人教版九年级数学上册《第23章旋转》单元测试题含答案
人教版九年级数学上册第二十三章《旋转》单元测试题(含答案)

人教版九年级数学上册第二十三章《旋转》单元测试题(含答案)一、单选题1.如图已知在ABC ∆中,AB AC =,90BAC ∠=,直角EPF ∠的顶点P 是BC 的中点,两边PE 、PF 分别交AB 和AC 于点E 、F ,给出以下五个结论正确的个数有( ) ①AE CF =;②APE CPF ∠=∠;③BEP ∆≌AFP ∆;④EPF ∆是等腰直角三角形;⑤当EPF ∠在ABC ∆内绕顶点P 旋转时(点E 不与A 、B 重合),12ABC AEPF S S ∆=四边形.A .2B .3C .4D .52.如图,点A ,B ,C ,D ,O 都在方格纸的格点上,若△COD 可以由△AOB 旋转得到,则合理的旋转方式为( )A .绕点O 顺时针旋转90°B .绕点D 逆时针旋转60°C .绕点O 逆时针旋转90°D .绕点B 逆时针旋转135°3.在下列现象中:①时针转动,②电风扇叶片的转动,③转呼啦圈,④传送带上的电视机,其中是旋转的有( )A .①②B .②③C .①④D .③④4.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .平行四边形B .矩形C .等腰三角形D .正多边形5.下列四个图形中,既是轴对称图形又是中心对称图形的有( )个.A.0B.1C.2D.36.6.同学们曾玩过万花筒,它是由三块等宽等长的玻璃围成的,图是看到的万花筒的一个图案,图中所有的小三角形均是全等的等边三角形,其中的菱形AEFG可以看成是把菱形ABCD以点A为中心().A.顺时针旋转60︒得到B.顺时针旋转120︒得到C.逆时针旋转60︒得到D.逆时针旋转120︒得到7.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.9.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.10.在下列四个汽车标志图案中,是中心对称图形的是()A.B.C.D.第II 卷(非选择题)二、填空题11.如图,在ABCD 中,AD=3,AB=5,4sin 5A =,将ABCD 绕着点B 顺时针旋转()090θθ︒<<︒后,点A 的对应是点'A ,联结'AC ,如果'A C BC ⊥,那么cos θ的值是______.12.已知两点P(1,1)、Q(1,-1),若点Q 固定,点P 绕点Q 旋转使线段PQ∥x 轴,则此时的点P 的坐标是_________________________;13.如图,在平面直角坐标系中,点1A 的坐标为(10),,以1OA 为直角边作12Rt OA A ∆,并使1260A OA ∠︒=,再以2OA 为直角边作23Rt OA A ∆,并使2360A OA ∠︒=,再以3OA 为直角边作34Rt OA A ∆,并使3460A OA ∠︒=…按此规律进行下去,则点2019A 的坐标为_______.14.在平面直角坐标系中,将函数y =2x 2+2的图象绕坐标原点0顺时针旋转45°后,得到新曲线l.(1)如图①,已知点A(-1,a),B(b ,10)在函数y =2x 2+2的图象上,若A’、B’是A 、B 旋转后的对应点,连结OA’,OB’,则S △OA’B’=____.(2)如图②,曲线与直线322y =相交于点M 、N ,则S △OMN 为_________.15.如图,在△ABC 中,∠ABC=112°,将△ABC 绕着点B 顺时针旋转一定的角度后得到△DBE (点A 与点D 对应),当A 、B 、E 三点在同一直线上时,可得∠DBC 的度数为_______.16.如图1是实验室中的一种摆动装置,BC 在地面上,支架ABC 是底边为BC 的等腰直角三角形,摆动臂AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转,30AD = ,10DM =.(1)在旋转过程中,当A D M ,,为同一直角三角形的顶点时,AM 的长为______________.(2)若摆动臂AD 顺时针旋转90°,点D 的位置由ABC 外的点1D 转到其内的点2D 处,连结12D D ,如图2,此时2135AD C ∠=︒,260CD =,2BD 的长为______________.17.如图,在△ABC 中,∠BAC=45°,AB=4cm ,将△ABC 绕点B 按逆时针方向旋转45°后得到△A′BC′,则阴影部分的面积为 ___________.18.如图,在△ABC 中,AB=2,BC=3.6,∠B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为______.三、解答题19.已知正方形ABCD ,点P 是其内部一点.(1)如图1,点P 在边AD 的垂直平分线l 上,将DAP ∆绕点D 逆时针旋转,得到11DA P ∆,当点1P 落在DC 上时,恰好点1A 落在直线l 上,求ADP 的度数;(2)如图2,点P 在对角线AC 上,连接PB ,若将线段BP 绕点P 逆时针旋转90︒后得到线段1B P ,试问点1B 是否在直线CD 上,请给出结论,并说明理由;(3)如图3,若135APB ∠=︒,设PA a =,PD b =,PC c =,请写出a 、b 、c 这三条线段长之间满足的数量关系是____________.20.(1)问题发现如图①,△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°,点B 在线段AE 上,点C 在线段AD 上,请直接写出线段BE 与线段CD 的数量关系: ;(2)操作探究如图②,将图①中的△ABC 绕点A 顺时针旋转,旋转角为α(0<α<360),请判断线段BE 与线段CD 的数量关系,并说明理由.21.如图,四边形ABCD 是正方形,△ADF 绕着点A 顺时旋转90°得到△ABE ,若AF =4,AB =7.(1)求DE 的长度;(2)指出BE 与DF 的关系如何?并说明由.22.如图,已知:如图点()4,0A ,点B 在y 轴正半轴上,且5AB =,将线段BA 绕点A 沿顺时针旋转90,设点B 旋转后的对应点是点1B ,求点1B 的坐标.23.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请写出新的结论并说明理由.24.如图,在正方形网格中,点A 、B 、C 、M 、N 都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.25.(1)如图1,已知正方形ABCD,点M和N分别是边BC,CD上的点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论;(2)如图2,将图(1)中的△APB绕着点B逆时针旋转90º,得到△A′P′B,延长A′P′交AP 于点E,试判断四边形BPEP′的形状,并说明理由.26.下列图形是中心对称图形吗?如果是中心对称图形,在图中用点O标出对称中心.27.已知:如图所示,△ABC为任意三角形,若将△ABC绕点C顺时针旋转180°得到△DEC.(1)试猜想AE与BD有何关系?并且直接写出答案.(2)若△ABC的面积为4cm2,求四边形ABDE的面积;(3)请给△ABC 添加条件,使旋转得到的四边形ABDE 为矩形,并说明理由参考答案1.D2.C3.A4.B5.B6.D7.B8.D9.C10.B11.72512.(-1,-1)或(3,-1)13.()201720172,23- 14.99415.44° 16.202或1010; 306.17.42【详解】 解: AC 与BA′相交于D ,如图,∵△ABC 绕点B 按逆时针方向旋转45°后得到△A′BC′,∴∠ABA′=45°,BA′BA=4,△ABC ≌△A′BC′,∴S △ABC =S △A′BC′,∵S 四边形AA′C′B =S △ABC +S 阴影部分=S △A′BC′+S △ABA′,∴S 阴影部分=S △ABA′,∵∠BAC=45°,∴△ADB 为等腰直角三角形,∴∠ADB=90°,AD=222, ∴S △ABA′=12AD•BA′=12×2×2(cm 2), ∴S 阴影部分2cm 2.故答案为:42.18.1.6【详解】由旋转的性质可得:AD=AB ,∵∠B=60°,∴△ABD 是等边三角形,∴BD=AB ,∵AB=2,BC=3.6,∴CD=BC-BD=3.6-2=1.6.故答案为1.6.19.(1)30;(2)点1B 在直线CD 上,理由见解析;(3)222320a b c -+= 连接1AA ,∵点1A 在边AD 的垂直平分线l 上,∴11AA DA =.又∵AD DA =,∴1AA D ∆是等边三角形,∴160ADA ∠=︒,∴1160PDP ADA ∠=∠=︒,∴19030ADP PDP ∠=︒-∠=︒.(2)点1B 在直线CD 上.证明如下:作PQ PB ⊥交CD 于点Q ,过点P 作//EF AD 交AB 于点E 交CD 于点F . ∴90BPQ BEP PFQ ∠=∠=∠=︒,∴90EBP EPB PQF FPQ ∠+∠=∠+∠=,90EPB FPQ ∠+∠=∴=EBP FPQ ∠∠又∵P 在正方形对角线AC 上,∴∠EAP=∠APE=45°∴AE EP =,∵AE EB EP PE +=+,∴BE FP =,∴()BEP PFQ ASA ∆≅∆,∴1BP PQ B P ==.即将线段BP 绕点P 8逆时针旋转90︒后得到线段1B P ,点1B 在直线CD 上.(3)如图,将△ABP 绕点A 逆时针旋转90°得到△AMD,由题意可知:∠APB=∠AAMD=135°,DM=BP,AP=AM=a ,∠PAM=90°∴∠AMP=45°∴∠PMD=90°∴在Rt△APM 中,22222PM AM AP a =+=在Rt△PMD 中,222PM DM PD +=∴2222DM b a =-将△ABP 绕点B 顺时针旋转90°得到△BNC,同理可证在Rt△PNC 中,22222PN PC NC c a =-=-在Rt△BPN 中,222PN BP BN =+ ∴2222==22PN c a BP - 所以可得:2222-2=2c a b a - 整理得:222320a b c -+=.20.(1)BE=CD ;(2)BE=CD ;证明见解析.【详解】解:(1)BE=CD ,理由如下;∵△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°, ∴AB=AC ,AE=AD ,∴AE ﹣AB=AD ﹣AC ,∴BE=CD ;故答案为:BE=CD .(2)∵△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°,∴AB=AC ,AE=AD ,由旋转的性质得,∠BAE=∠CAD ,在△BAE 与△CAD 中,,∴△BAE ≌△CAD (SAS )∴BE=CD .21.(1)3;(2)BE =DF ,BE ⊥DF .【详解】解:(1)∵△ADF 按顺时针方向旋转一定角度后得到△ABE ,∴AE =AF =4,AD =AB =7,∴DE =AD ﹣AE =7﹣4=3;(2)BE 、DF 的关系为:BE =DF ,BE ⊥DF .理由如下:∵△ADF 按顺时针方向旋转一定角度后得到△ABE ,∴△ABE ≌△ADF ,∴BE =DF ,∠ABE =∠ADF ,∵∠ADF +∠F =180°﹣90°=90°, ∴∠ABE +∠F =90°, ∴BE ⊥DF ,∴BE 、DF 的关系为:BE =DF ,BE ⊥DF .22.1B 点的坐标为()7,4.