牛顿运动定律测试题及答案详解

合集下载

【物理】物理牛顿运动定律练习题及答案及解析

【物理】物理牛顿运动定律练习题及答案及解析

(1)释放后,小滑块的加速度 al 和薄平板的加速度 a2; (2)从释放到小滑块滑离薄平板经历的时间 t。
【答案】(1) 4m/s2 ,1m/s2 ;(2) t 1s
【解析】
【详解】
(1)设释放后,滑块会相对于平板向下滑动,
对滑块 m :由牛顿第二定律有: mg sin 370 f1 ma1
其中 FN1 mg cos 370 , f1 1FN1
(1)小环的质量 m;
(2)细杆与地面间的倾角 a. 【答案】(1)m=1kg,(2)a=30°. 【解析】 【详解】
由图得:0-2s 内环的加速度 a= v =0.5m/s2 t
前 2s,环受到重力、支持力和拉力,根据牛顿第二定律,有: F1 mg sin ma 2s 后物体做匀速运动,根据共点力平衡条件,有: F2 mg sin
=4m/s2
解得滑雪者从静止开始到动摩擦因数发生变化所经历的时间:t= =1s
(2)由静止到动摩擦因素发生变化的位移:x1= a1t2=2m
动摩擦因数变化后,由牛顿第二定律得加速度:a2=
=5m/s2
由 vB2-v2=2a2(L-x1) 解得滑雪者到达 B 处时的速度:vB=16m/s (3)设滑雪者速度由 vB=16m/s 减速到 v1=4m/s 期间运动的位移为 x3,则由动能定理有:
;解得 x3=96m
速度由 v1=4m/s 减速到零期间运动的位移为 x4,则由动能定理有:
;解得 x4=3.2m
所以滑雪者在水平雪地上运动的最大距离为 x=x3+x4=96+ 3.2=99.2m
5.近年来,随着 AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动 分拣传送装置的简化示意图,水平传送带右端与水平面相切,以 v0=2m/s 的恒定速率顺时 针运行,传送带的长度为 L=7.6m.机械手将质量为 1kg 的包裹 A 轻放在传送带的左端,经过 4s 包裹 A 离开传送带,与意外落在传送带右端质量为 3kg 的包裹 B 发生正碰,碰后包裹 B 在水平面上滑行 0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹 A、B 与水平面 间的动摩擦因数均为 0.1,取 g=10m/s2.求:

高考物理牛顿运动定律题20套(带答案)含解析

高考物理牛顿运动定律题20套(带答案)含解析

高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv v=cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得222211x h OP x h OQ ++甲乙4.高铁的开通给出行的人们带来了全新的旅行感受,大大方便了人们的工作与生活.高铁每列车组由七节车厢组成,除第四节车厢为无动力车厢外,其余六节车厢均具有动力系统,设每节车厢的质量均为m ,各动力车厢产生的动力相同,经测试,该列车启动时能在时间t 内将速度提高到v ,已知运动阻力是车重的k 倍.求: (1)列车在启动过程中,第五节车厢对第六节车厢的作用力;(2)列车在匀速行驶时,第六节车厢失去了动力,若仍要保持列车的匀速运动状态,则第五节车厢对第六节车厢的作用力变化多大? 【答案】(1)13m (v t +kg ) (2)1415kmg 【解析】 【详解】(1)列车启动时做初速度为零的匀加速直线运动,启动加速度为a =vt① 对整个列车,由牛顿第二定律得:F -k ·7mg =7ma ②设第五节对第六节车厢的作用力为T ,对第六、七两节车厢进行受力分析,水平方向受力如图所示,由牛顿第二定律得26F+T -k ·2mg =2ma , ③ 联立①②③得T =-13m (vt+kg ) ④ 其中“-”表示实际作用力与图示方向相反,即与列车运动相反. (2)列车匀速运动时,对整体由平衡条件得F ′-k ·7mg =0 ⑤设第六节车厢有动力时,第五、六节车厢间的作用力为T 1,则有:26F '+T 1-k ·2mg =0 ⑥ 第六节车厢失去动力时,仍保持列车匀速运动,则总牵引力不变,设此时第五、六节车厢间的作用力为T 2, 则有:5F '+T 2-k ·2mg =0, ⑦ 联立⑤⑥⑦得T 1=-13kmg T 2=35kmg 因此作用力变化ΔT =T 2-T 1=1415kmg5.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.6.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -==汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.7.2019年1月3日10时26分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆地内的冯·卡门撞击坑内。

