数控电火花线切割机床的基本编程方法
数控电火花线切割编程

(5)选择轮廓内侧的箭头,表示补 偿量的方向指向轮廓内侧。
(6)输入穿丝点(5,0)回车。 (7)右击使穿丝点与退回点重合, 系统自动生成加工轨迹。
(8)单击主菜单“文件”→“另存 文件”,输入文件名WZY01_HH.EXB, 单击“保存”。
(4)根据交点坐标值及各线段的加 工顺序,逐段编制切割程序。
(5)为防止出错,应对编制的程序 进行必要的检查和检验。
6.2.2 ISO代码线切割程序
1.ISO代码编程格式
一般来说,慢走丝线切割机床通常采 用ISO代码来编制加工程序。ISO代码的 编程格式如下:
/ N4 G2 X±53 Y±53 I±53 J±53 F22 D2 T±13 M2
自动编程结束生成代码文件后,根据 线切割控制系统的不同应选用不同的传输 方法。一般来说传输3B格式代码和传输G 代码的方法是不同的。
1.运用同步方式传输3B
格式代码程序
(1)依次单击菜单“线切 割”→“代码传输”→“同步传输”。
(2)选择要传输的文件名(如 WZY01_HH.3B)。
(3)操作机床控制器使其处于收信 状态,并确定通信电缆连接无误。
谢谢收看
图6-26 线切割加工工件平面图
1.加工轨迹的生成
(1)利用CAXA软件的CAD功能按 1∶1绘制图6-26所示线切割加工工件平面 图形。
(2)依次单击“线切割”→“轨迹 生成”按钮,系统弹出“线切割轨迹生成 参数表”对话框。
(3)按空格键,在弹出的拾取工具 菜单中选择“链拾取”,然后用鼠标单击 L1直线,此时沿L1直线方向出现一对反向 的绿色箭头。
数控线切割机床的操作与编程

在图6-2所示结构中,在储丝筒旋转的同时,通过二级齿轮减速传动带动 丝杆转动,由于丝杆螺母副的作用而使得储丝筒所在的滑动走丝拖板相对于 机床座体(丝架所在)产生轴向位移。如果二级齿轮传动中,每一级减速比为1 : 4,丝杆的螺距为2.75 mm,则当储丝筒转过一圈时,其轴向位移为 1/16×2.75= 0.172 mm,就算用直径为( 0.15 mm的钼丝都不会产生叠丝。为 了保证收丝方与放丝方不叠丝,可在丝架的上面和下面各放一块硬质合金挡 丝块,并特地偏开一定的距离(约1.5 mm)。
2.慢走丝线切割机床的走丝机构
如图6-3所示。走丝系统 自上而下,丝由送丝轮经张力 轮到上导向轮、工件孔、下导 向轮,再到速度轮、排丝轮, 最后到达收丝轮。和快走丝系 统明显不同的就是该系统采用 的电极丝是一次性的,走丝速 度慢而连续可调(0.5~8 m / min)。走丝速度由速度轮后面 的DC电机控制,调节机床面板 上的“丝速调节”旋钮即可。 顺时针转动为加速,逆时针转 动为降速。
• 数控线切割机床,又称数控电火花线切割机床, 其加工过程是利用一根移动着的金属丝(钼丝、钨 丝或铜丝等)作工具电极,在金属丝与工件间通以 脉冲电流,使之产生脉冲放电而进行切割加工的 。
如图6-1所示,电极丝穿过工件上预先钻好的小孔(
穿丝孔),经导轮由走丝机构带动进行轴向走丝运动。
工件通过绝缘板安装在工作台上,由数控装置按加工程
3. 加工零件 在试制新产品时,用线切割在坯料上直接割出零件
,由于不需另行制造模具,可大大缩短制造周期、降低 成本。另外修改设计、变更加工程序比较方便。在零件 制造方面,可用于加工品种多、数量少的零件,特殊难 加工材料的零件、材料试验样件、各种型孔、特殊齿轮 凸轮、样板、成型刀具。同时还可进行微细加工,异形 槽和人工标准缺陷的窄缝加工等。
数控线切割机床自动编程的步骤和方法

数控线切割机床自动编程的步骤和方法随着数控技术的不断发展,数控线切割机床已经成为了现代工业生产中不可或缺的设备,其具有高效、精度高、自动化程度高等优点。
而对于数控线切割机床来说,自动编程是其最重要的功能之一。
下文将从步骤和方法两个方面详细介绍数控线切割机床自动编程的过程。
