液压基本回路
液压基础-常见液压回路介绍

常见液压回路介绍液压只有形成回路,才能发挥作用: 常见的液压回油有 1. 差动回路 2. 节流回路 3. 闭式容积回路 4. 多泵回路 5. 多缸回路 6. 闭式控制回路1, 差动回路:功能:在必要的时候提高有油缸伸出速度,使设备动作速度加快一般回路 差动回路 一般回路:u= q /A A 即速度(dm/min)=流量(L/min)/活塞截面积 (dm²) 1L=1dm ³p A = F /A A 即压力pA (N/㎡)=负载力(N )/活塞截面积(m²) 1Pa=1N/㎡ 差动回路:两腔都有压力,实际作业面积只是活塞杆截面积 u= q /A C 流量不变、,速度加快p A = F /A C 负载力不变,负载压力提高2、节流回路功能:通过控制流量来控制油缸速度进口节流出口节流旁路节流2.1 进口节流通过调节进口节流口面积,控制进入油缸的流量,最终控制油缸速度;2-1-1 进口节流 2-1-2 能量消耗 2-1-3 进口节流(恒压)能量消耗:液压功率=压力×流量(压强每升高5Mpa,液压温度上升约3°)图2-1-2图2-1-3,进入油缸流量qA与压差开方成正比,为保持恒定压力,增加溢流阀,成本最低,但会产生新的能耗,多余流量从溢流阀流出qY=qP-qA 溢流阀作为恒压阀2-1-4 能量消耗图2-1-5 采用恒压泵 图2-1-6 采用流量调节阀为减少能量损耗,用恒压泵实时调节泵输出流量,使输出流量几乎全部进入油缸,如超出油缸所需,减小泵排量。
图2-1-5采用流量调节阀,通过调节节流孔大小,实时控制压差,控制进入油缸流量 2.2 出口节流通过调节出口节流面积,限制油液流出,有杆腔有压力,油缸速度降低;图2-2-1 图2-2-2油缸速度与有杆腔流量qB 成正比,qB 由PB 和A 就决定,所以调节节流孔大小可以调节速度。
图2-2-3 图2-2-4 图2-2-5 以上原理同进口节流相似使用单向节流阀的进口节流回路:由于两腔面积不同,同样的速度时,进出流量不同,所以不同程度的节流。
液压基本回路

上一页 下一页 返回
7.2 压力控制回路
• 7.2.4 卸荷回路
• 当系统中执行元件短时间工作时,常使液压泵在很小的功率下作空运 转,而不是频繁启动驱动液压泵的原动机。因为泵的输出功率为其输 出压力与输出流量之积,当其中的一项数值等于或接近于零时,即为 液压泵卸荷。这样可以减少液压泵磨损,降低功率消耗,减小温升。 卸荷的方式有两类:一类是液压缸卸荷,执行元件不需要保持压力;另 一类是液压泵卸荷,但执行元件仍需保持压力。 • 1.执行元件不需保压的卸荷回路 • (1)换向阀中位机能的卸荷回路 • 图7-11所示为采用M型(或H型)中位机能换向阀实现液压泵卸荷的回 路。当换向阀处于中位时,液压泵出口通油箱,泵卸荷。
第7章 液压基本回路
• • • • 7.1 7.2 7.3 7.4 方向控制回路 压力控制回路 速度控制回路 多缸动作控制回路
7.1 方向控制回路
• 在液压系统中,工作机构的启动、停止或变化运动方向等都是利用控 制进入执行元件液流的通、断及改变流动方向来实现的。实现这些功 能的回路称为方向控制回路。常见的方向控制回路有换向回路和锁紧 回路。
上一页 下一页 返回
7.3 速度控制回路
• • • • • • • 进油路节流调速回路的特点如下: ①结构简单,使用简单 ②可以获得较大的推力和较低的速度 ③速度稳定性差 ④运动平稳性差 ⑤系统效率低,传递功率低 用节流阀的进油节流调速回路一般应用于功率较小、负载变化不大的 液压系统中。 • (2)回油路节流调速回路 • 把流量控制阀安装在执行元件通往油箱的回油路上的调速回路称为回 油节流调速回路,如图7-16所示。
上一页 下一页 返回
7.3 速度控制回路
• (3)旁油路节流调速回路 • 如图7-17所示,将节流阀设置在与执行元件并联的旁油路上,即构成 了旁油路节流调速回路。该回路中,节流阀调节了液压泵溢回油箱的 流量q2,从而控制了进入液压缸的流量q1,调节流量阀的通流面积, 即可实现调速。这时,溢流阀作为安全阀,常态时关闭。回路中只有 节流损失,无溢流损失,功率损失较小,系统效率较高。 • 旁油路节流调速回路主要用于高速、重载、对速度平稳性要求不高的 场合。 • 使用节流阀的节流调速回路,速度受负载变化的影响比较大,亦即速 度稳定性较差,为了克服这个缺点,在回路中可用调速阀替代节流阀。
液压基本回路