高考物理易错题专题三物理牛顿运动定律(含解析)及解析

高考物理易错题专题三物理牛顿运动定律(含解析)及解析

高考物理易错题专题三物理牛顿运动定律(含解析)及解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。

如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。

B 、C 分别是传送带与两轮的切点,相距L =6.4m 。

倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。

一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。

用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。

g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。

【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22vt a = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。

高一物理牛顿运动定律试题答案及解析

高一物理牛顿运动定律试题答案及解析

高一物理牛顿运动定律试题答案及解析1.如图所示,木块放在粗糙的长木板上,放在粗糙水平地面上,在水平恒力作用下,以速度向左匀速运动,该过程中水平弹簧秤的示数稳定为。

下列说法中正确的是()A.木块受到的静摩擦力大小等于TB.木板向左匀速运动的速度越大所需的拉力越大C.若用2F的力作用在木板上,木块受到的摩擦力的大小等于TD.若木板以2a的加速度运动时,木块受到的摩擦力大小等于T【答案】CD【解析】稳定时,A保持静止.A水平方向受到弹簧的拉力和B对A的滑动摩擦力,由平衡条件得到,木块A受到的滑动摩擦力的大小等于弹簧的拉力T.故A错误.若长木板速度增大时,AB 间动摩擦因数不变,A对B的压力不变,则木块A受到的滑动摩擦力的大小不变,仍等于T,B 错误;若用2F的力作用在长木板上,木板加速运动,而木块A受到的滑动摩擦力的大小不变,仍等于T,与F无关.故CD正确.【考点】本题考查受力分析与运动分析。

2.下面几个说法中正确的是: ( )A.静止或作匀速直线运动的物体,一定不受力的作用B.当物体的速度等于零时,物体一定处于平衡状态C.当物体的运动状态发生变化时,物体一定受到力的作用D.物体的运动方向一定是物体所受合外力的方向【答案】C【解析】略3.(8分)汽车发动机的额定功率为60kW,汽车质量为5t,汽车在水平路面上行驶时,阻力是车重的0.1倍,g取10m/s2,问:(1)汽车保持额定功率从静止起动后能达到的最大速度是多少?(2)若汽车保持0.5m/s2的加速度做匀加速运动,这一过程能维持多长时间?【答案】(1)12m/s;(2)16s。

