圆锥曲线第二定义在一些题目中的应用(供参考)
圆锥曲线中第二定义的三类用法(共10张PPT)

第二定义
第二定义:椭圆或双曲线中的一点P,满足条件
PF2 PD
e
(式右x 准线a2对应右焦点),其中PF2 称作焦半径,准线公
c
第二定义
例:在平面直角坐标系
xoy
中双曲线
x2 3
y2
1
的右准线与它的两条渐近线分别交于点P,Q,
其中 焦点是 ,F1, F2 ,则四边形 的面积是_______.
x2 a2
y2 b2
1 的左焦点 ,交椭圆于A,B 两点,且有 | AF | 3 | B F | ,求椭圆的离心率.
解析:AF, B F 为左焦点上的焦半径,所以过A,B 两点
分别作垂直于准线的直线且和准线交于D,E 两点,
从B 点作 BH AD .
因为| AF | 3 | B F | ,设 BF m ,则 AF 3m
是右 ,根
据第二定义
PF2 PD
e
,解得
PF2
5 4
PD
5
所以
|
PM
|
4 5
|
PF2
|
PM
PD
因此当P,M,D三点共线时 PM PD 取得最小值,最小
值为从 M到右准线的距离 MH, MH 6 16 14 55
第二定义
本次课重点需要注意三点 :
(1)是第二定义的用法; (2)是注意例2这个题目的常规做法,此外下次课会给出这种例题的常用结论; (3)需要注意焦半径的取值范围,这个范围是求离心率取值范围题目中常用的
在 RT PF1F2 中,满足 PF12 所以在 RT PF1F2 中,SPF1F
1
圆锥曲线_经典例题

(1)中点弦问题:(上题麻烦了。
是圆不用中点法)(2)轨迹以及弦长最大问题。
(3)利用通径最断解题(4)利用第二定义求离心率?我在楼上说的方法不很好,有焦点弦和准线了,当然要想第二定义过P做PD垂直准线于D,那么可得,PF/PD=e,PD/PM=1/2所以PF/e=1/2PM,又PF/PM=sin60/sin45=根3/根2,所以最终可得离心率为根6 ?????????和楼上算的怎么不一样?(5)抛物线的一证明,过抛物线焦点F 的直线交抛物线于A,B 两点,通过点A 和抛物线的顶点的直线与抛物线的准线交于点D,求证:直线DB 平行于抛物线的对称轴.我没搞懂为什么必须用平几?为什么学解析几何,就是想把我们从烦琐的平几中解放出来,前人开创这个来干吗的呀?建系我就不说了,看图加解答。
令22y px=,1122(,),(,)A x y B x y ,:()2p A B y k x =-连立两方程消x 可得212y y p =-,其实这是一个结论又令0(,)2p D y -,则01101122y y y p y p x x =⇒=--,又2112y x p=,则有2021p y y y -==。
完(6)抛物线(7)很好的一题,圆锥曲线都实用这题的问题不在思路上,而是在计算上。
看我的。
这题做了你们可以自己再去做下05江西文21题。
练练。
第一问我不想说了就是重新高考的思路,算出椭圆方程为22340x y +-=(为哈要弄成这样?因为一般式对于一会直线联立不容易出错,我的习惯)开动了。
分析下意思,就是直线CP 与直线CQ 要关于C 点对称才行。
所以这题思路,令出两直线方程,都过C 点,斜率相反数,解出两点坐标,算出斜率为定。
解:若斜率不存在,CP ,CQ 重合,故两直线都有斜率,令:(1)11C P y k x kx k =-+=-+。
:(1)11C Q y k x kx k =--+=-++由222221(13)6(1)3610340y kx k k x k k x k k x y =-+⎧⇒+--+--=⎨+-=⎩,从这里就要解出P x 来。
二次曲线的定义及应用

例1、已知:P为双曲线 (a>0, b>0)上 一点,F1,F2为焦点,A1,A2为其顶点。求证: 以PF1为直径的圆与以A1A2为直径的圆相切。
x2 y2 2 1 2 a b
练习:已知:过抛物线y2=2px(p>0)焦点F的直 线与抛物线交于P,Q两点,求证:以线段PQ 为直径的圆与准线相切。
例2、设F1、F2是椭圆的两个焦点,M是椭圆上 的任意一点,从任一焦点向△F1MF2的顶点M的 外角平分线作垂线,垂足为P,则P的轨迹为 ( ) A、圆 B、椭圆 C、双曲线 D、抛物线
例3、如图:椭圆 为左焦点,A、B是两个顶点,P为椭圆上 一点,PF1⊥x轴,且PO//AB,求椭圆的离 心率e
用美的教育 造就美的新人
二次曲线的定义与应用
解析几何复习一
珠海市第一中学
袁长林
圆:平面内到定点的距离等于定长的点的轨迹 圆锥曲线的定义 1. 椭圆:平面内到两个定点的距离之和等于定长(定长大于 两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:平面内到两个定点的距离的差的绝对值为定值 (定值小于两个定点的距离)的动点轨迹叫做双曲线。即 {P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 圆锥曲线的统一定义:平面内到定点的距离与到定直线的 距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭 圆:当e=1时为抛物线;当e>1时为双曲线。
。
x2 y 2 2 1 2 a b (a>b>0),F1
例4、椭圆 的焦点为F1和F2,点P在椭 圆上,若线段PF1的中点在y轴上,求:|PF 1 12 3