在不考虑液压油的压缩性和泄漏的情况下
液压缸的运动速度 V = q / A 液压马达的转速 n = q / Vm 式中: q——输入液压执行元件的流量; A——液压缸的有效面积; Vm——液压马达的排量。
由以上两式可知,要想调速,改变进入液压 执行元件的流量或改变变量液压马达的排量 的方法来实现。为了改变进入液压执行元件 的流量,可有三种方法:
六、增压回路
1. 增压原理 2. 增压回路
二、 速度控制回路
速度控制回路:是调节和变换执行元件运 动速度的回路。 速度控制回路包括:调速回路、快速运动回 路,速度换接回路,其中调速回路是液压系 统用来传递动力的,它在基本回路中占有重 要地位。
(一)调速回路
调速回路:用于调节液压执行元件速度的回 路。
(2)特点 ①速度负载特性曲线在横坐标上并不汇交, 其最大承载能力随 AT 的增大而减小,即旁路 节流调速回路的低速承载能力很差,调速范围 也小。 ②旁路节流调速只有节流损失,无溢流损失, 发热少,效率高些。 ③由于旁路节流调速回路负载特性很软,低 速承载能力又差,故其应用比前两种回路少, 只用于高速、负载变化较小、对速度平稳性要 求不高而要求功率损失较小的系统中。
1 2 1 2 1 2
i
if p
p
A 2 A , then
1 2
F p 2p p A
0 c 2
i
p :液压泵出口至差动后合成管路前的压力损失;
i
p :液压缸出口至合成管路前的压力损失;
0
p :合成管路的压力损失;
c
3. 采用蓄能器的快速运动回路
(1)回路组成 (2)回路原理 (3)特点 ①可用小流量泵获快 速运动 ②只适用于短期需要 大流量的场合。
液压基本回路—方向控制回路

第7章 液压基本回路
7.1 方向控制回路
方向控制回路是用来控制液压系统各油路中液流的接通、切断或变 向,从而使执行元件相应地实现起动、停止或换向等一系列动作。 方向控制回路有换向回路和锁紧回路等。
7.1.1 换向回路
1 液压系统中,执行元件运动方向的变换,可通过各种换向阀实现; 换向阀的控制方式可以是人力、机械、电动、液动等。
2 图7.2所示分别为采用电磁换向阀和手动换向阀的换向回路。
第7章 液压基本回路
两 停留在缸的两端。
三 位 四 通 手 动 换 向 阀
阀芯中位,泵卸荷,活塞制动; 阀芯左位,活塞右移; 阀芯右位,活塞左移。
第7章 液压基本回路
第7章 液压基本回路
图7.3 采用换向阀滑 阀机能的闭锁回路
第7章 液压基本回路
图7.4 采用 液控单向阀 的闭锁回路
电磁铁都不通电,阀芯中位,泵 卸荷,单向阀A、B关闭,活塞双 向闭锁;
左边电磁铁都通电,阀芯左位, 单向阀B开启,活塞右移;
右边电磁铁都通电,阀芯右位, 单向阀A开启,活塞左移。
7.1.2 闭锁回路
1 闭锁回路又称为锁紧回路,用以实现执行元件在任意位置上停止,并 防止停止后产生蹿动。
2 常用的锁紧回路有采用O型或M型滑阀机能换向阀的闭锁回路和采用 液控单向阀的闭锁回路两种。
3 图7.3所示即为采用三位四通O型和M型滑阀机能换向阀的闭锁回路; 4 图7.4所示为采用液控单向阀的闭锁回路。
7.1 方向控制回路
第7章 液压基本回路
教学 内容
1 方向控制回路 2 压力控制回路 3 速度控制回路 4 多缸动作控制回路
第7章 液压基本回路
01
液压基本回路就是能够完成某种特定控制功能的液压元件和管道 的组合。
液压传动-第7章液压基本回路

第7章液压基本回路•液压基本回路是为了实现特定的功能把有关的液压元件组合起来的典型油路结构;•液压基本回路是组成液压系统的基础。
液压基本回路包括:*压力控制回路*速度控制回路*方向控制回路*多执行元件回路7.1 压力控制回路功能:控制液压系统整体或局部的压力,主要包括:▪调压回路▪减压回路▪增压回路▪卸荷回路▪平衡回路▪保压回路1、调压回路•功能:调定和限制液压系统的压力恒定或不超过某个数值。
•一般用溢流阀来实现这一功能。
•调压回路的分类:•单级调压回路•多级调压回路•无级调压回路先导式溢流阀电液比例溢流阀2、减压回路•功能:使液压系统中某一部分油路的压力低于主油路的压力设定值。
•一般用减压阀来实现这一功能。
•减压回路的分类:•单级减压回路•多级减压回路•无级减压回路3、增压回路•功能:提高系统中局部油路中的压力,使局部压力远高于系统油源的压力。
•单作用增压回路:只能间歇增压。
4、卸荷回路•功能:在执行元件短时间不工作时,不需要频繁启、停原动机,而是使泵源在很小的输出功率下运转。
•卸荷的实质:使液压泵的输出流量或者压力接近于零,分别称为流量卸荷与压力卸荷。
•卸荷方式:•用换向阀中位机能的卸荷回路(压力卸荷)•用先导型溢流阀的卸荷回路(压力卸荷)•限压式变量泵的卸荷回路(流量卸荷)•采用蓄能器的保压卸荷回路换向阀M、H、K型中位机能均可实现压力卸荷限压式变量泵可实现保压卸荷用先导型溢流阀实现的压力卸荷卸荷时采用蓄能器补充泄漏保持液压缸大腔的压力限压式变量泵工作原理及特性曲线5、平衡回路•功能:使承受重力作用的执行元件的回油路保持一定背压,以防止运动部件在悬空停止期间因自重而自行下落,或因自重而超速失控。
采用单向顺序阀不可长时间定位采用液控单向阀定位可靠单向节流阀用于平稳下行6、保压回路•功能:使系统在执行元件不动或仅有微小位移的工况下保持稳定的压力。
•保压性能有两个指标:保压时间和压力稳定性。
电接触式压力表4监视预设压力的上下限值,控制换向阀2动作,液控单向阀3实现保压蓄能器保压卸荷回路7.2 速度控制回路控制与调节液压执行元件的速度。
液压与气动传动第七章液压基本回路