一、数控线切割机床自动编程的步骤1. 零件图形输入数控线切割机床自动编程的第一步是将要加工的零件图形输入到计算机中。
这一步可以通过手工绘制图形,然后扫描或输入到计算机中;也可以通过CAD软件直接绘制图形。
无论采用哪种方式,都需要确保图形的准确性和完整性。
2. 编写切割程序在完成零件图形的输入之后,需要编写切割程序。
切割程序是数控线切割机床自动编程的核心,它包含了加工路径、切割速度、切割深度等信息。
编写切割程序可以采用G代码或CAM软件,其中G 代码是一种通用的数控编程语言,而CAM软件则是一种图形化编程软件,可以根据零件图形自动生成切割程序。
3. 进行数控仿真在编写好切割程序之后,需要进行数控仿真。
数控仿真是将切割程序加载到数控系统中,然后在计算机上进行仿真运行,以验证切割程序是否正确。
在仿真过程中,可以模拟切割路径、切割速度、切割深度等信息,以确保切割程序的正确性和可靠性。
4. 生成切割程序在完成数控仿真之后,需要生成切割程序。
切割程序可以通过数控系统直接输出,也可以通过U盘或其他存储设备输出到数控线切割机床上。
在输出切割程序之前,需要进行一些参数设置,如加工速度、加工深度等。
5. 进行数控加工最后一步是进行数控加工。
在数控加工过程中,数控系统会根据切割程序自动控制线切割机床进行加工。
在加工过程中,需要对加工状态进行监控,以确保加工质量和安全性。
二、数控线切割机床自动编程的方法1. 手工编程法手工编程法是最原始的数控编程方法,它需要编程人员熟练掌握G 代码语言,并手工编写切割程序。
手工编程法的优点是灵活性高,可以根据具体情况进行调整和优化;缺点是效率低、易出错。
数控电火花线切割机床操作方法资料

(1)模块四数控电火花线切割机床操作要领(2)本课题学习的内容主要是使你了解数控电火花线切割机床操作的基本流程,教会你装夹工件、安装并校正线电极,并掌握确定加工参数的方法。
(3)(4)电火花线切割加工操作流程包括工件材料的选择→工艺基准的确定→穿丝孔的加工→工件的装夹→线电极的选择及位置校正→确定加工参数→线切割加工等步骤。
(5)有些步骤的内容我们在模块三已学习过,在本模块着重介绍工件的装夹、线电极的选择及位置校正、加工参数的确定等操作要点。
(6)工件的装夹(7)线切割加工工件的安装一般采用通用夹具及夹板固定。
由于线切割加工时作用力小,装夹时夹紧力要求不大,且加工时电极丝从上到下穿过工件,被工件切割部分要悬空,因此对线切割工件的安装有一定有要求。
1.对工件装夹的一般要求(1)工件的装夹基准面要光洁无毛刺。
对热处理后的工件表面的渣物及氧化膜一定要清洁干净,以免造成夹丝或断丝。
学习目标:知识目标:●了解数控电火花线切割机床加工流程。
能力目标:●掌握数控电火花线切割装夹工件、校正线电极位置和确定加工参数的方法。
(2)夹紧力要均匀,不得使工件变形或翘起。
(3)装夹位置要有利于工件的找正,且要保证在机床加工行程范围内。
(4)所用的夹具精度要高,以确保加工精度。
(5)细小、精密及薄壁工件应先固定在辅助夹具上再装夹到工作台。
(6)批量加工零件时,最好设计专用夹具以提高生产率。
2.常用的工件装夹方式(1)悬臂支撑,如图3-22(a)所示。
此方式装夹方便,通用性强,适用于对加工要求不高或悬臂部分较少的工件的装夹。
(2)两端支撑,如图3-22(b)所示。
此方式工件两端固定在夹具上,支撑稳定,定位精度高,适用于较大零件的装夹。
(3)桥式支撑,如图3-22(c)所示。
此方式是把两支撑垫铁放到两端支撑夹具上,桥的侧面也可作定位面使用,使装夹更方便,通用性广,适用于大、中、小工件的装夹。
(4)板式支撑,如图3-22(d)所示。
数控电火花线切割机床编程(ppt 32)

A(-2,9) Y
X
O
X
CO
D
图10-6 直线编程
图10-7 圆弧编程
Exit 15
单元二 数控电火花线切割编程
BC
CD
二、4B指令编程
1、概述
A Y
(1)间隙补偿