【解析】(1)因为v=m/s=12m/s;(2)做匀加速运动的最大速度为v′=m/s=8m/s;故这一过程的时间为t==16s【考点】汽车启动问题。

4.如图所示,在竖直向下的匀强电场中有一绝缘的光滑轨道,一个带负电的小球从斜轨上的A点由静止释放,沿轨道滑下,已知小球的质量为m,电荷量为-q,匀强电场的场强大小为E,斜轨道的倾角为α,圆轨道半径为R,小球的重力大于受的电场力.(1)求小球沿轨道滑下的加速度的大小;(2)若使小球通过圆轨道顶端的B点,求A点距水平地面的高度h至少为多大;【答案】(1)(2)h1=【解析】(1)由牛顿第二定律有得:.(2)球恰能过B点有:mg-qE=m ①由动能定理,从A点到B点过程,则有:②由①②解得h1=【考点】考查了动能定律,牛顿第二定律,圆周运动5.某物体以30m/s的初速度竖直上抛,不计空气阻力,g取10m/s2.5s内物体的()A.路程为65mB.位移大小为25m,方向向上C.速度改变量的大小为10m/sD.平均速度大小为13m/s,方向向上【答案】AB【解析】解:由v=gt可得,物体的速度减为零需要的时间t==s=3s,故5s时物体正在下落;A、路程应等于向上的高度与后2s内下落的高度之和,由v2=2gh可得,h==45m,后两s下落的高度h'=gt′2=20m,故总路程s=(45+20)m=65m;故A正确;B、位移h=vt﹣gt2=25m,位移在抛出点的上方,故B正确;C、速度的改变量△v=gt=50m/s,方向向下,故C错误;D、平均速度v===5m/s,故D错误;故选AB.【考点】竖直上抛运动.分析:竖直上抛运动看作是向上的匀减速直线运动,和向下的匀加速直线运动,明确运动过程,由运动学公式即可求出各物理量.点评:竖直上抛运动中一定要灵活应用公式,如位移可直接利用位移公式求解;另外要正确理解公式,如平均速度一定要用位移除以时间;速度变化量可以用△v=at求得.6.如图所示.在光滑水平面上有物体A、B,质量分别为m1、m2.在拉力F作用下,A和B以加速度a做匀加速直线运动.某时刻突然撤去拉力F,此瞬时A和B的加速度为a1、a2.则()A.a1=a2=0B.a1=a;a2=0C.a1=a;a2= aD.a1=a;a2=﹣a【答案】D【解析】解:当力F作用时,对A运用牛顿第二定律得:a=突然撤去拉力F的瞬间,弹簧弹力没有发生变化,所以A受力不变,即a1=a;B只受弹簧弹力作用,根据牛顿第二定律得:故选D【考点】牛顿第二定律;胡克定律.分析:突然撤去拉力F的瞬间,弹簧弹力没有发生变化,所以A受力不变,B只受弹簧弹力作用,根据牛顿第二定律即可求解.点评:本题主要考查了牛顿第二定律的直接应用,注意突然撤去拉力F的瞬间,弹簧弹力没有发生变化,注意整体法和隔离法在题目中的应用.7.两物体都做匀变速直线运动,在给定的时间间隔t内()A.加速度大的,其位移一定大B.初速度大的,其位移一定大C.末速度大的,其位移一定大D.平均速度大的,其位移一定大【答案】D【解析】解:A、根据x=知,加速度大,位移不一定大,还与初速度有关.故A错误.B、根据x=知,初速度大的,位移不一定大,还与加速度有关.故B错误.C、末速度大,位移不一定大,还与初速度有关.故C错误.D、根据,时间一定,平均速度大,位移一定大.故D正确.故选D.【考点】匀变速直线运动的速度与时间的关系;匀变速直线运动的位移与时间的关系.【分析】根据匀变速直线运动位移时间公式x=和平均速度公式去判断一定时间内的位移大小.【点评】解决本题的关键掌握匀变速直线运动的位移时间公式x=和平均速度公式.8.飞机降落后,在机场跑道上滑行,与起飞升空时比较,它的惯性变小了,原因是( )A.运动速度变小了B.高度降低了C.质量变小了D.阻力变大了【答案】C【解析】质量是衡量惯性大小唯一标准,质量大惯性大,质量小则惯性小,C对。

(物理)物理牛顿运动定律题20套(带答案)含解析

(物理)物理牛顿运动定律题20套(带答案)含解析
(1)无人机以最大升力起飞的加速度;
(2)无人机在竖直上升过程中所受阻力Ff的大小;
(3)无人机从地面起飞竖直上升至离地面h=30m的高空所需的最短时间.
【答案】(1) (2) (3)
【解析】
(1)根据题意可得
(2)由牛顿第二定律 得
(3)竖直向上加速阶段 ,
匀速阶段

10.如图所示,航空母舰上的水平起飞跑道长度L=160m.一架质量为m=2.0×104kg的飞机从跑道的始端开始,在大小恒为F=1.2×105N的动力作用下,飞机做匀加速直线运动,在运动过程中飞机受到的平均阻力大小为Ff=2×104N.飞机可视为质点,取g=10m/s2.求:
解得:
(2)滑块从K至B的过程,由动能定理可知:
根据功能关系有:
解得:
3.如图甲所示,一长木板静止在水平地面上,在 时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动 图象如图所示 已知小物块与长木板的质量均为 ,小物块与长木板间及长木板与地面间均有摩擦,经1s后小物块与长木板相对静止 ,求:
求:(1)求电梯加速阶段的加速度及加速运动的时间;
(2)若减速阶段与加速阶段的加速度大小相等,求电梯到达观光平台上行的高度;
【答案】(1) 20s (2)540m
【解析】
【分析】
(1)在加速阶段,根据牛顿第二定律和运动学公式即可求解;
(2)电梯先做加速,后做匀速,在做减速,根据运动学公式或速度与时间关系图像即可求得;
(1)飞机在水平跑道运动的加速度大小;
(2)若航空母舰静止不动,飞机加速到跑道末端时速度大小;
(3)若航空母舰沿飞机起飞的方向以10m/s匀速运动,飞机从始端启动到跑道末端离开.这段时间内航空母舰对地位移大小.