【详解】解:如图,作1B C x ⊥轴于C ,∵4OA =,5AB =,∴22543OB -=,∵线段BA 绕点A 沿逆时针旋转90得1A B ,∴1BA A B =,且190BA B ∠=,∴190BAO B AC ∠+∠=而90BAO ABO ∠+∠=,∴1ABO B AC ∠=∠,在ABO 和1B AC 中111AOB B CA ABO B AC AB B A ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴1ABO B AC ≅,∴3AC OB ==,14B C OA ==,∴7OC OA AC =+=,∴1B 点的坐标为()7,4.23.(1)证明见解析;(2)DE=AD-BE试题解析:证明:(1)∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠BEC =90°,∵∠ACB =90°,∴∠ACD +∠BCE =90°,∠DAC +∠ACD =90°,∴∠DAC =∠BCE ,在△ADC 和△CEB 中CDA BEC DAC ECB AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADC ≌△CEB (AAS ),∴AD=CE ,CD=BE ,∵DC+CE=DE ,∴AD+BE=DE .(2)DE=AD-BE ,理由:∵BE ⊥EC ,AD ⊥CE ,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,ACD CBEADC BECAC BC∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=EC-CD=AD-BE.24.(1)见解析;(2)3.【详解】解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=12×3×2=3.25.(1)AM⊥BN,证明见解析;(2)四边形BPEP′是正方形,理由见解析.【详解】(1)AM⊥BN证明:∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°∵BM=CN,∴△ABM≌△BCN∴∠BAM=∠CBN∴∠ABN+∠BAM=90°,∴∠APB=90°∴AM⊥BN.(2)四边形BPEP′是正方形.△A′P′B是△APB绕着点B逆时针旋转90º所得,∴BP= BP′,∠P′BP=90º.又由(1)结论可知∠APB=∠A′P′B=90°,∴∠BP′E=90°.所以四边形BPEP′是矩形.又因为BP= BP′,所以四边形BPEP′是正方形.26.图形1,图形3,图形4,图形5,图形8为中心对称图形,其对称中心为图形中的点O.【详解】这些图形中:图形1,图形3,图形4,图形5,图形8为中心对称图形,其对称中心为图形中的点O.27.(1)AE∥BD,且AE=BD.(2)16;(3)当∠ACB=60°时,四边形ABFE为矩形.【解析】试题分析:(1)易证四边形ABDE是平行四边形,根据平行四边形的性质即可求解;(2)根据平行四边形的性质:平行四边形的对角线互相平分,即可得到平行四边形的面积是△ABC的面积的四倍,据此即可求解;(3)四边形ABDE是平行四边形,只要有条件:对角线相等即可得到四边形ABDE是矩形.试题解析:(1)AE∥BD,且AE=BD;(2)四边形ABDE的面积是:4×4=16;(3)AC=BC.理由是:∵AC=CD,BC=CE,∴四边形ABDE是平行四边形.∵AC=BC,∴平行四边形ABDE是矩形.考点:1.旋转的性质;2.矩形的判定。
人教版九年级数学上册《第23章旋转》单元测试题含答案

九年级数学二十三章测试题题号一二三合计得分一、选择题(每小题4分,共40分)1.在平面内将一个图形绕一个定点沿某个方向转动一个角度这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( C )2.下列图形中,为中心对称图形的是(B)3.下列图形中是轴对称图形,但不是中心对称图形的是(B)4.下列图标中,既是轴对称图形,又是中心对称图形的是(D)5.将点P(-2,3)向右平移3个单位长度得到点P1,则点P1关于原点的对称点的坐标是(C)时间:120分钟满分:150分A.(-5,-3) B.(1,-3) C.(-1,-3) D.(5,-3)6.如下所示的4组图形中,左边图形与右边图形成中心对称的有(C)A.1组B.2组C.3组D.4组7.已知a<0,则点P(-a2,-a+1)关于原点对称的点在(D)A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在Rt△ABC中,∠BAC=90°.将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为(A)A.42° B.48°C.52° D.58°9.如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是(D)A.把△ABC向右平移6格B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针旋转90°,再向右平移6格D.把△ABC绕着点A逆时针旋转90°,再向右平移6格,第10题图)10.如图,在△ABO中,AB⊥OB,OB=3,AB=1,将△ABO绕O点旋转90°后得到△A1B1O,则点A1的坐标是(B)A.(-1,3) B.(-1,3) 或(1,-3)C.(-1,-3) D.(-1,3)或(-3,-1)二、填空题(每小题4分,共24分)11.将如图所示的图案绕其中心旋转n°时与原图案完全重合,那么n的最小值是__120__.12.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为__π__.,第11题图),第12题图),第13题图),第14题图),第16题图)13.如图,将△ABC绕A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=__2__.14.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是__40°__.15.已知点A(m,m+1)在直线y=12x+1上,则点A关于原点的对称点的坐标是__(0,-1)__.16.如图,将一张直角三角板纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E 的形状是__平行四边形__.三、解答题(本大题共8小题,共86分)17.(8分)如图,△ABC中,∠B=10° ,∠ACB=20°,AB=4,△ABC 逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE的度数和AE的长.解:(1)旋转中心是点A ,∵∠CAB =180°-∠B -∠ACB =150°,∴旋转角是150°.(2)∠BAE =360°-150°×2=60°,由旋转的性质得△ABC ≌△ADE , ∴AB =AD ,AE =AC ,又∵点C 是AD 的中点,∴AC =12AD =12AB =12×4=2,∴AE =2.18.(8分)如图,D 是△ABC 的边BC 的中点,连接AD 并延长到点E ,使DE =AD ,连接BE.(1)图中哪两个图形成中心对称?(2)若△ADC 的面积为4,求△ABE 的面积.解:(1)△ADC 与△EDB 成中心对称;(2)∵△ADC 与△EDB 关于点D 中心对称,∴△ADC ≌△EDB ,∴S △ADC =S △EDB =4,∵D 是BC 中点,∴BD =CD ,∴S △ABD =S △ACD =4,∴S △ABE =S △ABD +S △BED =8.19.(8分)如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上.(1)画出△ABC关于原点成中心对称的△A′B′C′,并直接写出△A′B′C′各顶点的坐标;(2)连接BC′,B′C,求四边形BCB′C′的面积.解:(1)如图,△A′B′C′即为所求,A′(4,0),B′(3,3),C′(1,3).(2)∵B′(3,3),C′(1,3),∴B′C′∥x轴,B′C′=2,∵B(-3,-3),C(-1,-3),∴BC∥x轴,BC=2,∴BC∥B′C′,BC=B′C′,∴四边形BCB′C′是平行四边形,∴S BCB′C′=2×6=12.20.(12分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B2,C2的坐标;(3)若点P(a,b)是△ABC内任意一点,试写出将△ABC绕点O逆时针旋转90°后点P的对应点P2的坐标.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求,B2的坐标是(-2,4),C2的坐标是(-5,3);(3)点P2的坐标是(-b,a).21.(12分)如图,四边形ABCD是正方形,E,F分别是DC和CB的延长线上的点,且DE=BF,连接AE,AF,EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心__A__点,按顺时针方向旋转__90__度得到;(3)若BC=8,DE=2,求△AEF的面积.解:(1)∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是CB的延长线上的点,∴∠ABF=∠D=90°.又∵AB=AD,DE=BF,∴△ADE≌△ABF(SAS);(3)∵BC=8,∴AD=8,在Rt△ADE中,DE=2,AD=8,∴AE=AD2+DE2=217,∵△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到,∴AE=AF,∠EAF=90°.∴△AEF的面积=12AE2=12×4×17=34.22.(12分)如图,在Rt△OAB中,∠OAB=90°,OA=AB=6.(1)请你画出将△OAB绕点O沿逆时针方向旋转90°得到的△OA1B1;(2)线段OA1的长度是________,∠AOB1的度数是________;(3)连接AA1,求证:四边形OAA1B1是平行四边形.(1)解:△OA1B1如图所示.(2)解:根据旋转的性质知,OA1=OA=6.∵将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1,∴∠BOB1=90°.∵在Rt△OAB中,∠OAB=90°,OA=AB=6,∴∠BOA=∠OBA=45°,∴∠AOB1=∠BOB1+∠BOA=90°+45°=135°,即∠AOB1的度数是135°.(3)证明:根据旋转的性质知,△OA1B1≌△OAB,则∠OA1B1=∠OAB=90°,A1B1=AB,∵将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1,∴∠A1OA =90°,∴∠OA1B1=∠A1OA,∴A1B1∥OA.又∵OA=AB,∴A1B1=OA,∴四边形OAA1B1是平行四边形.23.(12分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.解:(1)由旋转的性质可知,CA=CD.∵∠ACB=90°,∠B=30°,∴∠A=60°.∴△ACD为等边三角形.∴∠ACD=60°,即n=60;(2)四边形ACFD是菱形.理由:∵F是DE的中点,∴CF=12DE=DF.∵∠EDC=∠A=60°,∴△FCD为等边三角形,∴CF=DF=CD.∵△ACD为等边三角形,∴AC=AD=CD.∴AC=AD=DF=CF,∴四边形ACFD是菱形.24.(14分)在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图③,求证:四边形CDFE是平行四边形.(1)解:四边形ABDF是菱形,理由如下:∵△ABD绕边AD的中点旋转180°得△DFA,∴△ABD≌△DFA,又∵AB =BD,∴AB=DF=BD=AF,∴四边形ABDF是菱形;(2)证明:∵四边形ABDF是菱形,∴AB∥DF,AB=DF,∵△ABC绕边AC的中点旋转180°得△CEA,∴△ABC≌△CEA,∴AB=EC,AE=BC,∴四边形ABCE是平行四边形,∴AB=CE,AB∥CE,又∵AB∥DF,AB=DF,∴EC∥DF,EC=DF,∴四边形CDFE是平行四边形.。