圆锥曲线常用知识归类

圆锥曲线常用知识归类1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+by a x (0a b >>)⇔{cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数),焦点在y 轴上时2222bx a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。
(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。
方程22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。
(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
第2讲 圆锥曲线第二定义与焦半径公式(解析版)

第2讲圆锥曲线第二定义与焦半径公式参考答案与试题解析一.选择题(共5小题)1.已知点P 是双曲线22184x y -=上的动点,1F ,2F 为该双曲线的左右焦点,O 为坐标原点,则12||||||PF PF OP +的最大值为()A.B .2CD【解答】解:由题意,分子最大且分母最小时,即P 在顶点处取得最大值,不妨取顶点,0),则12||||||PF PF OP +=,故选:D .2.已知双曲线222:1(0)4x y C a α-=>的右支上的点0(P x ,0)y 满足121||3||(PF PF F =,2F 分别是双曲线的左右焦点),则00(cy c x +为双曲线C 的半焦距)的取值范围是()A.)+∞B .[2,25)2C.252D .[2,【解答】解:由双曲线的第二定义可知10||PF ex a =+,20||PF ex a =-, 右支上的点0(P x ,0)y 满足12||3||PF PF =,0003()2ex a ex a ex a ∴+=-⇒=,由c e a=,解得202a x c=,P 在右支上,可得202a x a c= ,可得12ca< ,即12e < ,则22220022201164(1)422x c c y e x a a e+=+-=+-,令2e t =,14t < ,可得2202011611613244()4222c y e t t x e t t+=+-=+-=+-而132()()2f t t t=+在(1,4]递减,132()[62t t +∈,332,2002522c y x ∴+<,故选:B .3.已知点P 是双曲线22221(0,0)x y a b a b-=>>上的动点,1F ,2F 分别是其左、右焦点,O 为坐标原点,若12||||||PF PF OP +的最大值是,则此双曲线的离心率是()AB.2C .32D .2【解答】解:不妨设P 为右支上的一点,(,)P x y 其中x a ,1||PF ex a =+,2||PF ex a =-,||OP ==∴12||||)||PF PF x a OP +==∴当x a =时,取得最大值,∴=,∴e =故选:B .4.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,则当||||AB DE +取得最小值时,四边形ADBE 的面积为()A .32B .16C .24D .8【解答】解:因为AB DE ⊥,要使||||AB DE +最小,而||||AB DE + 由抛物线的对称性可得A 与D ,B 与E 关于x 轴对称,所以可得直线DE 的斜率为1,又过抛物线的焦点(1,0),所以直线DE 的方程为:1y x =-,214y x y x=-⎧⎨=⎩,整理可得2440y y --=,124y y +=,124y y =-,所以可得||8DE ===,所以11883222ABCD S DE AB =⋅=⨯⨯=四边形.故选:A .5.过椭圆22143x y +=的右焦点F 作两条相互垂直的直线分别交椭圆于A ,B ,C ,D 四点,则11||||AB CD +的值为()A .18B .16C .1D .712【解答】解:由椭圆22143x y +=,得椭圆的右焦点为(1,0)F ,当直线AB 的斜率不存在时,:1AB x =,则:0CD y =.此时||3AB =,||4CD =,则11117||||3412AB CD +=+=;当直线AB 的斜率存在时,设:(1)(0)AB y k x k =-≠,则1:(1)CD y x k=--.又设点1(A x ,1)y ,2(B x ,2)y .联立方程组22(1)3412y k x x y =-⎧⎨+=⎩,消去y 并化简得2222(43)84120k x k x k +-+-=,∴221212228412,3434k k x x x x k k -+==++,2212(1)||34k AB k +∴=+,由题知,直线CD 的斜率为1k-,同理可得2212(1)||43k CD k +=+.∴22117(1)7||||12(1)12k AB CD k ++==+为定值.故选:D .二.填空题(共3小题)6.已知P 是椭圆22:184x y C +=上的动点,1F ,2F 分别是其左右焦点,O 是坐标原点,则12||||||PF PF PO - 的取值范围是[.