物理牛顿运动定律题20套(带答案)及解析

物理牛顿运动定律题20套(带答案)及解析

物理牛顿运动定律题20套(带答案)及解析一、高中物理精讲专题测试牛顿运动定律1.某物理兴趣小组设计了一个货物传送装置模型,如图所示。

水平面左端A 处有一固定挡板,连接一轻弹簧,右端B 处与一倾角37o θ=的传送带平滑衔接。

传送带BC 间距0.8L m =,以01/v m s =顺时针运转。

两个转动轮O 1、O 2的半径均为0.08r m =,半径O 1B 、O 2C 均与传送带上表面垂直。

用力将一个质量为1m kg =的小滑块(可视为质点)向左压弹簧至位置K ,撤去外力由静止释放滑块,最终使滑块恰好能从C 点抛出(即滑块在C 点所受弹力恰为零)。

已知传送带与滑块间动摩擦因数0.75μ=,释放滑块时弹簧的弹性势能为1J ,重力加速度g 取210/m s ,cos370.8=o ,sin 370.6=o ,不考虑滑块在水平面和传送带衔接处的能量损失。

求:(1)滑块到达B 时的速度大小及滑块在传送带上的运动时间 (2)滑块在水平面上克服摩擦所做的功 【答案】(1)1s (2)0.68J 【解析】 【详解】解:(1)滑块恰能从C 点抛出,在C 点处所受弹力为零,可得:2v mgcos θm r=解得: v 0.8m /s =对滑块在传送带上的分析可知:mgsin θμmgcos θ=故滑块在传送带上做匀速直线运动,故滑块到达B 时的速度为:v 0.8m /s = 滑块在传送带上运动时间:L t v= 解得:t 1s =(2)滑块从K 至B 的过程,由动能定理可知:2f 1W W mv 2-=弹 根据功能关系有: p W E =弹 解得:f W 0.68J =2.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求:(1)小环的质量m ; (2)细杆与地面间的倾角a . 【答案】(1)m =1kg ,(2)a =30°. 【解析】 【详解】由图得:0-2s 内环的加速度a=vt=0.5m/s 2 前2s ,环受到重力、支持力和拉力,根据牛顿第二定律,有:1sin F mg ma α-= 2s 后物体做匀速运动,根据共点力平衡条件,有:2sin F mg α= 由图读出F 1=5.5N ,F 2=5N联立两式,代入数据可解得:m =1kg ,sinα=0.5,即α=30°3.如图所示,在光滑水平面上有一段质量不计,长为6m 的绸带,在绸带的中点放有两个紧靠着可视为质点的小滑块A 、B ,现同时对A 、B 两滑块施加方向相反,大小均为F=12N 的水平拉力,并开始计时.已知A 滑块的质量mA=2kg ,B 滑块的质量mB=4kg ,A 、B 滑块与绸带之间的动摩擦因素均为μ=0.5,A 、B 两滑块与绸带之间的最大静摩擦力等于滑动摩擦力,不计绸带的伸长,求:(1)t=0时刻,A 、B 两滑块加速度的大小; (2)0到3s 时间内,滑块与绸带摩擦产生的热量.【答案】(1)22121,0.5m ma a ss ==;(2)30J【解析】 【详解】(1)A 滑块在绸带上水平向右滑动,受到的滑动摩擦力为A f ,水平运动,则竖直方向平衡:A N mg =,A A f N =;解得:A f mg μ= ——① A 滑块在绸带上水平向右滑动,0时刻的加速度为1a , 由牛顿第二定律得:1A A F f m a -=——② B 滑块和绸带一起向左滑动,0时刻的加速度为2a 由牛顿第二定律得:2B B F f m a -=——③;联立①②③解得:211m /s a =,220.5m /s a =;(2)A 滑块经t 滑离绸带,此时A B 、滑块发生的位移分别为1x 和2x1221122221212L x x x a t x a t ⎧+=⎪⎪⎪=⎨⎪⎪=⎪⎩代入数据解得:12m x =,21m x =,2s t =2秒时A 滑块离开绸带,离开绸带后A 在光滑水平面上运动,B 和绸带也在光滑水平面上运动,不产生热量,3秒时间内因摩擦产生的热量为:()12A Q f x x =+ 代入数据解得:30J Q =.4.近年来,随着AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动分拣传送装置的简化示意图,水平传送带右端与水平面相切,以v 0=2m/s 的恒定速率顺时针运行,传送带的长度为L =7.6m.机械手将质量为1kg 的包裹A 轻放在传送带的左端,经过4s 包裹A 离开传送带,与意外落在传送带右端质量为3kg 的包裹B 发生正碰,碰后包裹B 在水平面上滑行0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹A 、B 与水平面间的动摩擦因数均为0.1,取g =10m/s 2.求:(1)包裹A 与传送带间的动摩擦因数; (2)两包裹碰撞过程中损失的机械能; (3)包裹A 是否会到达分拣通道口.