人教版九年级上册数学第23章测试卷及答案

精品基础教育教学资料,仅供参考,需要可下载使用!人教版九年级上册数学《第23章旋转》单元测试题一.选择题(共10小题)1.下列图形中,由原图旋转得到的是()A.B.C.D.2.如图,Rt△ABC中,∠ACB=90°,线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,过点A作AE⊥射线CD于点E,则∠CAE的度数是()A.90﹣αB.αC.D.3.下列图形绕某点旋转90°后,不能与原来图形重合的是()A.B.C.D.4.在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是()A.(4,﹣4)B.(4,4)C.(﹣4,﹣4)D.(﹣4,4)5.下列四张扑克牌图案,属于中心对称的是()A.B.C.D.6.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个7.点P(2,﹣1)关于原点中心对称的点的坐标是()A.(2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣2,1)8.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()A.黑(2,3)B.黑(3,2)C.黑(3,4)D.黑(3,1)9.在A、B、C、D四幅图案中,能通过图平移得到的是()A.B.C.D.10.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字()的格子内.A.1 B.2 C.3 D.4二.填空题(共8小题)11.如图,将△ABC绕着点A旋转,使点B恰好落在BC边上,得△AB'C,如果∠BAB'=32°,且AC'∥BC,那么∠B'AC=度.12.如图,△ABC为等边三角形,AB=3,若点P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.13.如图,等边△AOB绕点O逆时针旋转到△A′OB′的位置,∠A′OB=80°,则△AOB旋转了度.14.已知点A(a,1)与点A(4,b)关于原点对称,则a+b=.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子A,O,B的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个中心对称图形,请写出棋子P的位置坐标(写出1个即可).16.下列4种图案中,是中心对称图形的有个.17.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是图形(填写“轴对称”、“中心对称”).18.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,4),则点B2019的横坐标为.三.解答题(共7小题)19.如图,△AEC绕A点顺时针旋转60°得△APB,∠PAC=20°,求∠BAE.20.如图所示,点D是等边△ABC内一点,DA=13,DB=19,DC=21,将△ABD绕点A逆时针旋转到△ACE的位置,求△DEC的周长.21.如图所示的两个图形成中心对称,请找出它的对称中点.22.如图,方格纸的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上.(1)画出△ABC关于原点对称的△A1B1C1;(2)画出△ABC向上平移5个单位后的△A2B2C2,并求出平移过程中△ABC扫过的面积.23.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点,旋转角度是度.(2)若连结EF,则△AEF是三角形;并证明.24.如图,Rt△ABC中,∠C=90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB 上.(1)若∠BDA=70°,求∠BAC的度数;(2)若BC=8,AC=6,求△ABD中AD边上的高.25.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证:△A'CD是等边三角形.(2)若E为AC的中点,P为A'B'的中点,则EP的最大值是多少,这时旋转角θ为多少度.人教版九年级上册数学《第23章旋转》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列图形中,由原图旋转得到的是()A.B.C.D.【分析】旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这是判断旋转的关键,据此解答即可.【解答】解:A、是由图形通过轴对称得到的;B、是由图形通过轴对称得到的;C、是通过轴对称和旋转得到的;D、是由图形通过顺时针旋转90°得到的.故选:D.【点评】此题主要考查了旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.2.如图,Rt△ABC中,∠ACB=90°,线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,过点A作AE⊥射线CD于点E,则∠CAE的度数是()A.90﹣αB.αC.D.【分析】先利用旋转的性质得∠CBD=α,BC=BD,再根据等腰三角形的性质和三角形内角和定理得到∠BCD=90°﹣α,然后利用互余表示出∠ACE,从而利用互余可得到∠CAE的度数.【解答】解:∵线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,∴∠CBD=α,BC=BD,∴∠BCD=∠BDC,∴∠BCD=(180°﹣α)=90°﹣α,∵∠ACB=90°,∴∠ACE=90°﹣∠BCD=90°﹣(90°﹣α)=α,∵AE⊥CE,∴∠CAE=90°﹣∠ACE=90°﹣α.故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.3.下列图形绕某点旋转90°后,不能与原来图形重合的是()A.B.C.D.【分析】根据旋转对称图形的概念作答.【解答】解:A、绕它的中心旋转90°能与原图形重合,故本选项不合题意;B、绕它的中心旋转90°能与原图形重合,故本选项不合题意;C、绕它的中心旋转90°能与原图形重合,故本选项不合题意;D、绕它的中心旋转120°才能与原图形重合,故本选项符合题意.故选:D.【点评】本题考查了旋转对称图形的知识,如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.4.在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是()A.(4,﹣4)B.(4,4)C.(﹣4,﹣4)D.(﹣4,4)【分析】首先利用平移的性质得出P1(4,4),再利用旋转变换的性质可得结论;【解答】解:∵P(﹣5,4),点P(﹣5,4)向右平移9个单位得到点P1∴P1(4,4),∴将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是(4,﹣4),故选:A.【点评】本题考查坐标与图形变化﹣旋转以及平移,解题的关键是理解题意,熟练掌握基本知识,属于中考基础题.5.下列四张扑克牌图案,属于中心对称的是()A.B.C.D.【分析】根据中心对称图形的概念和各扑克牌的花色排列特点的求解.【解答】解:A、是中心对称图形,符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:A.【点评】本题考查中心对称的知识,掌握好中心对称图形的概念是解题的关键.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.点P(2,﹣1)关于原点中心对称的点的坐标是()A.(2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣2,1)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).【解答】解:根据中心对称的性质,得点P(2,﹣1)关于中心对称的点的坐标为(﹣2,1).故选:D.【点评】此题主要考查了关于原点对称的点坐标的关系,记忆方法是结合平面直角坐标系的图形记忆.8.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()A.黑(2,3)B.黑(3,2)C.黑(3,4)D.黑(3,1)【分析】根据轴对称图形定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:要使8枚棋子组成的图案是轴对称图形,则黑子可以摆放在横坐标为3的格点上,故摆放错误的是A,故选:A.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形定义.9.在A、B、C、D四幅图案中,能通过图平移得到的是()A.B.C.D.【分析】根据平移后对应点的连线平行且相等可得答案.【解答】解:能通过图甲平移得到的是B,故选:B.【点评】此题主要考查了图形的平移,关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.10.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字()的格子内.A.1 B.2 C.3 D.4【分析】从阴影部分图形的各顶点向虚线作垂线并延长相同的距离找对应点,然后顺次连接各点可得答案.【解答】解:如图所示,把阴影凃在图中标有数字3的格子内所组成的图形是轴对称图形,故选:C.【点评】本题考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质,基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.二.填空题(共8小题)11.如图,将△ABC绕着点A旋转,使点B恰好落在BC边上,得△AB'C,如果∠BAB'=32°,且AC'∥BC,那么∠B'AC=42 度.【分析】先利用旋转的性质得到∠CAC′=∠BAB'=32°,AB=AB′,再根据等腰三角形性质和三角形内角和定理计算出∠B=74°,接着利用平行线的性质得到∠B′AC′=∠AB′B=74°,然后计算∠B′AC﹣∠CAC′即可.【解答】解:∵△ABC绕着点A旋转,使点B恰好落在BC边上,得△AB'C,∴∠CAC′=∠BAB'=32°,AB=AB′,∵AB=AB′∴∠B=∠AB′B=(180°﹣32°)=74°,∵AC'∥BC,∴∠B′AC′=∠AB′B=74°,∴∠B'AC=∠B′AC﹣∠CAC′=74°﹣32°=42°.