(2)锥度补偿 2、程序编制的基本规则
O
X
(1)4B程序格式
(2)4B格式程序中的R、D/DD、L的使用规(则a)
A Y
O
X
(b)
凹模的轮廓
单元三 数控电火花线切割编程工艺与实例
一、数控线切割编程中的工艺处理
4、辅助程序的规划 (2)切出程序
有时工件轮廓切完之后,钼丝还需沿切入路线反向切 出。但是材料的变形易使切口闭合,当钼丝切至边缘时,会 卡断钼丝。所以应在切出过程中,增加一段保护钼丝的切出 程序,如图10-18所示(图中的A′—A″)。A′点距工件边缘 的距离,应根据变形力的大小而定,一般为1mm左右。 A′—A″斜度可取1/3~1/4。
图106直线编程图107圆弧编程单元二数控电火花线切割编程二4b指令编程exit1概述1间隙补偿2锥度补偿2程序编制的基本规则14b程序格式24b格式程序中的rdddl的使用规则图108凹模图109内外引线编程单元三数控电火花线切割编程工艺与实例一数控线切割编程中的工艺处理二编程实例exit单元三数控电火花线切割编程工艺与实例一数控线切割编程中的工艺处理exit1补偿量f的确定2锥度偏移量a的确定3切割路线走向及起点的选择4辅助程序的规划单元三数控电火花线切割编程工艺与实例一数控线切割编程中的工艺处理exit1补偿量f的确定在实际加工过程中由于受电极丝半径及火花放电间隙的影响使切割加工后工件的尺寸与工件所要要求的尺寸不一致
数控电火花线切割机床编程

3)计数方向G
• 为保证所要加工的直线或圆弧按照要求的长度加工出来, 一般通过从起点到终点的某个拖板在进给方向上的总长度 来达到。尽管从坐标方法上来说,选择哪个拖板进行移动 控制,其效果都是一样的。但就采用逐点比较插补方法而 言,存在着差异,这种差异将影响加工精度。
斜线的计数方向
圆弧的计数方向
加工精度。若选择X轴作为移动方向,X拖板就会在X方向移动5步。此时系统 通过计算,认为加工已经到达终点。事实上,此时也已经加工到B点,不会造
成丢步现象,保证了加工精度。
①加工直线
• |Ye|>|Xe|时,取Gy; • |Xe|>|Ye|时,取Gx; • |Xe|=|Ye|时,一般
情况下,取Gx或 Gy均可。但从插补 原理方面分析,当 终点在Ⅰ、Ⅲ象限 时,应取Gy;当终 点在Ⅱ、Ⅳ象限时, 应取Gx。
圆弧加工示意图
• 从图中可以看到,圆弧AB在X轴上投影为5,在Y轴上投影也为5。这就意味着X 拖板和Y拖板一共移动10步,其中X拖板移动5步,Y拖板移动5步。若选择Y轴 作为移动方向,Y拖板就会在Y方向移动5步。此时系统通过计算,认为加工已
经到达终点。事实上,此时仅加工到B’点,而不是B点,造成丢步现象,影响
3.圆弧编程
• 例 加工如图所示圆弧线段,试编写程序。
• ①建立坐标系 坐标系原点位于圆弧线段AB的原点O点处。
• ②起点坐标Xa=2250,Ya=500,终点坐标Xb=500,Yb=2250,则Xe=2250,Ye=500; • ③由于|Xb|<|Yb|,所以记数方向G=Gx。 • ④记数长度J=Jx=2250-500=1750。 • ⑤由于圆弧起点A处于第一象限,且按加工方向看,圆弧AB为逆圆,所以加工
2)坐标值X、Y
#第5章_数控线切割机床编程方法

线切割机床编程 编程方法 第五章 NC线切割机床编程方法
二、NC线切割机床程序编制方法
2、 3B格式编程方法 格式编程方法 1) 直线程序段 计数方向G ② 计数方向 — (GX/GY) 选取X方向或Y方向进给 总长度进行计数,称为计数 方向。加工直线按图5-3选 取,即直线终点在绿色区域 内为GY,否则为GX。 即:若|X|>|Y|,则为GX, 否则为GY。如图5-4 a)中的 L1与图5-4 b)中的L2为GX; 图5-4 a)中的L2为GY。 当|X|=|Y|时(与X轴夹角 为45°),则GX或GY可任选, 如图5-4 b)中的L1所示。
表5-1 3B格式