【答案】(1)μ1=0.5(2)△E =0.96J (3)包裹A 不会到达分拣通道口 【解析】 【详解】(1)假设包裹A 经过t 1时间速度达到v 0,由运动学知识有01012v t v t t L +-=() 包裹A 在传送带上加速度的大小为a 1,v 0=a 1t 1包裹A 的质量为m A ,与传输带间的动摩檫因数为μ1,由牛顿运动定律有:μ1m A g =m A a 1 解得:μ1=0.5(2)包裹A 离开传送带时速度为v 0,设第一次碰后包裹A 与包裹B 速度分别为v A 和v B , 由动量守恒定律有:m A v 0=m A v A +m B v B包裹B在水平面上滑行过程,由动能定理有:-μ2m B gx=0-12m B v B2解得v A=-0.4m/s,负号表示方向向左,大小为0.4m/s两包裹碰撞时损失的机械能:△E=12m A v02 -12m A v A2-12m B v B2解得:△E=0.96J(3)第一次碰后包裹A返回传送带,在传送带作用下向左运动x A后速度减为零,由动能定理可知-μ1m A gx A=0-12m A v A2解得x A=0.016m<L,包裹A在传送带上会再次向右运动.设包裹A再次离开传送带的速度为v A′μ1m A gx A=12m A v A′2解得:v A′ =0.4m/s设包裹A再次离开传送带后在水平面上滑行的距离为x A-μ2m A gx A′=0-12m A v A2解得x A′=0.08mx A′=<0.32m包裹A静止时与分拣通道口的距离为0.24m,不会到达分拣通道口.5.如图,质量分别为m A=1kg、m B=2kg的A、B两滑块放在水平面上,处于场强大小E=3×105N/C、方向水平向右的匀强电场中,A不带电,B带正电、电荷量q=2×10-5C.零时刻,A、B用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s末细绳断开.已知A、B与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s2.求:(1)前2s内,A的位移大小;(2)6s末,电场力的瞬时功率.【答案】(1) 2m (2) 60W【解析】【分析】【详解】(1)B所受电场力为F=Eq=6N;绳断之前,对系统由牛顿第二定律:F-μ(m A+m B)g=(m A+m B)a1可得系统的加速度a1=1m/s2;由运动规律:x=12a1t12解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W6.我国科技已经开启“人工智能”时代,“人工智能”已经走进千家万户.某天,东东呼叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,东东操控小型无人机带动货物,由静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53s ,最后再匀减速1s 恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在加速、匀速、减速过程中对货物的作用力F 1、F 2和F 3大小分别为20.8N 、20.4N 和18.4N ,货物受到的阻力恒为其重力的0.02倍.g 取10m/s 2.计算: (1)货物的质量m ;(2)货物上升过程中的最大动能E km 及东东家阳台距地面的高度h . 【答案】(1) m =2kg (2)2112km E mv J == h =56m 【解析】 【分析】 【详解】(1)在货物匀速上升的过程中 由平衡条件得2F mg f =+ 其中0.02f mg = 解得2kg m =(2)设整个过程中的最大速度为v ,在货物匀减速运动阶段 由牛顿运动定律得33–mg f F ma += 由运动学公式得330v a t =- 解得1m v s = 最大动能211J 2m k E mv == 减速阶段的位移3310.5m 2x vt == 匀速阶段的位移2253m x vt ==加速阶段,由牛顿运动定律得11––F mg f ma =,由运动学公式得2112a x v =,解得1 2.5m x =阳台距地面的高度12356m h x x x =++=7.5s 后系统动量守恒,最终达到相同速度v′,则()12mv Mv m M v +='+ 解得v′=0.6m/s ,即物块和木板最终以0.6m/s 的速度匀速运动.(3)物块先相对木板向右运动,此过程中物块的加速度为a 1,木板的加速度为a 2,经t 1时间物块和木板具有相同的速度v′′, 对物块受力分析:1mg ma μ= 对木板:2F mg Ma μ+= 由运动公式:021v v a t =-''11v a t ''=解得:113t s =2/3v m s '=' 此过程中物块相对木板前进的距离:01122v v v s t t '-'''+= 解得s=0.5m ;t 1后物块相对木板向左运动,这再经t 2时间滑落,此过程中板的加速度a 3,物块的加速度仍为a 1,对木板:3-F mg Ma μ= 由运动公式:222122321122v t a t v t a t s ''⎛⎫---= ⎪⎝⎭'' 解得233t s =故经过时间12310.91t t t s +=+=≈ 物块滑落.8.如图所示,小红和妈妈利用寒假时间在滑雪场进行滑雪游戏。