故答案为42.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12.如图,△ABC为等边三角形,AB=3,若点P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.【分析】由等边三角形的性质得出∠ABC=∠BAC=60°,AC=AB=3,求出∠APC=120°,当PB ⊥AC时,PB长度最小,设垂足为D,此时PA=PC,由等边三角形的性质得出AD=CD=AC =,∠PAC=∠ACP=30°,∠ABD=∠ABC=30°,求出PD=AD•tan30°=AD=,BD =AD=,即可得出答案.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=2,∵∠PAB=∠ACP,∴∠PAC+∠ACP=60°,∴∠APC=120°,∴点P的运动轨迹是,当O、P、B共线时,PB长度最小,设OB交AC于D,如图所示:此时PA=PC,OB⊥AC,则AD=CD=AC=,∠PAC=∠ACP=30°,∠ABD=∠ABC=30°,∴PD=AD•tan30°=AD=,BD=AD=,∴PB=BD﹣PD=﹣=.故答案为:.【点评】本题考查了等边三角形的性质、等腰三角形的性质、三角形内角和定理、勾股定理、三角函数等知识;熟练掌握等边三角形的性质是解决问题的关键.13.如图,等边△AOB绕点O逆时针旋转到△A′OB′的位置,∠A′OB=80°,则△AOB旋转了140 度.【分析】∠AOA′就是旋转角,根据等边三角形的性质得出∠AOB等于60°,再根据∠BOA′等于90°,从而求出∠AOA′的度数.【解答】解:旋转角∠AOA′=∠AOB+∠BOA′=60°+80°=140°.∴△AOB旋转了140度.故答案为:140.【点评】本题主要考查了旋转的性质,正确理解旋转角是解题的关键;此题较简单,解题时要能根据等边三角形的性质求出角的度数.14.已知点A(a,1)与点A(4,b)关于原点对称,则a+b=﹣5 .【分析】根据“两点关于原点对称,则两点的横、纵坐标都是互为相反数”解答.【解答】解:∵点A(a,1)与点A′(4,b)关于原点对称,∴a、b的值分别为﹣4,﹣1.所以a+b=﹣1﹣4=﹣5,故答案为:﹣5【点评】本题考查了关于原点对称的点的坐标:两点关于原点对称,则两点的横、纵坐标都是互为相反数.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子A,O,B的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个中心对称图形,请写出棋子P的位置坐标(0,1)(写出1个即可).【分析】直接利用中心对称图形的性质得出答案.【解答】解:如图所示:点P(0,1)答案不唯一.故答案为:(0,1).【点评】此题主要考查了中心对称图形的性质,正确把握定义是解题关键.16.下列4种图案中,是中心对称图形的有 2 个.【分析】根据中心对称图形的概念即可求解.【解答】解:第1个图形,是中心对称图形,符合题意;第2个图形,不是中心对称图形,不符合题意;第3个图形,是中心对称图形,符合题意;第4个图形,不是中心对称图形,不符合题意.故答案为:2.【点评】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.17.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是轴对称图形(填写“轴对称”、“中心对称”).【分析】根据轴对称图形的概念与中心对称图形的概念即可作答.【解答】解:根据对称图形的概念,知110仅是轴对称图形,对称轴为正中水平直线.【点评】掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,对称轴两边图形折叠后可重合.18.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,4),则点B2019的横坐标为10096 .【分析】由图象可知点B2019在第一象限,求出B2,B4,B6的坐标,探究规律后即可解决问题.【解答】解:由图象可知点B2019在x轴上,∵OA=,OB=4,∠AOB=90°,∴AB=,∴B2(10,4),B4(20,4),B6(30,4),…∴B2018(10090,4).∴点B2019横坐标为10090++=10096.故答案为:10096.【点评】本题考查坐标与图形的变化﹣旋转、勾股定理等知识,解题的关键是从特殊到一般探究规律,发现规律,利用规律解决问题,属于中考常考题型.三.解答题(共7小题)19.如图,△AEC绕A点顺时针旋转60°得△APB,∠PAC=20°,求∠BAE.【分析】充分运用旋转的性质,旋转前后三角形全等,即△ABP≌△ACE,根据对应角相等,三角形内角和定理,对应边的夹角为旋转角,通过计算解答题目问题.【解答】解:根据旋转的性质可得△ABP≌△ACE,AC与AB是对应边,∠BAC=∠BAP+∠PAC=60°,∵∠PAC=20°,∴∠CAE=∠BAP=40°,∴∠BAE=∠BAC+∠CAE=100°.【点评】本题考查旋转的性质,旋转变化前后,对应角分别相等,结合三角形内角和定理求出相关的角.20.如图所示,点D是等边△ABC内一点,DA=13,DB=19,DC=21,将△ABD绕点A逆时针旋转到△ACE的位置,求△DEC的周长.【分析】先根据等边三角形的性质得∠BAC=60°,AB=AC,再根据旋转的性质得到AD=AE,CE =BD=19,∠DAE=∠BAC=60°,则可判断△ADE为等边三角形,从而得到DE=AD=13,然后计算△DEC的周长.【解答】解:∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵△ABD绕点A逆时针旋转到△ACE的位置,∴AD=AE,CE=BD=19,∠DAE=∠BAC=60°,∴△ADE为等边三角形,∴DE=AD=13,∴△DEC的周长=DE+DC+CE=13+21+19=53.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.21.如图所示的两个图形成中心对称,请找出它的对称中点.【分析】根据关于中心对称的两个图形,对应点的连线都经过对称中心作图.【解答】解:连接CC′,BB′,两条线段相交于当O,则点O即为对称中点.【点评】本题考查的是中心对称的性质,掌握关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分是解题的关键.22.如图,方格纸的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上.(1)画出△ABC关于原点对称的△A1B1C1;(2)画出△ABC向上平移5个单位后的△A2B2C2,并求出平移过程中△ABC扫过的面积.【分析】(1)根据关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和平移的性质画出A、B、C的对应点A2、B2、C2,然后计算一个矩形的面积加上△ABC的面积得到△ABC扫过的面积.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,△ABC扫过的面积=5×4+×2×4=24.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点A,旋转角度是90 度.(2)若连结EF,则△AEF是等腰直角三角形;并证明.【分析】(1)根据旋转变换的定义,即可解决问题;(2))根据旋转变换的定义,即可解决问题.【解答】解:(1)如图,由题意得:旋转中心是点A,旋转角度是90度.故答案为A、90.(2)等腰直角三角形由旋转得:AF=AE,∠FAB=∠EAD∴∠FAB+∠BAE=∠EAD+∠BAE即∠FAE=∠BAD∵四边形ABCD是正方形∴∠FAE=∠BAD=90°∴△AEF是等腰直角三角形故答案为等腰直角.【点评】本题主要考查了旋转变换的性质、正方形的性质及其应用问题;解题的关键是牢固掌握旋转变换的性质、正方形的性质,这是灵活运用、解题的基础和关键.24.如图,Rt△ABC中,∠C=90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB 上.(1)若∠BDA=70°,求∠BAC的度数;(2)若BC=8,AC=6,求△ABD中AD边上的高.【分析】(1)由旋转性质知BD=BA、∠CBA=∠EBD,据此可得∠BDA=∠BAD=70°,从而得∠ABD=∠ABC=40°,结合∠C=90°可得答案;(2)由旋转性质得BE=BC=8、DE=AC=6、AB=BD=10,从而得AE=2,利用勾股定理知AD =2,作BF⊥AD得AF=AD=,再次利用勾股定理可得答案.【解答】解:(1)由旋转性质知BD=BA、∠CBA=∠EBD,∵∠BDA=70°,∴∠BAD=70°,∴∠ABD=∠ABC=40°,∵∠C=90°,∴∠BAC=50°;(2)∵BC=8、AC=6,∠C=90°,∴AB=10,由旋转性质知△ABC≌△DBE,则BE=BC=8、DE=AC=6,∴AE=2,在Rt△ADE中,AD===2,作BF⊥AD于点F,∵BA=BD,∴AF=AD=,则BF===3.【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.也考查了等腰三角形的性质和勾股定理.25.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证:△A'CD是等边三角形.(2)若E为AC的中点,P为A'B'的中点,则EP的最大值是多少,这时旋转角θ为多少度.【分析】(1)当AB∥CB′时,∠BCB′=∠B=∠B′=30°,则∠A′CD=90°﹣∠BCB′=60°,∠A′DC=∠BCB′+∠B′=60°,可证:△A′CD是等边三角形;(2)连接CP,当E、C、P三点共线时,EP最长,根据图形求出此时的旋转角及EP的长.【解答】(1)证明:∵AB∥CB′,∴∠B=∠BC B′=30°,∴∠BC A′=90°﹣30°=60°,∵∠A′=∠A=60°,∴△A′CD是等边三角形;(2)解:如图,连接CP,当△ABC旋转到E、C、P三点共线时,EP最长,此时θ=∠ACA1=120°,∵∠B′=30°,∠A′CB′=90°,设AC=a,∴A′C=AC=A′B′=a,∵AC中点为E,A′B′中点为P,∠A′CB′=90°∴CP=A′B′=a,EC=a,∴EP=EC+CP=a+a=AC.【点评】此题考查了旋转的性质,特殊三角形的判定与性质,相似三角形的判断与性质.关键是根据旋转及特殊三角形的性质证明问题.。
人教版九年级上册数学 第二十三章 旋转 单元综合测试(含解析)