【解答】解:设P 的坐标为(,)m n 椭圆22:184x y C +=中,28a =,24b =,2c ∴==,得椭圆的准线方程为2a x c=±,即4x =±作出椭圆的右准线,设P 在右准线上的射影为Q ,连结PQ ,根据圆锥曲线的统一定义,得2||||PF e PQ =,2||||)22PF e PQ m ∴==-=,同理可得1||2PF=,||PO =,∴12))||||22||m PF PF PO +--= 点(,)P m n 在椭圆22184x y +=上,得22184m n +=,∴2224(1482m m n =-=-,由此可得12||||||PF PF PO -= ,得22122||||4()8||PF PF m m PO -=+ ,2[0m ∈ ,2]a 即2[0m ∈,8],得224[08m m ∈+,2],∴12||||[||PF PF PO -∈,.故答案为:[7.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则11||||AB DE +的值为14.【解答】解:根据题意可得,抛物线24y x =的焦点坐标为(1,0)F ,准线方程为1x =-,设直线1:(1)(0)l y k x k =-≠, 直线1l ,2l 互相垂直,∴直线2l 的斜率为1k -,即得21:(1)l y x k=--,设1(A x ,1)y ,2(B x ,2)y ,3(C x ,3)y ,4(E x ,4)y ,则分别将直线1l ,2l 的方程与抛物线方程联立组成方程组可得,22222(1)(24)04y k x k x k x k y x=-⎧⇒-++=⎨=⎩;21(1)4y x k y x⎧=--⎪⎨⎪=⎩⇒2222121(4)0x x k k k -++=由韦达定理可得,212224k x x k ++=,2342241k x x k ++=,由抛物线性质可知,抛物线上的点到焦点的距离等于到准线的距离,∴2212222444||112k k AB x x k k ++=+++=+=,2234224||112441k DE x x k k +=+++=+=+,∴2221111||||44444k AB DE k k +=+=++.故答案为:14.8.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则||4||AB DE +的最小值为36.【解答】解:抛物线2:4C y x =的焦点(1,0)F ,准线方程为1x =-,设直线1l 的方程为(1)y k x =-,0k ≠,联立方程组24(1)y xy k x ⎧=⎨=-⎩,则2222(42)0k x k x k -++=,设1(A x ,1)y ,2(B x ,2)y ,可得12242x x k+=+,由抛物线的定义可得1224||24AB x x k=++=+,由12l l ⊥,可将上式中的k 换为1k-,可得2||44DE k =+,则221||4||204(4)2036AB DE k k +=+++= .当且仅当2k =±时,上式取得等号,则||4||AB DE +的最小值为36.故答案为:36.三.解答题(共6小题)9.已知斜率为k 的直线l 与椭圆22:143x y C +=交于A ,B 两点,线段AB 的中点为(1M ,)(0)m m >.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:||FA ,||FP ,||FB 成等差数列,并求该数列的公差.【解答】解:(1)设1(A x ,1)y ,2(B x ,2)y , 线段AB 的中点为(1,)M m ,122x x ∴+=,122y y m+=将A ,B 代入椭圆22:143x y C +=中,可得2211222234123412x y x y ⎧+=⎪⎨+=⎪⎩,两式相减可得,121212123()()4()()0x x x x y y y y +-++-=,即12126()8()0x x m y y -+-=,12126384y y k x x m m-∴==-=--点(1,)M m 在椭圆内,即211,(0)43m m +<>,解得302m <<∴3142k m =-<-.①(2)由题意得(1,0)F ,设3(P x ,3)y ,则1231110x x x -+-+-=,1230y y y ++=,由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP = .于是1||22x FA =- .同理2||22xFB =- .所以121||||4()32FA FB x x +=-+= ,故||||2||FA FB FP += ,即||FA ,||FP ,||FB成等差数列.设改数列的公差为d ,则1212||||||||||2d FB FA x x =-=-= ②将34m =代入①得1k =-.所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故122x x +=,12128x x =,代入②解得||28d =.所以该数列的公差为28或28-.10.已知斜率为k 的直线l 与椭圆22:198x y C +=交于A 、B 两点,线段AB 的中点为(1M ,)(0)t t >.