物理牛顿运动定律题20套(带答案)及解析

物理牛顿运动定律题20套(带答案)及解析

物理牛顿运动定律题20套(带答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。

某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。

重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1(2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。

【答案】(1)0.3(2)120(3)2.75m 【解析】【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解;(2)对木板分析,先向右减速后向左加速,分过程进行分析即可;(3)分别求出二者相对地面位移,然后求解二者相对位移;【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到: 01212v mg mg m t μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到: 21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t =时间内,木板向右减速运动,其向右运动的位移为:01100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:12 2.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。

高三物理牛顿运动定律试题答案及解析

高三物理牛顿运动定律试题答案及解析

高三物理牛顿运动定律试题答案及解析1.某兴趣小组对一辆自制遥控小车的性能进行研究。

他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v―t图象,如图所示(除2s―10s时间段图象为曲线外,其余时间段图象均为直线)。

已知在小车运动的过程中,2s―14s时间段内小车的功率保持不变,在14s末停止遥控而让小车自由滑行。

小车的质量为1.0kg,可认为在整个运动过程中小车所受到的阻力大小不变。

则A.小车所受到的阻力大小为1.5NB.小车匀速行驶阶段发动机的功率为9WC.小车在加速运动过程中位移的大小为48mD.小车在加速运动过程中位移的大小为39m【答案】AB【解析】小车在14s-18s内在阻力作用下做匀减速运动,加速度由牛顿定律可知,小车所受到的阻力大小为f=ma=1.5N,选项A 正确;小车匀速行驶阶段发动机的功率为P=Fv=fv=1.5×6W=9W,选项B正确;在0-2s匀加速阶段的位移为,在2-10s 内由动能定理:,解得x2=39m所以小车在加速运动过程中位移的大小为3m+39m=42m,选项CD 错误。

【考点】v-t图线;牛顿定律的应用及动能定理。

2.洗车档的内、外地面均水平,门口的斜坡倾角为θ 。

质量为m的Jeep洗完车出来,空挡滑行经历了如图所示的三个位置。

忽略车轮的滚动摩擦,下列说法正确的是A.在三个位置Jeep都正在做加速运动B.在乙位置Jeep正在做匀速运动C.在甲位置Jeep受到的合力等于mgsinθD.在丙位置Jeep的加速度小于gsinθ【答案】BD【解析】甲图和丙图中Jeep的前轮和后轮分别在斜坡上,所以是加速运动,而乙图中Jeep的前后轮均在水平面上,所以做运动运动,选项B正确,A错误;在甲位置和丙位置Jeep受到的合力均小于mgsinθ ,加速度均小于gsinθ, D正确,C错误。

【考点】牛顿定律的应用。

3.如图1所示,质量为m=2kg的小滑块放在质量为M=1kg的长木板上,已知小滑块与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2,开始小滑块和长木板均处于静止状态,现对小滑块施加向右的水平拉力F,水平拉力F随时间的变化规律如图2所示,已知小滑块始终未从长木板上滑下且μ1=0.2,μ2=0.1,g=10m/s2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(三)牛顿运动定律测验卷
一.命题双向表
二. 期望值:65
三. 试卷
(三)牛顿运动定律测验卷
一.选择题(每道小题 4分共 40分 )
1.下面关于惯性的说法正确的是()
A.物体不容易停下来是因为物体具有惯性
B.速度大的物体惯性一定大
C.物体表现出惯性时,一定遵循惯性定律
D.惯性总是有害的,我们应设法防止其不利影响
2.一个物体受到多个力作用而保持静止,后来物体所受的各力中只有一个力逐渐减小到零后
又逐渐增大,其它力保持不变,直至物体恢复到开始的受力情况,则物体在这一过程中A.物体的速度逐渐增大到某一数值后又逐渐减小到零
B.物体的速度从零逐渐增大到某一数值后又逐渐减小到另一数值
C.物体的速度从零开始逐渐增大到某一数值
D.以上说法均不对
3.质量为m1和m2的两个物体,分别以v1和v2的速度在光滑水平面上做匀速直线运动,
且v1<v2,如图所示。