B 分隔符号 X X坐标值 B 分隔符号 Y Y坐标值 B 分隔符号 J 计数长度 G 计数方向 Z 加工指令
其中B为数字(X、Y、J)之间的分隔符号,由于有三个B,故称3B分 隔符格式;加工指令Z分为直线和圆弧加工两大类。 下面分别介绍 直线程序段与圆弧程序段各指令的定义及应用。
编程上机习题: 编程上机习题:按3B格式编制习题1和习题2所示零件的加工程序。
习题1 习题
习题2 习题
线切割机床编程 编程方法 第五章 NC线切割机床编程方法
编程上机习题: 编程上机习题:分别按3B和4B格式编制习题3和习题4所示零件的加工程序。
习题3 习题
习题4 习题
线切割机床编程 编程方法 第五章 NC线切割机床编程方法
表5-2 4B格式
B 分隔 符号 X X坐 标值 B 分隔 符号 Y Y坐 标值 B 分隔 符号 J 计数 长度 B 分隔 符号 R 圆弧 半径 G 计数 方向 D或DD 曲线 形状 Z 加工 指令
数控加工实用技术
电火花线切割编程

电火花线切割编程前面讲过线切割加工的具体特点及其线切割加工的工艺规律,在具体加工中一般按图6-1所示步骤进行。
准备工作环节图6-1 线切割加工的步骤目前生产的线切割加工机床都有计算机自动编程功能,即可以将线切割加工的轨迹图形自动生成机床能够识别的程序。
线切割程序与其它数控机床的程序相比,有如下特点:(1) 线切割程序普遍较短,很容易读懂。
(2) 国内线切割程序常用格式有3B(个别扩充为4B或5B)格式和ISO格式。
其中慢走丝机床普遍采用ISO格式,快走丝机床大部分采用3B格式,其发展趋势是采用ISO格式(如北京阿奇公司生产的快走丝线切割机床)。
6.1.1 线切割ISO代码程序编制1. ISO代码简介同前面介绍过的电火花加工用的ISO代码一样,线切割代码主要有G指令(即准备功能指令)、M指令和T指令(即辅助功能指令),具体见表6-6。
表6-6 常用的线切割加工指令对于以上代码,部分与数控铣床、车床的代码相同,下面通过实例来学习线切割加工中常用的ISO 代码。
例6.4 如图6-10(a)所示,ABCD 为矩形工件,矩形件中有一直径为30 mm 的圆孔,现由于某种需要欲将该孔扩大到35 mm 。
已知AB 、BC 边为设计、加工基准,电极丝直径为0.18 mm ,请写出相应操作过程及加工程序。
图6-10 零件加工示意图解 上面任务主要分两部分完成,首先将电极丝定位于圆孔的中心,然后写出加工程序。
电极丝定位于圆孔的中心有以下两种方法:方法一:首先电极丝碰AB 边,X 值清零,再碰BC 边,Y 值清零,然后解开电极丝到坐标值(40.09,28.09)。
具体过程如下:(1) 清理孔内部毛刺,将待加工零件装夹在线切割机床工作台上,利用千分表找正,尽可能使零件的设计基准AB 、AC 基面分别与机床工作台的进给方向X 、Y 轴保持平行。
(2) 用手控盒或操作面板等方法将电极丝移到AB 边的左边,大致保证电极丝与圆孔中心的Y 坐标相近(尽量消除工件ABCD 装夹不佳带来的影响,理想情况下工件的AB 边应与工作台的Y 轴完全平行,而实际很难做到)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
邯郸职业技术学院教案教研室:机电一体化教研室授课教师:贾建军授课总结邯郸职业技术学院讲稿教研室:机电一体化教研室授课教师:贾建军第20次课第5章电火花线切割加工技术5.3 数控电火花线切割机床的基本编程方法2. ISO代码数控程序编制(1) 坐标系设定指令G92;指令格式:G92 X_ Y_ I_ J_ ;其中X和Y值确定了线丝起始点的坐标值,也就是借助丝的当前坐标值确定了程序原点;I确定零件的厚度,J确定零件编程表面到工作台面之间的距离。
如果零件在编程表面的上部I为正值,反之I为负值,如下图所示。
I和J的具体应用参见G51、G52。