(Ⅰ)证明:13k <-;(Ⅱ)设F 为C 的右焦点,Q 为C 上的一点,且0FQ FA FB ++= ,证明:||FA ,||FQ,||FB成等差数列.【解答】(本小题满分12分)证明:(Ⅰ)设1(A x ,1)y ,2(B x ,2)y ,则有221122221(1)981(2)98x y x y ⎧+=⋯⋯⎪⎪⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⎨⎪+=⋯⋯⎪⎩(2分)(1)-(2)得12121212()()()()098x x x x y y y y +-+-+=.122x x += ,122y y t +=.∴12122()2()098x x t y y --+=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3分)∴121289y y k x x t-==--.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4分)由题设可知点(1,)M t 在椭圆内,∴21198t +<,解得803t <<,∴818319983k t =-<-=- .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)(Ⅱ) 0FQ FA FB ++=,M 为AB 的中点,∴2FQ FM =-,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(6分)(1,)M t ,(1,2)Q t ∴-.点(1,2)Q t -在椭圆上,∴214198t +=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(7分)又403t t >∴=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(8分)由(Ⅰ)知89k t =-,所以23k =-.∴直线l 的方程为42(1)33y x -=--,即223y x =-+.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(9分)由直线l 的方程与椭圆方程联立,得22223198y x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消y 化简得2230x x --=,解得11x =-,23x =.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(10分)从而得8(1,)3A -,(3,0)B ,又8(1,0),(1,)3F Q -,∴10||3FA ==,8||3FQ = ,||2FB = .⋯⋯⋯⋯⋯⋯⋯(11分)∴||FA ,||FQ ,||FB成等差数列.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(12分)11.已知1F 、2F 是椭圆22221(0)x y a b a b+=>>的左、右焦点,且离心率12e =,点P 为椭圆上的一个动点,△12PF F 的内切圆面积的最大值为43π.(1)求椭圆的方程;(2)若A ,B ,C ,D 是椭圆上不重合的四个点,满足向量1F A 与1F C 共线,1F B 与1F D共线,且0AC BD =,求||||AC BD + 的取值范围.【解答】解:(1)由几何性质可知,当,△12PF F 的内切圆面积的最大值时,即,12PF F S 取最大值,且121()22PF F max S c b bc == ,由243r ππ=,解得3r =,又由△12PF F 的周长为22a c +定值,∴223bc a c =+,又12c e a ==,可得2a c =,即b =,2c ∴=,b =4a =,故椭圆方程为2211612x y +=,(2)①当直线AC 和BD 中有一条垂直x 轴时,||||6814AC BD +=+=,②当直线AC 的斜率存在但不为0时,设AC 的方程为:(2)y k x =+,由22(2)11612y k x x y =+⎧⎪⎨+=⎪⎩得2222(34)1616480k x k x k +++-=,代入弦长公式得,2224(1)||34k AC k +=+ ,同理由221(2)11612y x kx y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消去y ,代入弦长公式得2224(1)||34k BD k +=+ ,2222222168(1)168||||11(34)(43)121(1)k AC BD k k k k +∴+==+++-++,令21(0,1)1t k =∈+,则212(12t t -++∈,49]4,由①②可知||||AC BD + 的取值范围是96[7,14].12.已知椭圆22221(0)x y a b a b +=>>经过点)2-,且椭圆的离心率12e =,过椭圆的右焦点F 作两条互相垂直的直线,分别交椭圆于点A 、B 及C 、D .(Ⅰ)求椭圆的方程;(Ⅱ)求证:11||||AB CD +为定值;(Ⅲ)求9||||16AB CD +的最小值.【解答】解:()I 由12c e a ==,得2214c a =,222244()a c a b ∴==-,2234a b ∴=.