第二十三章旋转单元综合测试一.选择题1.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=4,则BE的长为()A.3B.4C.5D.62.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=25°,则旋转角度是()A.25°B.15°C.65°D.40°3.如图,△ADE绕点D的顺时针旋转,旋转的角是∠ADE,得到△CDB,那么下列说法错误的是()A.DE平分∠ADB B.AD=DC C.AE∥BD D.AE=BC4.如图,若△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,则∠AB1B=()A.50°B.55°C.60°D.65°5.下列图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.如图,将△ABC绕点C(0,)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A.(﹣a,﹣b)B.(a,﹣b+2)C.(﹣a,﹣b+)D.(﹣a,﹣b+2)7.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B的对应点B′的坐标是()A.B.C.D.(0,﹣4)8.如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED,若BC=8,BD=7,则△AED的周长是()A.15B.14C.13D.129.如图,CD是△ABC的边AB上的中线,将线段AD绕点D顺时针旋转90°后,点A的对应点E恰好落在AC边上,若AD=,BC=,则AC的长为()A.B.3C.2D.410.在平面直角坐标系xOy中,点A(4,3),点B为x轴正半轴上一点,将△AOB绕其一顶点旋转180°,连接其余四个顶点得到一个四边形,若该四边形是一个轴对称图形,则满足条件的点有()A.5个B.4个C.3个D.2个二.填空题11.如图,四角星的顶点是一个正方形的四个顶点,将这个四角星绕其中心旋转,当第一次与自身重合时,其旋转角的大小是度.12.一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D 在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180),如果EF⊥AB,那么n的值是.13.如图,在Rt△ABC,∠B=90°,∠ACB=50°.将Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,连接CC'.若AB∥CC',则旋转角的度数为°.14.如图,在正方形ABCD中,AB=4,点M在CD边上,且DM=1,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为.15.已知点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,则xy的值是.16.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是.17.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围是.18.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)19.在平面直角坐标系中,△OAB的位置如图所示,将△OAB绕点O顺时针旋转90°得△OA1B1;再将△OA1B1绕点O顺时针旋转90°得△OA2B2;再将△OA2B2绕点O顺时针旋转90°得△OA3B3;……依此类推,第2020次旋转得到△OA2020B2020,则项点A的对应点A2020的坐标是.三.解答题20.在平面直角坐标系中,已知点P(a,﹣1),请解答下列问题:(1)若点P在第三象限,则a的取值范围为;(2)若点P在y轴上,则a的值为;(3)当a=2时,点P关于y轴对称的点的坐标为点P关于原点对称的点的坐标为.21.如图,在△ABC中,AB=BC,∠ABC=120°,点D在边AC上,且线段BD绕着点B 按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.(1)求证:AE=CD;(2)若∠DBC=45°,求∠BFE的度数.22.如图所示,把△ABC绕点A旋转至△ADE位置,延长BC交AD于F,交DE于G,若∠CAD=10°,∠D=25°,∠EAB=120°,求∠DFB的度数.23.已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D 关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积.24.如图,正△ABC与正△A1B1C1关于某点中心对称,已知A,A1,B三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点C,C1的坐标.25.如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.参考答案1.解:∵△ABC绕点A顺时针旋转60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=4,∴BE=4.故选:B.2.解:∵∠AOB=40°,∠BOC=25°,∴∠AOC=65°,∵将△AOB绕着点O顺时针旋转,得到△COD,∴旋转角为∠AOC=65°,故选:C.3.解:将△ADE绕点D顺时针旋转,得到△CDB,∴∠ADE=∠CDB,AD=CD,AE=BC,故A、B、D选项正确;∵∠B=∠E,但∠B不一定等于∠BDC,∴BD不一定平行于AE,故C选项错误;故选:C.4.解:∵△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,∴AB=AB1,∠BAB1=50°,∴∠AB1B=(180°﹣50°)=65°.故选:D.5.解:A、是轴对称图形,不是中心对称图形,不符合题意;B、既不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,符合题意.故选:D.6.解:将点A的坐标为(a,b)向下平移个单位,得到对应点坐标为(a,b),再将其绕原点旋转180°可得对称点坐标为(﹣a,﹣b+),然后再向上平移个单位可得点A'的坐标为(﹣a,﹣b+2),故选:D.7.解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故选:C.8.解:∵将△BCD绕点B逆时针旋转60°得到△BAE,∴BD=BE,∠DBE=60°,CD=AE,∴△DBE是等边三角形,∴BD=DE=7,∴△AED的周长=AE+AD+DE=CD+AD+DE=8+7=15,故选:A.9.解:如图,连接BE,∵CD是△ABC的边AB上的中线,∴AD=BD,∵将线段AD绕点D顺时针旋转90°,∴AD=DE,∠ADE=90°,∴∠A=45°,AE=AD=2,AD=DE=BD,∴∠AEB=90°,∴∠A=∠ABE=45°,∴AE=BE=2,∴EC===1,∴AC=AE+EC=3,故选:B.10.解:观察图象可知,满足条件的点B有5个.故选:A.11.解:该图形被平分成四部分,旋转90°的整数倍,就可以与自身重合,故当此图案第一次与自身重合时,其旋转角的大小为90°.故答案为:90.12.解:如图1,延长EF交AB于H,∵EF⊥AB,∠A=45°,∴∠ACH=45°,∴∠ACE=135°,∴n=135;如图2,∵EF⊥AB,∠A=45°,∴∠ACE=45°,∴n=360﹣45=315,∵0<n<180,∴n=315不合题意舍去,故答案为:135.13.解:∵AB∥CC',∴∠ABC+∠C′CB=180°,而∠B=90°,∴∠C′CB=90°,∴∠ACC′=90°﹣∠ACB=90°﹣50°=40°,∵Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,∴AC=AC′,∠C′AC等于旋转角,∴∠AC′C=∠ACC′=40°,∴∠C′AC=180°﹣40°﹣40°=100°,即旋转角为100°.故答案为100.14.解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠F AB=∠MAD.∴∠F AB=∠MAE,∴∠F AB+∠BAE=∠BAE+∠MAE.∴∠F AE=∠MAB.∴△F AE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=4.∵DM=1,∴CM=3.∴在Rt△BCM中,BM==5,∴EF=5,故答案为:5.15.解:∵点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,∴x﹣2+x+4=0,3+y﹣5=0,解得:x=﹣1,y=2,则xy的值是:﹣2.故答案为:﹣2.16.解:∵△DEC与△ABC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE==2,故答案为2.17.解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,,解得:a<2.∴故答案为:a<2.18.解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=a,∴正方形ABCD的面积=4×a+b=a+b.故答案为(a+b).19.解:将△OAB绕点O顺时针旋转90°得△OA1B1;此时,点A1的坐标为(2,﹣1);再将△OA1B1绕点O顺时针旋转90°得△OA2B2;此时,点A2的坐标为(﹣1,2);再将△OA2B2绕点O顺时针旋转90°得△OA3B3;此时,点A3的坐标为(﹣2,1);再将△OA3B3绕点O顺时针旋转90°得△OA4B4;此时,点A4的坐标为(1,2);∴每旋转4次一个循环,∵2020÷4=505,∴第2020次旋转得到△OA2020B2020,则顶点A的对应点A2020的坐标与点A4的坐标相同,为(1,2);故答案为:(1,2).20.解:(1)∵点P(a,﹣1),点P在第三象限,∴a<0;故答案为:a<0;(2)∵点P(a,﹣1),点P在y轴上,∴a=0;故答案为:0;(3)当a=2时,点P(a,﹣1)的坐标为:(2,﹣1)关于y轴对称的点的坐标为:(﹣2,﹣1),点P关于原点对称的点的坐标为:(﹣2,1).故答案为:(﹣2,﹣1),(﹣2,1).21.(1)证明:∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,∴BD=BE,∠EBD=120°,∵AB=BC,∠ABC=120°,∴∠ABD+∠DBC=∠ABD+∠ABE=120°,∴∠DBC=∠ABE,∴△ABE≌△CBD(SAS),∴AE=CD;(2)解:由(1)知∠DBC=∠ABE=45°,BD=BE,∠EBD=120°,∴∠BED=∠BDE=(180°﹣120°)=30°,∴∠BFE=180°﹣∠BED﹣∠ABE=180°﹣30°﹣45°=105°.22.解:由旋转可知:△ABC≌△ADE,∵∠D=25°,∴∠B=∠D=25°,∠EAD=∠CAB,∵∠EAB=∠EAD+∠CAD+∠CAB=120°,∠CAD=10°,∴∠CAB=(120°﹣10°)÷2=55°,∴∠F AB=∠CAB+∠CAD=55°+10°=65°,∵∠DFB是△ABF的外角,∴∠DFB=∠B+∠F AB,∴∠DFB=25°+65°=90°.23.解:(1)∵点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,∴2b+1=﹣1,3a﹣1=2,解得a=1,b=﹣1,∴点A(﹣1,2),B(﹣1,﹣2),C(3,﹣1),∵点C(a+2,b)与点D关于原点对称,∴点D(﹣3,1);(2)如图所示:四边形ADBC的面积为:.24.解:(1)∵A,A1,B三点的坐标分别是(0,4),(0,3),(0,2),所以对称中心的坐标为(0,2.5);(2)等边三角形的边长为4﹣2=2,所以点C的坐标为(,3),点C1的坐标(,2).25.解:(1)∵△ABC与△DEC关于点C成中心对称,∴AC=CD,BC=CE,∴四边形ABDE是平行四边形,∴AE与BD平行且相等;(2)∵四边形ABDE是平行四边形,∴S△ABC=S△BCD=S△CDE=S△ACE,∵△ABC的面积为5cm2,∴四边形ABDE的面积=4×5=20cm2;(3)∠ACB=60°时,四边形ABDE为矩形.理由如下:∵AB=AC,∠ACB=60°,∴△ABC是等边三角形,∴AC=BC,∵四边形ABDE是平行四边形,∴AD=2AC,BE=2BC,∴AD=BE,∴四边形ABDE为矩形.。