(a)I为正值J为正值(b)I为负值J为正值(2)快速点定位指令G00;指令格式:G00 X_Y_U_V;其中X和Y指定编程表面上的终点坐标;本机床除了工作台在XOY坐标平面内可以实现联动外,丝头也可以在其工作面内联动(该面与XOY平行),U和V是指丝头在由G92的I指定的平面(与上述J指定的编程表面平行)上偏移一个距离(U和V对于G90和G91是一致的)。
G00在绝对坐标系时,指出运动的终点坐标,在相对坐标系中指出运动的距离。
(3) 直线插补指令G01指令格式:G01 X_Y_U_V_F_;其中X和Y指定终点坐标,U和V同G00。
在伺服模式,运动速度由机床条件决定,F不起作用;在常量模式,F指定运动速度。
(4) 圆弧插补指令G02、G03;指令格式:G02 X_Y_I_J_U_V_K_L_F_;G03 X_Y_I_J_U_V_K_L_F_;其中G02指定顺时针圆弧,X和Y指定圆弧的终点,I和J指定圆弧的起点相对于圆心的增量值。
U和V指定圆弧终点偏移向量,K和L指定圆弧中心偏移向量;G03指定逆时针圆弧,其它字的内容与G02相同。
例:运动轨迹如下图所示,丝线的初始坐标为(170,30),程序如下:绝对坐标系:G92 X170.0 Y30.0;G90 G03 X110.0 Y90.0 I-60.0 J0.0;G02 X90.0 Y50.0 I-50.0 J0;相对坐标系:G91G03 X-60.0 Y60.0 I-60.0 J0.0;G03 X-20.0 Y-40.0 I-50.0 J0.0;(5) 插入圆角指令插入圆角指令用来指定在本程序段下一个程序段之间加上一段半径值为R的过渡圆弧。
在G01、G02和G03的程序段中都可以加入一个圆角半径R,指令格式为:G01 X_Y_R_;G02 X_Y_I_J_R_;G03 X_Y_I_J_R_;(6) 切割速度设定指令G94、G95;G94指明切割速度由指令确定,单位mm/min或inch/min;G95指明切割速度由伺服自动确定。
(7)暂停指令G04指令格式:G04X_;或G04P_;指令中X后跟的数字以秒为单位,P后跟的数字以万分之一秒为单位。
(8) 参考点G28、G30、G29、G32、G33;(1)返回参考点指令G28、G30从当前点经由命令设置的中间点返回参考点。
G28X_Y_U_V_Z_;从当前命令设置的第一中间点返回参考点,程序段中的X、Y、U、V、Z是中间点;G30 P2 X_ Y_ U_ V_ Z_;经由第二中间点返回参考点;G30 P3 X_ Y_ U_ V_ Z_;经由第三中间点返回参考点;G30 P4 X_ Y_ U_ V_ Z_;经由第四中间点返回参考点。
返回过程如图a所示。
图a 从当前点返回参考点示意图图b 从参考点返回示意图(2)从参考点返回G29G29 X_ Y_ U_ V_ Z_;用来从参考点经由中间点返回由X、Y、U、V、Z指定的坐标位置,其中间点与G28或G30的中间点相同。
返回过程如图b所示。
(3)设置参考点G32、G33G32 P_;把当前点设置为参考点,P后跟参考点号。
G33 P_ X_ Y_ U_ V_ Z_;把给定坐标点设置为参考点。
注:参考点命令不能用在子程序中。
锥度加工指令G50、G51、G52G51 X_ Y_ T_;用于用来设置沿切割方向内倾斜,加工后的零件上小下大;G52 X_ Y_ T_;用来设置沿切割方向外倾斜,上大下小;G50取消倾斜。
其中T为倾斜角度,X和Y为沿坐标轴移动的距离。
例:如图所示左部是切出一个方形孔,孔的上面尺寸为20×20mm,斜度为5度。
右部是切一个圆,上面的直径是Φ15,斜度为8度。
