、位似图形的性质① 位似图形的对应点和位似中心在一条直线上;② 位似图形的任意一对对应顶点到位似中心的距离之比等于位似比;③ 位似一定相似,相似不一定位似;④ 位似图形的对应线段平行或在一条直线上。
【典例分析】例1:如图,D ,E 分别AB ,AC 上的点.(1)如果DE ∥BC ,那么∆ADE 和 ∆ABC 是位似图形吗?为什么?(2)如果∆ADE 和 ∆ABC 是位似图形,那么DE ∥BC 吗?为什么?归纳:具备什么条件就能判断两个图形位似。
①、相似;②、各对应顶点的连线所在的直线交于一点;③、对应线段平行或在同一条直线上。
3、如何做位似图形第一步:在原图上找若干个关键点,并任取一点作为位似中心。
即选点第二步:将位似中心与各关键点连线。
即连线第三步:在连线所在的直线上取关键点的对应点,使之满足放缩比例。
做对应点第四步:顺次连接截取点。
即连线,最后,下结论。
例2:将△ABC 作下列变化,请画出相应的图形,并指出三个顶点的坐标所发生的变化。
(1)向上平移4个单位;(2)关于y 轴对称(画图后写出每一个对应点的坐标);(3)以A 点为位似中心,相似比为2。
【尝试练习】1.一般室外放映的电影胶片上每一个图片的规格是3.5cm 3.5cm ,放映的荧屏为2m 2m ,若放映机的光源距胶片20cm ,问荧屏应该拉在离镜头多远的地⨯⨯ACB ED方,放映的图象刚好布满整个荧屏?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学专题05 位似知识网络重难突破知识点一位似位似图形定义:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:位似图形是相似图形的一种特殊形式。
位似中心的位置:形内、形外、形上。
画位似图形的步骤:1.确定位似中心.2.确定原图形的关键点.3.确定位似比.4.根据对应点所在直线经过位似中心且到位似中心的距离之比等于位似比,作出关键点的对应点,再按照原图的顺序连接各点 ( 对应点都在位似中心同侧,或两侧 ) .典例1(2018·路北区期末)△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别是OA,OB,OC的中点,若△DEF的面积是2,则△ABC的面积是( )A.2 B.4 C.6 D.8【答案】D【详解】∵点D,E分别是OA,OB的中点,∴DE=12 AB,∵△DEF和△ABC是位似图形,点O是位似中心,∴△DEF∽△ABC,∴DEFABCSS∆∆=14,∴△ABC的面积=2×4=8故选:D.典例2(2019·昆明市期末)如图,△ABC外任取一点O,连接AO、BO、CO,并取它们的中点D、E、F,得△DEF.下列说法正确的个数是()①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF周长之比为2:1;④△ABC与△DEF的面积之比为9:1.A.1个B.2个C.3个D.4个【答案】C【详解】根据位似的定义可得:△ABC与△DEF是位似图形,也是相似图形,位似比是2:1,则周长的比是2:1,因而面积的比是4:1,故①②③正确,④错误.故选:C.典例3(2018·西安市期末)如图,以点O为位似中心,将△ABC放大后得到△DEF,已知△ABC与△DEF 的面积比为1:9,则AB:DE的值为()A.1:3 B.1:2 C.13D.1:9【答案】A【详解】:∵△ABC 与△DEF 位似, ∴2()ABC DEF S ABS DE =V V =19, ∴13AB DE =, 故选:A .典例4(2019·三门峡市期中)如图,已知△ABC ,任取一点O ,连AO ,BO ,CO ,分别取点D ,E ,F ,使OD =13AO ,OE =13BO ,OF =13CO ,得△DEF ,有下列说法: ①△ABC 与△DEF 是位似图形;②△ABC 与△DEF 是相似图形;③△DEF 与△ABC 的周长比为1:3;④△DEF 与△ABC 的面积比为1:6.则正确的个数是( )A .1B .2C .3D .4【答案】C【详解】 解:∵任取一点O ,连AO ,BO ,CO ,分别取点D ,E ,F ,OD =13AO ,OE =13BO ,OF =13CO , ∴△DEF 与△ABC 的相似比为:1:3,∴①△ABC 与△DEF 是位似图形,正确;②△ABC 与△DEF 是相似图形,正确;③△DEF 与△ABC 的周长比为1:3,正确;④△DEF 与△ABC 的面积比为1:9,故此选项错误.故选:C . 典例5(2019·泉州市期中)如图,网格中的两个三角形是位似图形,它们的位似中心是( )A.点A B.点B C.点C D.点D【答案】D【详解】如图,位似中心为点D.故选D.典例6(2019·洛阳市期中)1. 下列说法不正确的是()A.位似图形一定是相似图形B.相似图形不一定是位似图形C.位似图形上任意一对对应点到位似中心的距离之比等于位似比D.位似图形中每组对应点所在的直线必相互平行【答案】D【解析】解:根据位似图形的定义可知,B,C正确,似图形中每组对应点所在的直线相交于一点,D错误.故选D.典例7(2019·鞍山市期中)如图,已知△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的49,则AO:AD的值为()A.2:3 B.2:5 C.4:9 D.4:13 【答案】B【详解】∵△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的49,∴ACDF=23,AC∥DF,∴AODO=ACDF=23,∴AOAD=25.故选:B.典例8(2018·南通市期中)如图,四边形ABCD和A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=2:3,则四边形ABCD与A'B'C'D'的面积比是()A.4:9 B.2:5 C.2:3 D23【答案】A【详解】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:224 39⎛⎫=⎪⎝⎭,故选:A.典例9(2018·武汉市期末)将投影片的图案投影到屏幕上,这种图形的变换是()A.平移变换B.旋转变换C.轴对称变换D.