如果用相同的水平力F同时作用在两个物体上,则使它们的速度相等的条件是
图-1 图
3-3-7 A .力F 与v1、v2同向,且m1>m2 B .力F 与v1、v2同向,且m1<m2 C .力F 与v1、v2反向,且m1>m2 D .力F 与v1、v2反向,且m1<m2
4.如图3-1所示,水平面上,质量为10kg 的物块A 拴在一个被水平位伸的弹簧一端,弹簧的另一端固定在小车上,小车静止不动,弹簧对物块的弹力大小为5N 时,物块处于静止状态,若小车以加速度a =1m/s 2沿水平地面向右加速运动时
A .物块A 相对小车仍静止
B .物块A 受到的摩擦力将减小
C .物块A 受到的摩擦力将不变
D .物块A 受到的弹力将增大
5 、n 个共点力作用在一个质点上,使质点处于平衡状态。

当其中的F 1逐渐减小时,物体所
受的合力 A .逐渐增大,与F 1同向 B .逐渐增大,与F 1反向 C .逐渐减小,与F 1同向 D .逐渐减小,与F 1反向
6、质量不等的A 、B 两长方体迭放在光滑的水平面上。

第一 次 用水平恒力F 拉A ,第2次用水平恒力F 拉B ,都能使它们一 起沿水平面运动,而AB 之间没有相对滑动。

则两种情况 A .加速度相同
B .AB 间摩擦力大小相同
C .加速度可能为零
D .AB 间摩擦力可能为零
7. 一质点受到下列几组共点力的作用,一定使质点产生加速度的是 A .25N ,15N ,40N B .10N ,15N ,20N C .10N ,20N ,40N D .2N ,4N ,6N
8、质量是M 的物体位于粗糙的水平面上。

若水平向右的恒力F 拉力拉物体,其加速度为a 1,当拉力变为2F ,方向不变时,物体加速度为a 2则
A a 2 = a 1
B a 2 < 2a 1
C a 2 > 2a 1
D a 2 = 2a 1
9、质量为m 1和m 2的两个物体,由静止从同一高度下落,运动中所受的空气阻力分别是F 1和F2.如果发现质量为m 1的物体先落地,那么
A. m 1>m 2
B. F 1<F 2
C. F 1/m 1<F 2/m 2
D. F 1/m 1>F 2/m 2
10、如图所示,将质量为m =0.1kg 的物体用两个完全一样的竖直轻弹簧固定在升降机内,当升降机和物体以4m/s 2的加速度匀加速向上运动时,上面的弹簧对物体的拉力为0.4N ,当升降机和物体以8m/s 2的加速度向上运动
时,上面弹簧的拉力为 A 、0.6N B 、0.8N C 、1.0N D 、
1.2N
二.填空题(每空2分,共24分)
11.某人在以2.5m/s 2的加速度匀加速下降的升降机里,最多能举起80kg 的物体,他在地面上最多能举起_______kg 的物体;若此人在一匀加速上 升的升降机中最多能举起40kg 的物体,则此升降机上升的加速度为 _______ 。

12、质量为m 的物体,在两个大小相等、夹角为120°的共点力作用下,产生的加速度大小为a ,当两个力的大小不变,夹角变为0°时,物体的加速度大小变为____;夹角变为90°时,物体的加速度大小变为_____。

13.如图所示,木块A 、B 用一轻弹簧相连,竖直放在木块C 上,C 静置于地面上,它们的质量之比是1:2:3,设所有接触面都光滑.当沿水平方向迅速抽出木块C 的瞬间,A 、B 的加速度分别 是a A =________,a B =__________。