(1),⋯(1分)由椭圆过点知,223314a b+=.(2)⋯(2分)联立(1)、(2)式解得24a =,23b =.⋯(3分)故椭圆的方程是22143x y +=.⋯(4分)11()||||II AB CD +为定值712⋯(5分)证明:椭圆的右焦点为(1,0)F ',分两种情况.1︒当直线AB 的斜率不存在时,:1AB x =,则:0CD y =.此时||3AB =,||4CD =,117||||12AB CD +=;⋯(6分)2︒当直线AB 的斜率存在时,设:(1)(0)AB y k x k =-≠,则1:(1)CD y x k=--.又设点1(A x ,1)y ,2(B x ,2)y .联立方程组22(1)3412y k x x y =-⎧⎨+=⎩,消去y 并化简得2222(43)84120k x k x k +-+-=,∴2122843k x x k +=+,212241243k x x k -=⋯+ (7分)∴12|||AB x x ==-==2212(1)43k k +=+,⋯(8分)由题知,直线CD 的斜率为1k-,同理可得2212(1)||43k CD k +=⋯+(9分)所以2211777||||12(1)12k AB CD k ++==+为定值.⋯(10分)(Ⅲ)解:由()II 知117||||12AB CD +=,∴912911||||(||||)()16716||||AB CD AB CD AB CD +=++⋯(11分)9||1225||16()716||||CD AB AB CD =++122521(7164+= ,⋯(12分)当且仅当9||||16||||CD AB AB CD =,即3||||4AB CD =,即||3AB =,||4CD =时取等号⋯(13分)∴9||||16AB CD +的最小值为214.⋯(14分)13.已知椭圆22122:1(0)x y C a b a b +=>>的长轴长为4,离心率为12,一动圆2C 过椭圆1C 右焦点F ,且与直线1x =-相切.(1)求椭圆1C 的方程及动圆圆心轨迹2C 的方程;(2)过F 作两条互相垂直的直线,分别交椭圆1C 于P ,Q 两点,交曲线2C 于M ,N 两点,求四边形PMQN 面积的最小值.【解答】解:(1)由已知可得2222423112a a b a c c c e a =⎧=⎧⎪⇒⇒=-=⎨⎨===⎩⎪⎩,则所求椭圆方程221:143x y C +=.由已知可得动圆圆心轨迹为抛物线,且抛物线C 的焦点为(1,0),准线方程为1x =-,则动圆圆心轨迹方程为22:4C y x =.(2)当直线MN 的斜率不存在时,||4MN =,此时PQ 的长即为椭圆长轴长,||4PQ =,从而11||||44822PMQN S MN PQ =⋅=⨯⨯=.设直线MN 的斜率为k ,则0k ≠,直线MN 的方程为:(1)y k x =-,直线PQ 的方程为1(1)y x k=--,设1(M x ,1)y ,2(N x ,2)y ,3(P x ,3)y ,4(Q x ,4)y ,由2(1)4y k x y x=-⎧⎨=⎩,消去y 可得2222(24)0k x k x k -++=,由抛物线定义可知:2221222244||||||1124k MN MF NF x x k k +=+=+++=+=+,由221(1)143y x k x y ⎧=--⎪⎪⎨⎪+=⎪⎩,消去y 得222(34)84120k x x k +-+-=,从而234212(1)|||34k PQ x x k +=-=+,∴222224211412(1)(1)||||(4)24223434PMQN k k S MN PQ k k k k ++=⋅=+=++,令21k t +=,0k > ,则1t >,则22222221242424211||||34(1)(0,3)2123(1)4(1)3213PMQN t t S MN PQ t t t t t t t t t =⋅===--+∈-+-----,所以2248213PMQN S t t =>--,所以四边形PMQN 面积的最小值为8.14.平面直角坐标系xOy 中,已知F 为椭圆22221x y a b+=的右焦点,且24a b +=,过F 作两条互相垂直的直线交椭圆分别于A 、B 与C 、D .以F 为极点,x 轴正半轴为极轴建立极坐标系.(Ⅰ)求椭圆的极坐标方程与1||AB 的代数表达式;(Ⅱ)求11||||AB CD +的取值范围.【解答】解:由已知24b a =-,(Ⅰ)设(,0)F c,2222a a c b p c c c c -=-===c e a a==,以右焦点F 为极点,x 轴正半轴为极轴,建立极坐标系,则椭圆的极坐标方程为1cos ep e ρθ=+,即22cos ab ac c ρθ=+,其中c =设(A A ρ,)θ,则(B B ρ,)θπ+,222||1cos 1cos()1cos 1cos 1A B ep ep ep ep ep AB e e e e e cos ρρθπθθθθ∴=+=+=+=++++--,2211||2e cos AB ep θ-=,即22221||2a c cos AB ab θ-=;(Ⅱ)由(Ⅰ)得,22222222(112||||22a c cos a c cos AB CD ab ab πθθ-+-+=+2222222222222222422222(4)a c cos a c sin a c a b a a ab ab ab ab a a θθ---+-+=+===-.24a b += ,222240c a b a a ∴=-=+->,且4a <,4a <<.记f (a )242(4)a a a a -+=-,则f '(a )22(4)(34)2(4)a a a a +-=-,当142a -<<时,f '(a )0>,f (a )为增函数,则f (a)1(8+∈,)+∞,即11||||AB CD +∈,)+∞.。