人教版九年级数学上《第23章旋转》单元测试题含答案

第23章 旋转一、选择题1.在平面直角坐标系中,点A (﹣2,1)与点B 关于原点对称,则点B 的坐标为( )A .(﹣2,1)B .(2,﹣1)C .(2,1)D . (﹣2,﹣1)2.如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交边AD 、BC 与E 、F 两点,则阴影部分的面积是( )A .1B .2C .3D . 43.如图,△ABC 绕着点O 按顺时针方向旋转90°后到达了△CDE 的位置,下列说法中不正确的是( )A .线段AB 与线段CD 互相垂直 B .线段AC 与线段CE 互相垂直C .点A 与点E 是两个三角形的对应点D .线段BC 与线段DE 互相垂直 4.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A =45°,∠D =30°,斜边AC =BD =10,若将三角板DEB 绕点B 逆时针旋转45°得到△D′E′B,则点A 在△D′E′B 的( )A .内部B .外部C .边上D .以上都有可能 5.如图,如果正方形ABCD 旋转后能与正方形CDEF 重合,那么图形所在平面内,可作为旋转中心的点个数( )A .1个B .2个C .3个D .4个6.如图,直线y =-43x +4与x 轴、y 轴分别交于A ,B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是( )A.(3,4) B.(4,5) C.(4,3) D.(7,3)7.如图,是用围棋子摆出的图案(围棋子的位置用有序数对表示,如点A在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)8.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是( )A.4 B.5 C.6 D.89.如图,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD,BC于点E,F,下面的结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE 与△COF成中心对称,其中正确的个数为( )A.2个 B.3个 C.4个 D.5个10.如图,在方格纸上,△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为( )A.(5,2) B.(2,5) C.(2,1) D.(1,2)二、填空题11、将一个直角三角尺AOB绕直角顶点O旋转到如图3所示的位置,若∠AOD=110°,则旋转角的角度是______°,∠BOC =______°.12、时钟6点到9点,时针转动了__度.13.在方格纸上建立如图所示的平面直角坐标系,将△ABO 绕点O 按顺时针方向旋转90°得△A ′B ′O ,则点A 的对应点A ′的坐标为_ _.14.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为____.15.如图,平行四边形ABCD 绕点A 逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B 是对应点,点C′与点C 是对应点),点B′恰好落在BC 边上,则∠C=__ __度.16.如图,已知抛物线C 1,抛物线C 2关于原点对称.若抛物线C 1的解析式为y =34(x +2)2-1,那么抛物线C 2的解析式为__ __.三、解答题17.在如图所示的直角坐标系中,解答下列问题:(1)分别写出A ,B 两点的坐标;(2)将△ABC 绕点A 顺时针旋转90°,画出旋转后的△AB 1C 1.18.直角坐标系第二象限内的点P(x 2+2x ,3)与另一点Q(x +2,y)关于原点对称,试求x +2y 的值.19.如图,将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,AB 与A 1C 1相交于点D ,AC 与A 1C 1,BC 1分别交于点E ,F.(1)求证:△BCF≌△BA 1D ;(2)当∠C=α度时,判定四边形A 1BCE 的形状,并说明理由.答案 BACCC DBCDA11、20°、70°,12、90º ,13. (2,3)14. π15. 10516. y =-34(x -2)2+1 17.解:(1)由点A 、B 在坐标系中的位置可知:A (2,0),B (-1,-4);(2)如图所示:2)如图所示:18 解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0,∴x=-1,∴x+2y=-719解:(1)∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,由ASA可证△BCF≌△BA1D(2)四边形A1BCE是菱形,理由如下:∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴∠A1=∠A,∵∠ADE=∠A1DB,∴∠AED=∠A1BD=α,∵∠C=α,∴∠AED=∠C,∴A1E∥BC,由(1)知△BCF≌△BA1D,∴∠C=∠A1,∴∠A1=∠AED=α,∴A1B ∥AC,∴四边形A1BCE是平行四边形,又∵A1B=BC,∴四边形A1BCE是菱形。
人教版九年级数学上册第23章旋转单元练习卷含答案

人教版九年级数学上册第23章旋转单元练习卷含答案一、单选题1.已知点与点关于坐标原点对称,则实数a、b的值是A. ,B. ,C. ,D. ,2.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A. B. C. D.3.将图绕中心按顺时针方向旋转60°后可得到的图形是()A. B. C. D.4.如图,四边形ABCD是正方形,△ADE绕着点A旋转90°后到达△ABF的位置,连接EF,则△AEF的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.如图,□ABCD绕点A逆时针旋转32°,得到□AB′C′D′,若点B′与点B是对应点,若点B′恰好落在BC边上,则∠C=()A. 106°B. 146°C. 148°D. 156°6.如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么这个旋转角可能是( )A. B. C. D.7.如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()个.A. 1B. 2C. 3D. 48.已知点P1(a,3)与P2(﹣5,﹣3)关于原点对称,则a的值为()A. 5B. 3C. 4D. -5二、填空题9.在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(﹣1,0),则点A经过连续2016次这样的变换得到的点A2016的坐标是________.10.我们知道,在平面内,如果一个图形绕着一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转的这个角称为这个图形的一个旋转角.例如,正方形绕着它的对角线的交点旋转90°后能与自身重合所以正方形是旋转对称图形,它有一个旋转角为90°.(1)判断下列说法是否正确(在相应横线里填上“对”或“错”)①正五边形是旋转对称图形,它有一个旋转角为144°.________②长方形是旋转对称图形,它有一个旋转角为180°.________(2)填空:下列图形中时旋转对称图形,且有一个旋转角为120°的是________ .(写出所有正确结论的序号)①正三角形②正方形③正六边形④正八边形11.在下列图案中可以用平移得到的是________(填代号).12.如图是奥迪汽车的车牌标志,右边的三个圆环可以看作是左边的圆环经过________得到的.13.将一个自然数旋转180°后,可以发现一个有趣的现象,有的自然数旋转后还是自然数.例如,808,旋转180°后仍是808.又如169旋转180°后是691.而有的旋转180°后就不是自然数了,如37.试写一个五位数,使旋转180°后仍等于本身的五位数________.(数字不得完全相同)14.如图,在平面直角坐标系中,是由绕着某点旋转得到的,则这点的坐标是________.15.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________ .三、解答题16.如图,在直角坐标系中,已知△ABC各顶点坐标分别为A(0,1),B(3,﹣1),C(2,2),试作出与△ABC关于原点对称的图形△A1B1C1,并直接写出A1,B1,C1的坐标.17.找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.18.如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)四、作图题19.如图,阴影部分是由4个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑一个小正方形,使涂黑后整个图形的阴影部分成为轴对称图,并画出其对称轴.答案一、单选题1.【答案】D【解析】【解答】点与点关于坐标原点对称,实数a、b的值是:,.故答案为:D【分析】根据关于原点对称点的坐标特点:横纵坐标都互为相反数,就可求出a、b的值。
人教版九年级数学上册第二十三章旋转单元测试(含答案)

第二十三章旋转单元测试一、单项选择题(共10 题;共 30 分)1、以下图,以下图能够看作是一个菱形经过几次旋转获得的,每次可能旋转()。