图左部图形的程序如下:O0009(方形例)G92 X0 Y0 I15. J5.;G51 G41 Y10. T5.;X-10.0;Y-10.0;X10.0;Y10.0;X-10.0;G50 G40 Y-10.0;M30;%图右部图形的程序如下:O0010(圆形例)G92 X40.0 Y0.0 I-20.0 J25.0;G51 G41 Y7.5 T8.0;G03 J-7.5;G50 G40.0 G01 Y-7.5;M30;%(10) 镜像及交换指令G05、G06、G07、G08、G09、G10、G11、G12坐标平移G93;指令格式:G93 X_ Y_;其中X和Y指定坐标原点平移的坐标值。
G93 X0 Y0;取消坐标平移,坐标原点恢复到G92指定点。
(12) 绝对和相对坐标编程指令G90、G91同其它系统的G90和G91。
加工坐标系设置指令G54、G55、G56、G57、G58、G59多型孔零件加工时,可以设定不同的程序零点。
利用G54~G59建立不同的加工坐标系,其坐标系的原点(程序零点)可设在每个型孔便于编程的某一点上,可使尺寸计算简单,编程方便。
手动操作指令G80、G82、G84;G80:接触感知指令,使电极丝从当前位置移动到接触工件后停止。
G82:半程移动指令,使加工位置沿着指定坐标轴返回一半的距离,即当前坐标系中坐标值一半的位置。
(15) 补偿指令G41、G42、G40G41-左偏间隙补偿指令;G42-右偏补偿指令;G40-取消间隙补偿指令。
编程格式: G41 D~编程格式: G42 D~编程格式:G40(单列一行)式中:D-表示偏移量(补偿距离),确定方法与半径补偿方法相同。
一般数控线切割机床偏移量△R在0~0.5mm之间。
(16) 坐标指令W、H、S(17) 辅助功能指令这里介绍一些本机床常用的辅助功能。
1)原路返回指令M70沿加工路线返回G92指定的起点。
如图所示,图中实线轮廓为切割路线,虚线表示M70沿原路返回起点。
例:图8-9的M70所的程序如下:G92 X0.0 Y0.0;G41 G91 G01 Y5.0;X-2.5;Y10.0;X10.0;Y-10.0;X-2.5;G40 Y-2.5;M70;M30;%2)程序结束指令M99子程序结束返回主程序。
本系统还可以在M99后给出返回地址(主程序中的程序段序号)。
3)切断丝指令M504)穿丝指令M60应用实例例:在一块270mm×165mm的方板上切割出如图所示的长方形、三解形和圆形。
其中P1、P2和P3为穿丝点,电极丝的初始坐标为(80,40)。
这里设计三个子程序,每个子程序完成一个图形的加工,程序如下:O0100(MAIN)G92 X80.0 Y40.0; 设定坐标系M98 P0101; 调用子程序P1G93 X0.0 Y0.0; 坐标平移M50; 切断丝G90 G00 X100.0 Y120.0;快速移动M60; 穿丝M98 P0102; 调用子程序P2G93 X0.0 Y0.0; 坐标平移M50; 切断丝G90 G00 X200.0 Y80.0; 快速移动M60; 穿丝M98 P0103; 调用子程序P3M30; 程序结束子程序调用切割实例O0101(P1)子程序P1G93 X120.0 Y60.0; 坐标原点平移到矩形的右上角处G90 G01 Y0.0; 绝对坐标从矩形中心到矩形上边中心处X0.0; 到矩形右上角处Y-40.0; 到矩形右下角处X-80.0; 到矩形左下角处Y0.0; 到矩形左上角处X-40.0; 到矩形上边中心处Y-20.0; 回到矩形的穿丝点(矩形切割的起点)M99; 子程序结束返回主程序O0102(P2)子程序P2G93 X100.0 Y80.0; 坐标平移三角形底边中间处G90 G01 Y60.0; 到三角形顶点处X40.0 Y0.0; 到三角形右下角处Y-40.0; 到三角形左下角处X0 Y60.0; 到三角形顶点处Y40.0; 回到三角形的穿丝点(三角形切割的起点)M99; 子程序结束返回主程序O0103(P3)子程序P3G93 X200.0 Y80.0; 坐标平移到圆心处G90 G01 Y40.0; 到圆以上圆上一点G02 J-40.0; 顺时针切割圆G01 Y0.0; 回到圆心处M99; 子程序结束返回主程序。