圆锥曲线的第二定义

圆锥曲线的第二定义(平面内到定点与到定直线距离的比为常数e的点的轨迹)是圆锥曲线概念的重要组成部分。
揭示了圆锥曲线之间的内在联系,它不仅是研究圆锥曲线图象和性质的基础,而且在很多数学问题的求解过程中,具有不可低估的特殊功能。
一、导向功能圆锥曲线第二定义对许多问题的求解,具有明显的导向作用,优先考虑第二定义,有助于启迪思路,理顺解题线索。
例1:椭圆x2/25+y2/9=1上有一点P,如果它到左准线的距离为5/2,那么P到右焦点的距离是。
[分析]解题之前一定要认真审题,对有关曲线上一点到焦点、准线距离的问题,首先联想到圆锥曲线的第二定义。
[解]设P到左准线距离为|PM|由椭圆第二定义|PF1|/|PM|=e∴|PF1|=e|PM|=4/5×5/2=2又∵|PF1|+|PF2|=2a=10∴|PF2|=8例2:F2是椭圆x2/a2+y2/b2=1(a>b>0)的右焦点,P(x0,y0)是椭圆上任一点,则|PF2|的值为:A. ex0-aB. a-ex0C. ex0-aD.e-ax0[分析]针对题中要求|PF2|的值,且各选项中含有e,从椭圆第二定义入手,问题不攻自破。
[解]设点P(x0,y0)到椭圆右准线x=a2/c的距离为|PN|,则|PN|=a2/c-x0 根据椭圆第二定义|PF2|=e|PN|=e(a2/c-x0)=a-ex0,故选B。
二、简化功能巧用圆锥曲线的第二定义,可以简化复杂的变形与讨论,使问题简捷获解。
例3:过抛物线y2=4x的焦点的一条直线交抛物线于A、B两点,若线段的中点的横坐标为3,则|AB|= 。
[分析]若按求焦点,设直线方程、联立方程组求|AB|过程繁琐,因此从定义出发。
[解]过A、B两点向准线引垂线AM、BN设AB中点为C(3,y0),过C向准线引垂线CH,则CH是直角梯形ABNM的中位线。
∴|AM|+|BN|=2|CH|抛物线y2=4x的焦点为F(1,0),准线为x=-1所以有|AB|=|AF|+|BF|=|AM|+|BN|=2|CH|=2(3+1)=8例4:已知椭圆方程为x2/b2+y2/a2=1(a>b>0),求与这个椭圆有公共焦点的双曲线,使得以它们的交点为顶点的四边形面积最大,并求相应的四边形的顶点坐标。
圆锥曲线的第二定义双曲线的第二定义

圆锥曲线的第二定义-双曲线的第二定义巧用圆锥曲线第二定义解题整警巧用圆锥曲线第二定义解题黔西南民族职业技术学院姚忠安【摘要】圆锥曲线第二定义,揭示了圆锥曲线的内在联系。
应用圆锥曲线第二定义求解圆锥曲线的轨迹方程、离心率、与圆锥曲线有关的最值等非常简单,它能使问题化繁为简,提高准确率,达到事半功倍的效果。
【关键词】圆锥曲线第二定义轨迹离心率最值条件中的三个,用圆锥曲线定义来解决比较简单。
求圆锥曲线的离心率二例4过椭圆的左焦点F作直线与椭圆交于A、B.两点,l:B:lIFIAF=53,且直线与长轴的夹角为6。
,求椭圆的离心率。
0解:如图,作椭圆的左准线l过A、B两点分别作左准线的垂线,垂足分别为c、D,由圆锥曲线的定II君Il圆锥曲线第二定义:平面内动点M定XY到点F的距离与它到定直线1距离的比是常数e的点的轨迹,当0e1是椭圆;当e1是抛<<时=时物线;当e1是双曲线。
e离心率,F焦点。
>时是是求圆锥曲线的轨迹方程一例1经过点M轴率e专的点Pxy的轨迹方程。
:解:依题意,所求的点P的轨迹方程是以y轴为右准线的椭圆方程,设椭圆的右焦点F因x,。
为P在椭圆上且过椭圆的右顶点,由第二定义知点即X4工,。
yo_-XI=XOY=,所以椭圆右焦点,8CX6lO0。
f一2,・为F,又’M在椭圆上,由一、F\~定,止喜即/4+。
{,j)一x化简得P的轨迹方程为:即,椭圆的离心率为e=1+9))右焦点,X为右准线,离.50为=2心率e的圆锥曲线的轨迹方程。
=2解:依题意,所求曲线的轨迹方程为双曲线,设M曲线上任一点,由圆锥曲线第二定xY为例5已知一抛物线以椭圆三+。
1的左焦点.;F为顶点,以椭圆的右焦点F为焦点,P抛物线与椭圆的一个交点,如果椭圆的离为一l,心率满足=,求e的值。
解:如图,设椭圆的左准线与抛物线的准线分别为l。
,过点P作1垂线,垂足分别为A、、l.的、l义,有=,与2即喜,简2化得所线的为:;一善:求曲方程堕l例3已知圆锥曲线过点A.一4一8,它的一个焦点为F=B,由圆锥曲线第二定义可知,一e即l,l=eIpI①又。
高三第二轮专题复习课案例分析——圆锥曲线定义的应用

2 通过问题探究 ,掌握解决与圆锥曲线定义相 . 2 关问题的基本方法 求动 点 轨迹 ,如 果 出现 两 定点 或一 条 定直 线 ,
可 以通 过 图形 的几何 性 质 ,如线 段 中垂 线 、 角平 分 线 、 切线 长 等性 质 ,应 用平 面 几何 思 想 ,把 问题 转 化 为应 用 圆锥 曲线 的定义 来 求 轨迹 ,也是 解 决此 类 问题 的通 法 .