14、用恒力F 在时间t 内能使质量为m 的物体,由静止开始移动一段距离s ,若用F/2恒力,在时间2t 内作用于该物体,由静止开始移动的距离是_____。

15.如图所示,在固定的光滑水平地面上有质量分别为m1和m2的木块A 、B 。

A 、B 之间用轻质弹簧相连接,用水平向右的外力F 推A ,弹簧稳定后,A 、B 一起向右做匀加速直线运动,加速度为a ,以向右为正方向,在弹簧稳定后的某时刻,突然将外力F 撤去,撤去外力的瞬间,木块A 的加速度是a1=_____,木块B 的加速度是a2=_____。

16、甲、乙两个物体的质量之比为2:1,受到的合外力的大小之比是1:2,甲、乙两个物体都从静止开始运动,那么,两个物体经过相同的时间通过的路程之比为_____。

17、如图所示,质量为M 的木板可以沿倾角为a 的斜面物摩擦的滑下。

欲使木板静止在斜面上,木板上质量为m 的人以a=_______向________跑。

三.计算题(每题12分,共36分)
1.如图3—6—2所示,质量为4 kg 的物体静止于水平面上,物体与 水平面间的动摩擦因数为0.5,物体受到大小为20 N,与水平方向成30°角斜向上的拉力F 作用时沿水平面做匀加速运动,求物体的加速度是多大?(g取10 m/s 2
)
2.静止在水平地面上的物体的质量为2 kg,在水平恒力F 推动下开始运动,4 s 末它的速度达到4 m/s,此时将F 撤去,又经6 s 物体停下来,如果物体与地面的动摩擦因数不变,求F 的大小.
3、质量为1kg, 初速度为10m/s 的物体, 沿粗糙水平面滑行, 如图所示, 物体与地面间的滑动摩擦系数为0.2, 同时还受到一个与运动方向相反的, 大小为3N 的外力F 作用, 经3s 钟后撤去外力, 求物体滑
行的总位移. (g 取10/s 2
)
图3—6—
2
(三)牛顿运动定律测验卷
答题纸
姓名____________班级______________学号_______________
二.填空题(每空2分,共24分)
11 ___________ kg, _____________m/s2 .
12 _________ , _________.
13 __________. _____________
14 ___________
15 ___________ ___________
16 ___________
17 ____________,________
三.计算题(每题12分,共36分)
18 解:
19 解:
20 解:
(三)牛顿运动定律测验卷
答案及评分标准
二.填空题(每空2分,共30分)
111 60kg , 5m/s 2 . 12 2a,
2a
13 1.5g
0. 14 2S 15 -m 2a/m 1 16 1:4
17 (M+m)gsina/M 下
三.计算题(每题10分,共30分)
18 解:
,
sin cos G F F F F F F N y x -+=-=θθμ (4分)
,由牛顿第二定律得
0,====y y x x ma F ma ma F (2分)
所以0sin ,cos =-+=-G F F ma F F N θθμ
又有滑动摩擦力N F F μμ= (2分) 以上三式代入数据可解得
物体的加速度a =0.58 m/s 2.
(4分)
图3—6—3
20 解:前4 s 内物体的加速度为
2211/1/44
0s m s m t v a ==-=
(3分)
设摩擦力为F μ,由牛顿第二定律得
1
ma F F =-μ
后6 s 内物体的加速度为
2222/32
/640s m s m t v a -=-=-=
(3分)
物体所受的摩擦力大小不变,由牛顿第二定律得
2
ma F =-μ (2分)
由②④可求得水平恒力F 的大小为
N N a a m F 3.3)3
2
1(2)(21=+⨯=-= (4分)
21 解:在外力F 作用下, 物体先做匀减速运动
a1=(F+f)/m=(3+0.2×1×10)/1=5m/s2, (2分) 经过t1=v0/a=10/5=2s, 物体速度减为零;
a2=(F -f)/m=(3-0.2×1×10)/1=1m/s2; (2分) 撤掉外力F, a3=μg=0.2×10=2m/s2; (2分) 物体向右位移S1=v0t1/2=10×2/2=10m, (1分) 物体向左位移S2=a2t22/2=1×12/2=0.5m; (1分)
S3=v22/(2a3)=(a2t2)2/(2a3)=(1×1)2/(2×2)=0.25m; (2分) 总位移为S=S1-(S1+S2)=10-(0.5+0.25)=9.25m, 位于出发点右侧 (2分)。

相关文档
最新文档