A、 30°B、60°C、90°D、150°2、平面直角坐标系内一点(-3 , 4)对于原点对称点的坐标是()A、( 3,4)B、(-3,-4) C 、( 3, -4 )D、(4,-3)3、如图,在正方形网格中,将△ ABC绕点 A 旋转后获得△ADE,则以下旋转方式中,切合题意的是()A、顺时针旋转90°B、逆时针旋转90°C、顺时针旋转45°D、逆时针旋转45°4、以以下图,有一池塘,要测池塘两头A、B 的距离,可先在平川上取一个能够直接抵达 A 和 B 的点 C ,连结 AC并延伸到 D ,使 CD=CA ,连结 BC并延伸到 E ,使 CE=CB ,连结 DE , A 、 B 的距离为()A、段 AC的度B、段BC的度C、段DE度D、没法判断5、如,将矩形ABCD点 A 旋至矩形AB′ C′ D′地点,此AC的中点恰巧与 D 点重合, AB′交CD于点 E.若 AB=3,△ AEC的面()A、 3B、1.5C、D、6、已知 a< 0,点 P( a2,a+1)对于原点的称点P′在()A、第一象限B、第二象限C、第三象限D、第四象限7、( 2016 春?无校月考)已知点A( 1, x)和点 B( y, 2)对于原点称,必定有()A、 x= 2, y= 1B、x=2,y= 1C、x=2,y=1D、x=2,y=18、有两个完好重合的矩形,将此中一个始保持不,另一个矩形其称中心O按逆方向行旋,每次均旋45°,第 1 次旋后获得①,第 2 次旋后获得②,⋯,第10 次旋后获得的形与①~④中同样的是()A、①B、②C、③D、④9、如图,在 Rt △ABC中,∠ ACB=90°,∠ A=40°,以直角极点C 为旋转中心,将△ ABC旋转到△ A′ B′C 的地点,此中A′、 B′分别是A、B 的对应点,且点 B 在斜边 A′ B′上,直角边CA′交 AB于 D,则旋转角等于()A、 70°B、80°C、60°D、50°10、如图,矩形OABC的极点 O为坐标原点,点A在 x 轴上,点 B 的坐标为( 2,1).假如将矩形0ABC 绕点 O旋转 180°旋转后的图形为矩形OA1B1C1,那么点B1的坐标为()A、( 2,1)B、(﹣2,1)C、(﹣2,﹣1)D、(2,﹣l)二、填空题(共8 题;共 25 分)11、已知点P(﹣ b, 2)与点 Q( 3, 2a)对于原点对称,则a=________,b=________.12、如图,在直角坐标系中,点A在y 轴上,△ OAB是等腰直角三角形,斜边OA=2,将△ OAB绕点 O逆时针旋转90°得△,则点的坐标为________13、如图,将矩形 ABCD绕点 A 顺时针旋转到矩形A′B′ C′ D′的地点,旋转角为α ( 0°<α< 90°),若∠ 1=110°,则∠α =________ .14、如图,在△ ABC中,∠ BAC=35°,将△ ABC绕点 A 顺时针方向旋转50°,获得△ AB′ C′,则∠ B′AC的度数是 ________.15、如图,在6× 4 方格纸中,格点三角形甲经过旋转后获得格点三角形乙,则其旋转中心是________.16、如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,获得线段 AB′,则点 B′的坐标为 ________.17、以下图,△ ABC中,∠ BAC=33°,将△ ABC绕点 A 按顺时针方向旋转50°,对应获得△AB′ C′,则∠ B′ AC的度数为 ________.18、有六张分别印有三角形、正方形、等腰梯形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不一样外,其余均同样).现将有图案的一面朝下随意摆放,从中随意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为________.三、解答题(共 5 题;共 35 分)19、以以下图所示,利用对于原点对称的点的坐标特点,作出与线段AB 对于原点对称的图形.20、在如图的方格纸中,每个小方格都是边长为 1 个单位的正方形,的三个极点都在格点上(每个小方格的极点叫格点).⑴画出△ ABC对于点 O的中心对称的△A1B1C1;⑵假如成立平面直角坐标系,使点 B 的坐标为(- 5,2),点 C 的坐标为(- 2, 2),求点 A1的坐标;⑶将△ ABC绕点 O顺时针旋转90°,画出旋转后的△A2 B2C2,并求线段 BC扫过的面积 .21、如图,在平面直角坐标系中,△ ABC的三个极点坐标为A( 1,﹣ 4),B( 3,﹣ 3),C( 1,﹣ 1).(每个小方格都是边长为一个单位长度的正方形)( 1)将△ ABC沿 y 轴方向向上平移 5 个单位,画出平移后获得的△( 2)将△ ABC绕点 O顺时针旋转90°,画出旋转后获得的△A2B2 C2A1B1C1;,并直接写出点 A 旋转到点A2所经过的路径长.22、如图,将其补全,使其成为中心对称图形.23、如图,△ ABC的极点坐标分别为A( 4, 6)、 B( 5, 2)、 C( 2, 1),假如将△ABC绕点 C 按逆时针方向旋转90゜,获得△ A′ B′C′,绘图,并写出点 A 的对应点A′的坐标及 B 点的对应点B′的坐标.四、综合题(共 1 题;共 10 分)24、( 2012?贺州)如图,△ABC的三个极点都在格点上,每个小方格边长均为 1 个单位长度,成立如图坐标系.(1)请你作出△ ABC对于点 A 成中心对称的△ AB1C1(此中 B 的对称点是 B1, C 的对称点是 C1),并写出点B1、 C1的坐标. (2) 挨次连结 BC1、 C1B1、B1C.猜想四边形 BC1B1C 是什么特别四边形?并说明原因.答案分析一、单项选择题1、【答案】 B【考点】利用旋转设计图案【分析】【解答】设每次旋转角度x°,则6x=360,解得 x=60,∴每次旋转角度是 60°,应选 B.【剖析】图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的地点挪动.此中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.依据所给出的图, 6 个角正好组成一个周角,且 6 个角都相等,即可获得结果.2、【答案】 C【考点】对于原点对称的点的坐标【分析】【剖析】依据对于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答,故平面直角坐标系内一点P( -3 , 4) 对于原点对称点的坐标(3, -4).【评论】本题主要考察了对于原点对称的点的坐标的特点,熟记特点是解题的重点。
人教版九年级数学上册《第23章旋转》单元测试卷含答案

人教版九年级数学上册《第23章旋转》单元测试卷一、选择题(每小题3分,共30分)1.下列图形中,是中心对称图形的是( )A .B .C .D .2.平面直角坐标系内一点P (-2,3)关于原点对称的点的坐标是( )A .(3,-2)B . (2,3)C .(-2,-3)D . (2,-3)3.如图所示,将矩形ABCD 绕点A 顺时针旋转到矩形AB ′C ′D ′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α=( )A .20°B .30°C .40°D .50°4.在下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是( )5.已知a <0,则点P (﹣a 2,﹣a+1)关于原点的对称点P ′在( )A .第一象限B .第二象限C .第三象限D .第四象限6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是( )A .A N E GB .K B X NC .X I H OD .Z D W H7.四边形ABCD 的对角线相交于O ,且AO=BO=CO=DO ,则这个四边形( ) A .仅是轴对称图形B .仅是中心对称图形C .既是轴对称图形又是中心对称图形D .既不是轴对称图形,又不是中心对称图形8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是( )A B CA B C DA.︒30 B.︒9045 C.︒60 D.︒9.下列命题正确的个数是( )(1)成中心对称的两个三角形是全等三角形;(2)两个全等三角形必定关于某一点成中心对称;(3)两个三角形对应点的连线都经过同一点,则这两个三角形关于该点成中心对称;(4)成中心对称的两个三角形,对称点的连线都经过对称中心.A.1B.2C.3D.410.如图,在正方形网格中,将∠ABC绕点A旋转后得到∠ADE,则下列旋转方式中,符合题意的是( )A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45°二、填空题(每小题3分,共24分)11.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( )A.点M B.格点N C.格点P D.格点Q12.已知a<0,则点P(a2,-a+3)关于原点的对称点P1在第________象限.13.如图4,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是.14.如图5,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是__________.15.如图6,四边形ABCD中,∠BAD=∠C=90º,AB=AD,AE⊥BC于E,若线段AE=5,则S四A边形ABCD=.16.如图,设P是等边三角形ABC内任意一点,∠ACP′是由∠ABP旋转得到的,则PA__________PB+PC(选填“>”、“=”、“<”)17.已知点P(﹣b,2)与点Q(3,2a)关于原点对称,则a+b的值是__________.18.直线y=x+3上有一点P(3,n),则点P关于原点的对称点P′为__________.三、解答题(共66分)19.如图,在Rt∠OAB中,∠OAB=90°,OA=AB=6,将∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1.(1)线段OA1的长是__________,∠AOB1的度数是__________;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.20.(9分)如图10,E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.21.(9分)已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上. (1)如图11(1), 连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题:“在旋转的过程中,线段DF与BF的长始终相等”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转, 连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图11(2)为例说明理由.图1022.如图,在Rt∠ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:∠BCD∠∠FCE;(2)若EF∠CD,求∠BDC的度数.23.如图,将正方形ABCD中的∠ABD绕对称中心O旋转至∠GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.24.如图,∠ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,∠ABC旋转后能与∠FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?答案:一、选择题(每小题3分,共30分)1.B 2.D 3.A 4.B 5.D 6.D 7.C 8.C 9.B 10.B二、填空题(每小题3分,共24分)11.B12.故答案为15°.13.故答案为:4.14.故填空答案:4π.15.∠PA <PB+PC .16.故答案为:(3,﹣4).17.故答案为:2.18.故答案为:(﹣3,﹣6).三、解答题(共66分)19.(1)解:因为,∠OAB=90°,OA=AB ,所以,∠OAB 为等腰直角三角形,即∠AOB=45°,根据旋转的性质,对应点到旋转中心的距离相等,即OA 1=OA=6,对应角∠A 1OB 1=∠AOB=45°,旋转角∠AOA 1=90°,所以,∠AOB 1的度数是90°+45°=135°.(2)证明:∠∠AOA 1=∠OA 1B 1=90°,∠OA ∠A 1B 1,又∠OA=AB=A 1B 1,∠四边形OAA 1B 1是平行四边形.