切 线 方程为 Y=2 一2 t . p
M ( Y) 因为 9=A A,由定 比分 点 坐标公 式 得 x, 则 Q
高三第二轮专题复 习课案例分析
— —
圆锥 曲线 定义 的应 用
肖
骁
福建 省 厦 门外 国语 学校 (60 2 3 11 ) 构 , 重应 试训 练 ,导致 我省 基础教 育 大大 落后 . 注 ”
一
3。 Y )+ =4 外切 的动 圆 圆心 P轨迹 方程 .
段 为直 径 的圆 ,与 以双 曲线 实 轴 为 直径 的 圆相
21 02年第 3 期
福建 中学数 学
1 7
切 .( 证法 与例 2相 似 ) ()连结 抛物 线 上任一 点与 其 中一个 焦点 的线 2 段 为 直径 的 圆 ,与 Y轴相 切 .
a— D
P作
方程 .
的平分线上的垂线于 G,求点 G的轨迹
探 究 3 已知 A B A C的内切 圆边 B C于 D ,且
B D=8, C =2,求点 的轨迹 方程 . D
探 究 4 中心在 原点 ,焦 点在 X 的双 曲线 的两 轴
焦点 ,c, 是双曲线右支上任意一点 , 则
关的通性 问题 .这样不仅可以提高综合解题能力 , 同 时可 以激 发 学 生 的兴 趣 和热 情 ,从而 提 升学 生的 数学素养 . 例 3求证连结椭圆上任一点与其中一个焦点的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线第二定义在一些题目中的应用
北京一零一中学数学组 何效员 圆锥曲线的第二定义:平面上到定点与到定直线的距离的比为常数e 的点的轨迹是圆锥曲线概念的重要组成部分,它揭示了圆锥曲线之间的内在联系,是圆锥曲线在极坐标系下 具有统一形式的基本保证。
利用圆锥曲线的第二定义,在某些情形下,可以更方便的求解一些题目。
但当我们利用第二定义时,有时候会忽略一个条件,即平面上的这个定点不能在定直线上,否则得到的曲线不是圆锥曲线。
如:考虑坐标平面上,到定点(1,1)与到定直线1x =的距离之比为常数e 的点的轨迹讨论如下:
① 当1e =时,点的轨迹方程为1,(1)y x =≠,
直线去掉一点;
② 当1e >时,点的轨迹方程为211(1),y e x -=±--
(1)x ≠,两条直线去掉一点;
③ 当1e <时,点的轨迹不存在。
下面我们就一些具体的题目来体会第二定义的妙用。
例1 已知椭圆22
143
x y +=内一点(1,1)P -,F 为右焦点,椭圆上有一点M 使 ||2||MP MF +的值最小,求点M 的坐标。
分析:若按常规思路,设点(,)M x y ,右焦点(1,0)F ,
则2222
||2||(1)(1)2(1)MP MF x y x y +=-+++-+,
求其最小值无疑是困难,观察2||MF ,设M 点到右准线的距离d ,
||1
2
MF c e d a ===,2||MF d ∴=,这样 ||2||MP MF +就转化为在椭圆上寻找一点到(1,1)P -的距离与到直线2
4a x c
== M
P
F M
x = 4
O
y
x
的距离和最小,当且仅当MP ⊥直线4x =时,点M 在点P 和直线4x =之间时取得,此时M 的坐标为26
(
,1)3
-. 例2 已知椭圆方程为22
221(0)y x a b a b
+=>>,求与这个椭圆有公共焦点的双曲线,使得
它们的交点为顶点的四边形的面积最大,并求出相应的四边形的顶点坐标。
分析:本体若通过椭圆与双曲线方程联立求解交点坐标,
继而讨论四边形面积的表达式,求出使面积最大时 的双曲线方程,计算会十分麻烦,考虑到椭圆和双 曲线有共同的焦点,不妨利用第二定义求解。
设所求双曲线方程为
22
2
21(,0)y x m n m n
-=>,其中 22222c a b m n =-=+,设两曲线在第一象限内的交点111(,)P x y ,12,l l 分别为椭圆,双曲线的上准线,过1P 作11PQ l ⊥于Q ,1
2PR l ⊥于R , 22
1211111||||||||||c a c m PF e PQ e PR y y a c m c
===
-=-, 2211()()a m m y a y c c ∴-=-,解得 1am
y c
=,代入椭圆方程22221y x a b +=,得
1bn
x c
=
,利用双曲线与椭圆的对称性知 22
1122