相似变换【答案】D【详解】解:将投影片的图案投影到屏幕上,这种图形变换是相似变换,故选:D.典例10(2019普宁市期中)下列各选项的两个图形中,不是位似图形的是()A.B.C.D.【答案】C【详解】因为两个位似图形的对应点的连线所在的直线经过同一点,所以A,B,D中的两个图形是位似图形,C中的两个图形不是位似图形.故选C.在直角坐标系中的位似图形坐标关系:在平面直角坐标系中,如果以原点为位似中心,画一个与原图形的位似图形,使它与原图形的相似比为k,若原图形上点的坐标为(x,y),则位似图形上与它对应的点的坐标为(kx,ky)或(-kx,-ky).典例1(2019·晋江市期中)如图,△ABC和△AʹBʹCʹ位似,位似中心为点O,点A(-1,2)、点Aʹ(2,-4),若△ABC的面积为4,则△AʹBʹCʹ的面积是()A.2 B.4 C.8 D.16【答案】D【详解】解:∵△ABC和△AʹBʹCʹ位似,位似中心为点O,点A(-1,2)、点A′(2,-4),∴△ABC∽△A′B′C′,∵OA=2212+=5,OA′=2224+=25,'12OAOA=,∴'''2'14ABCA B CS OAS OA⎛⎫==⎪⎝⎭VV,∵△ABC的面积为4,∴△AʹBʹCʹ的面积=16,故选:D.典例2(2019·晋城市期末)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,则CD的长度是()A.1 B.2 C.25D.5【答案】B【详解】∵点A(2,4),过点A作AB⊥x轴于点B,将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,∴C(1,2),则CD的长度是:2故选:B典例3(2018·南阳市期末)已知,直角坐标系中,点E(-4,2),F(-1,-1),以O为位似中心,按比例尺2:1把△EFO缩小,则点E的对应点E′的坐标为()A.(2,-1)或(-2,1)B.(8,-4)或(-8,4)C.(2,-1)D.(8,-4)【答案】A【详解】根据题意可知,点E的对应点E′的坐标是E(﹣4,2)的坐标同时乘以2或-2,所以点E′的坐标为(8,-4)或(-8,4).故选B.典例4(2019·池州市期末)如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)【答案】A【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴ADBG=13,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴OAOB=13,∴2OAOA=13,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.典例5(2018·来宾市期末)如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为13,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1) 【答案】A【详解】由题意得,△ODC∽△OBA,相似比是13,∴OD DC OB AB,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选A.典例6(2019·宝安区期中)如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)【答案】B【解析】试题分析:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选B.典例7(2019·临汾市期末)如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2 B.3 C.4 D.5 【答案】B【详解】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴1'2 CD BCCE B C==,∴CE=4,则OE=CE−OC=3,∴点B'的横坐标是3,故选:B.典例8(2019·汉中市期中)如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A的坐标为(1,0),则E点的坐标为( )A.(2,0) B.(1,1)C.(,) D.(2,2)【答案】D【详解】∵A(1,0),∴AO=1.∵正方形OABC与正方形ODEF是位似图形,相似比为1:2,∴∵OA=1,∴OD=2.∵四边形ODEF是正方形,∴OD=DE,DE⊥OD.∵OD=DE,OD=2,DE⊥OD,∴点E的坐标为(2,2).故选:D.典例9(2018·焦作市期中)在平面直角坐标系中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(0,3),以O为位似中心,△OA′B′与△OAB位似,若B点的对应点B′的坐标为(0,﹣6),则A点的对应点A′坐标为( )A.(﹣2,﹣4) B.(﹣4,﹣2)C.(﹣1,﹣4) D.(1,﹣4)【答案】A【详解】解:∵△OA′B′与△OAB关于O(0,0)成位似图形,且若B (0,3)的对应点B′的坐标为(0,-6),∴OB:OB'=1:2=OA:OA'∵A(1,2),∴A'(-2,-4)故选A.典例10(2018·灌南县新知双语学校初三期末)在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为2:1,把△EFO缩小,则点E的对应点E′的坐标是()A.(-2,1)B.(-2,1)或(2,-1)C.(-8,4)D.(-8,4)或(8,-4)【答案】B【解析】∵点E的坐标为(-4,2),点E′是以原点O为位似中心,相似比为2:1,把△EFO缩小得到的点E的对应点,∴点E′的坐标为(-2,1)或(2,-1).故选B.平移、轴对称、旋转、位似的区别:1.平移:和原图形一模一样(和原图形全等且能与原图形重合)2.轴对称:面积和原图形一样也是全等,和平移的不同点就是轴对称之后的图形不能与原图形重合,虽然它们全等)3.旋转:面积和原图形一样,也是全等,和轴对称的不同点是轴对称只有一个和原图形轴对称的图形,而旋转可以旋转出无数个。