(3)解:∠OAA 1B 1的面积=6×6=36.20.解:将△BCE 以B 为旋转中心,逆时针旋转90º,使BC 落在BA 边上,得△BAM ,则∠MBE=90º,AM=CE,BM=BE,因为CE +AF =EF ,所以MF =EF ,又BF=BF,所以△FBM ≌△FBE,所以∠MBF=∠EBF, 所以∠EBF=ºº190452⨯= 21.解:(1)解:(1)不正确.若在正方形GAEF 绕点A 顺时针旋转45°,这时点F 落在线段AB 或AB 的延长线上.(或将正方形GAEF 绕点A 顺时针旋转,使得点F 落在线段AB 或AB 的延长线上).如图:设AD=a ,AG=b ,则22a 2b +a ,2b|<a ,∴DF >BF ,即此时DF ≠BF ;(2)连接BE ,则DG=BE .如图,(2)连接BE ,则DG=BE .如图,∵四边形ABCD 是正方形,∴AD=AB ,∵四边形GAEF 是正方形,∴AG=AE ,又∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.∵四边形ABCD是正方形,∴AD=AB,∵四边形GAEF是正方形,∴AG=AE,又∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.22.(1)证明:∠将线段CD绕点C按顺时针方向旋转90°后得CE,∠CD=CE,∠DCE=90°,∠∠ACB=90°,∠∠BCD=90°﹣∠ACD=∠FCE,在∠BCD和∠FCE中,,∠∠BCD∠∠FCE(SAS).(2)解:由(1)可知∠BCD∠∠FCE,∠∠BDC=∠E,∠BCD=∠FCE,∠∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∠EF∠CD,∠∠E=180°﹣∠DCE=90°,∠∠BDC=90°.23.解:猜想:BM=FN.证明:在正方形ABCD中,BD为对角线,O为对称中心,∠BO=DO,∠BDA=∠DBA=45°,∠∠GEF为∠ABD绕O点旋转所得,∠FO=DO,∠F=∠BDA,∠OB=OF,∠OBM=∠OFN,在∠OMB和∠ONF中,∠∠OBM∠∠OFN,∠BM=FN.24.解:(1)∠BC=BE,BA=BF,∠BC和BE,BA和BF为对应边,∠∠ABC旋转后能与∠FBE重合,∠旋转中心为点B;(2)∠∠ABC=90°,而∠ABC旋转后能与∠FBE重合,∠∠ABF等于旋转角,∠旋转了90度;(3)AC=EF,AC∠EF.理由如下:∠∠ABC绕点B顺时针旋转90°后能与∠FBE重合,∠EF=AC,EF与AC成90°的角,即AC∠EF.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学二十三章测试题题号一二三合计得分一、选择题(每小题4分,共40分)1.在平面内将一个图形绕一个定点沿某个方向转动一个角度这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( C )2.下列图形中,为中心对称图形的是(B)3.下列图形中是轴对称图形,但不是中心对称图形的是(B)4.下列图标中,既是轴对称图形,又是中心对称图形的是(D)5.将点P(-2,3)向右平移3个单位长度得到点P1,则点P1关于原点的对时间:120分钟满分:150分称点的坐标是(C)A.(-5,-3) B.(1,-3) C.(-1,-3) D.(5,-3)6.如下所示的4组图形中,左边图形与右边图形成中心对称的有(C)A.1组B.2组C.3组D.4组7.已知a<0,则点P(-a2,-a+1)关于原点对称的点在(D)A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在Rt△ABC中,∠BAC=90°.将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为(A)A.42° B.48°C.52° D.58°9.如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是(D)A.把△ABC向右平移6格B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针旋转90°,再向右平移6格D.把△ABC绕着点A逆时针旋转90°,再向右平移6格,第10题图)10.如图,在△ABO中,AB⊥OB,OB=3,AB=1,将△ABO绕O点旋转90°后得到△A1B1O,则点A1的坐标是(B)A.(-1,3) B.(-1,3) 或(1,-3)C.(-1,-3) D.(-1,3)或(-3,-1)二、填空题(每小题4分,共24分)11.将如图所示的图案绕其中心旋转n°时与原图案完全重合,那么n的最小值是__120__.12.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为__π__.,第11题图),第12题图),第13题图),第14题图),第16题图)13.如图,将△ABC绕A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=__2__.14.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是__40°__.15.已知点A(m,m+1)在直线y=12x+1上,则点A关于原点的对称点的坐标是__(0,-1)__.16.如图,将一张直角三角板纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E 的形状是__平行四边形__.三、解答题(本大题共8小题,共86分)17.(8分)如图,△ABC中,∠B=10° ,∠ACB=20°,AB=4,△ABC 逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE 的度数和AE 的长.解:(1)旋转中心是点A ,∵∠CAB =180°-∠B -∠ACB =150°,∴旋转角是150°.(2)∠BAE =360°-150°×2=60°,由旋转的性质得△ABC ≌△ADE , ∴AB =AD ,AE =AC ,又∵点C 是AD 的中点,∴AC =12AD =12AB =12×4=2,∴AE =2.18.(8分)如图,D 是△ABC 的边BC 的中点,连接AD 并延长到点E ,使DE =AD ,连接BE.(1)图中哪两个图形成中心对称?(2)若△ADC 的面积为4,求△ABE 的面积.解:(1)△ADC 与△EDB 成中心对称;(2)∵△ADC 与△EDB 关于点D 中心对称,∴△ADC ≌△EDB ,∴S △ADC =S △EDB =4,∵D 是BC 中点,∴BD =CD ,∴S △ABD =S △ACD =4,∴S △ABE =S △ABD +S △BED =8.19.(8分)如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上.(1)画出△ABC关于原点成中心对称的△A′B′C′,并直接写出△A′B′C′各顶点的坐标;(2)连接BC′,B′C,求四边形BCB′C′的面积.解:(1)如图,△A′B′C′即为所求,A′(4,0),B′(3,3),C′(1,3).(2)∵B′(3,3),C′(1,3),∴B′C′∥x轴,B′C′=2,∵B(-3,-3),C(-1,-3),∴BC∥x轴,BC=2,∴BC∥B′C′,BC=B′C′,∴四边形BCB′C′是平行四边形,∴S BCB′C′=2×6=12.20.(12分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B2,C2的坐标;(3)若点P(a,b)是△ABC内任意一点,试写出将△ABC绕点O逆时针旋转90°后点P的对应点P2的坐标.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求,B2的坐标是(-2,4),C2的坐标是(-5,3);(3)点P2的坐标是(-b,a).21.(12分)如图,四边形ABCD是正方形,E,F分别是DC和CB的延长线上的点,且DE=BF,连接AE,AF,EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心__A__点,按顺时针方向旋转__90__度得到;(3)若BC=8,DE=2,求△AEF的面积.解:(1)∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是CB的延长线上的点,∴∠ABF=∠D=90°.又∵AB=AD,DE=BF,∴△ADE≌△ABF(SAS);(3)∵BC=8,∴AD=8,在Rt△ADE中,DE=2,AD=8,∴AE=AD2+DE2=217,∵△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到,∴AE=AF,∠EAF=90°.∴△AEF的面积=12AE2=12×4×17=34.22.(12分)如图,在Rt△OAB中,∠OAB=90°,OA=AB=6.(1)请你画出将△OAB绕点O沿逆时针方向旋转90°得到的△OA1B1;(2)线段OA1的长度是________,∠AOB1的度数是________;(3)连接AA1,求证:四边形OAA1B1是平行四边形.(1)解:△OA1B1如图所示.(2)解:根据旋转的性质知,OA1=OA=6.∵将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1,∴∠BOB1=90°.∵在Rt△OAB中,∠OAB=90°,OA=AB=6,∴∠BOA=∠OBA=45°,∴∠AOB1=∠BOB1+∠BOA=90°+45°=135°,即∠AOB1的度数是135°.(3)证明:根据旋转的性质知,△OA1B1≌△OAB,则∠OA1B1=∠OAB=90°,A1B1=AB,∵将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1,∴∠A1OA =90°,∴∠OA1B1=∠A1OA,∴A1B1∥OA.又∵OA=AB,∴A1B1=OA,∴四边形OAA1B1是平行四边形.23.(12分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.解:(1)由旋转的性质可知,CA=CD.∵∠ACB=90°,∠B=30°,∴∠A=60°.∴△ACD为等边三角形.∴∠ACD=60°,即n=60;(2)四边形ACFD是菱形.理由:∵F是DE的中点,∴CF=12DE=DF.∵∠EDC=∠A=60°,∴△FCD为等边三角形,∴CF=DF=CD.∵△ACD为等边三角形,∴AC=AD=CD.∴AC=AD=DF=CF,∴四边形ACFD是菱形.24.(14分)在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图③,求证:四边形CDFE是平行四边形.(1)解:四边形ABDF是菱形,理由如下:∵△ABD绕边AD的中点旋转180°得△DFA,∴△ABD≌△DFA,又∵AB =BD,∴AB=DF=BD=AF,∴四边形ABDF是菱形;(2)证明:∵四边形ABDF是菱形,∴AB∥DF,AB=DF,∵△ABC绕边AC的中点旋转180°得△CEA,∴△ABC≌△CEA,∴AB=EC,AE=BC,∴四边形ABCE是平行四边形,∴AB=CE,AB∥CE,又∵AB∥DF,AB=DF,∴EC∥DF,EC=DF,∴四边形CDFE是平行四边形.。