4422abmn m n S x y ab ab c c +==≤⋅=,等号当且仅当22m n c ==时取得,故所求双曲线方程为22
2
2
2
a b y x --=,相应的四个顶点坐标为22(,)b a ±±. 例3 已知椭圆()22
2210x y a b a b
+=>>的两个焦点分别为()1,0F c -和()2,0F c ,过点
2,0a E c ⎛⎫
⎪⎝⎭
的直线与椭圆相交于,A B 两点,且1212//,2F A F B F A F B = (1)求椭圆的离心率; (2)求直线AB 的斜率。
分析:本题是2009年天津卷文科第22题的前两问,参考答案是用常规方法,即设直线AB
的方程与椭圆方程联立,利用B 为AE 之中点求解,方法虽易理解,但计算繁杂,极易出错,而利用椭圆的第二定义,求解过程简洁,极富数学美感。
为对比,先将两种解法列出。
解法一 (1) 由1212//,2F A F B F A F B =,得2211||||1||||2EF F B EF F A ==,从而2
212
a c
c a c c
-=+, 整理得2
2
3a c =,故离心率33
c e a =
=. (2)解:由(1)知,22222b a c c =-=,所以椭圆的方程可以写为2
2
2
236x y c +=, 设直线AB 的方程为2
()a y k x c
=-即(3)y k x c =-,
由已知设1122(,),(,)A x y B x y ,则它们的坐标满足方程组2
2
2
(3)236y k x c x y c
=-⎧⎨
+=⎩,
消去y 整理,得2
2
2
22
2
(23)182760k x k cx k c c +-+-=
依题意, 22
3348(13)0,33
c k k ∆=->-
<<, 而2222
12122
2
18276,2323k k c c x x x x k k -+==++,由题设知,点B 为线段AE 的中点,所以1232x c x +=
联立三式,解得2222
1222
9292,2323k c c k c c x x k k -+==++,将结果代入韦达定理中解得
2
3
k =±
.
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
解法二 (2) 设椭圆方程为 2
2
2
236x y c +=,
过E 作l x ⊥轴,知l 为椭圆的右准线, 过,A B 分别作'AA l ⊥于'A ,'BB l ⊥ 于'B ,知'//'AA BB ,
22||||
|'||'|
AF BF e AA BB ==,即22|||'||||'|AF AA BF BB =,在'EAA ∆中,根据相似三角形对应 线段成比例,
|'|||2|'|||
AA AE BB BE ==,221||2||||AF BF AF ∴==, 则点A 在短轴顶点,所以(0,2),A c ± 直线AB 的斜率为2233
AB c k c =±
=±。
利用圆锥曲线的第二定义,我们在极坐标系中可以很方便地得到圆锥曲线的统一方程:
1cos ep
e ρθ
=
-,(其中e 为离心率,p 为焦准距)。
利用这个方程,我们很容易得到下面这
个结论:
过双曲线22
221x y a b
-=的右焦点且与右支交于两点的弦,当且仅当弦与x 轴垂直时,取
得最小长度2
2b a
.
以双曲线右焦点F 为极点,对称轴为极轴, 如图所示建立极坐标系,易知双曲线右支的方程 为
2
,(,)1cos ep c b e p e a c
ρθ===-,
设,A B 两点的坐标分别是12(,),(,)ρθρπθ+,
212222221cos 1cos()1cos ep ep ep b ep e e e a ρρθθπθ+=+=≥=--+-,当且仅当2
πθ=时,
等号成立.
利用这个结论,我们可以很轻松地证明1997年全国高中数学联赛一试第8题。
y
O
x
A '
B 'F 1
F 2
E
B
A
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
例4证明:过双曲线
2
21
2
y
x-=的右焦点作直线l交双曲线于A、B两点,若实数λ使得
||
ABλ
=的直线恰好有3条,则4
λ=.
圆锥曲线第二定义在解题中的妙用不可胜数,本文只是稍加举例,更多的应用还有待我们去探索体会.。