图7-13b 调速特性曲线
q1
当进入液压缸的工作流量为 、泵的供油
q q 流量应为
,供油压力p为 ,1 此时
p 液压缸工作腔压力的p正常工作范围是
p2
A2 16)
回路的效率为 :
c
(p1
p2 AA12)q1 ppqp
p1 p2 pp
A2 A1
(7-17)
(2)差压式变量泵和节流阀的调速回路
图7-6a 采用电接触式压力表控制的保压回路
2. 采用蓄能器的保压回路 图7-6b 采用蓄能器的保压回路
3.采用辅助泵的保压回路 图7-6c 采用辅助泵的保压回路
7.2 速度控制回路
7.2.1 速度调节与控制原理 7.2.2 定量泵节流调速回路 7.2.3 容积调速回路 7.2.4 快速运动回路
7.1.5 平衡回路 平衡回路的作用: 1.采用单向顺序阀的平衡回路
图7-5a 采用单向顺序阀的平衡回路
2.采用液控单向阀的平衡回路 图7-5b 采用液控单向阀的平衡回路
3.采用远控平衡阀的平衡口路 图7-5c 采用远控平衡阀的平衡回路
7.1.6 保压回路 保压回路的功能: 1.采用电接触式压力表控制的保压回路
(3)三种调速回路的刚度比较。根据式(7-12),可得速度负载 特性曲线,如图7-9b所示。
(4)三种调速回路功率损失的比较。旁路节流调速回路只有节流 损失,而无溢流损失,因而功率损失比进油和回油两种节流阀调 速回路小,效率高。
(5)停机后的启动性能。长期停机后,当液压泵重新启动时,回 油节流阀调速回路背压不能立即建立会引起瞬间工作机构的前冲 现象。而在进油节流调速回路中,因为进油路上有节流阀控制流 量,只要在开车时关小节流阀即可避免启动冲击。
第六章液压基本回路

速度控制回路
速度控制回路是讨论液压执行元件速度的调节和变换的 问题。
1、调速回路 调节执行元件运动速度的回路。
定量泵供油系统的节流调速回路 变量泵(变量马达)的容积调速回路 容积节流调速回路
2、快速回路 使执行元件快速运动的回路。 3、速度换接回路 变换执行元件运动速度的回路。
第六章液压基本回路
▪ 采用液控单向阀的保压回路
适用于保压时间短、对保压稳定
性要求不高的场合。
▪ 液压泵自动补油的保压回
路采用液控单向阀、电接触式
压力表发讯使泵自动补油。
第六章液压基本回路
泄压回路
功用 使执行元件高压腔中的压力缓慢地释放,以免泄压过快引
起剧烈的冲击和振动。
▪ 延缓换向阀切换时间的泄压回
▪ 用顺序阀控制的泄压回路
定量泵节流调速回路
回路组成:定量泵,流量控制阀(节流阀、调速阀等), 溢流阀,执行元件。其中流量控制阀起流量调节作用,溢 流阀起压力补偿或安全作用。
▪ 按流量控制阀安放位置的不同分: 进油节流调速回路 将流量控制阀串联在液压泵与液 压缸之间。 回油节流调速回路 将流量控制阀串联在液压缸与油 箱之间。 旁路节流调速回路 将流量控制阀安装在液压缸并联 的支路上。 下面分析节流调速回路的速度负载特性、功率特性。分析
在工作过程不同阶段实现多级压力变换。一般用溢流阀来实现这 一功能。
▪ 单级调压回路
▪ 系统中有节流阀。当执行
元件工作时溢流阀始终开 启,使系统压力稳定在调 定压力附近,溢流阀作定 压阀用。
▪ 系统中无节流阀。当
系统工作压力达到或超 过溢流阀调定压力时, 溢流阀才开启,对系统 起安全保护作用。
▪ 利用先导型溢流阀遥
控口远程调压时,主溢 流阀的调定压力必须大 于远程调压阀的调定压 力。
液压基本回路(有图)_图文

类型: 调速回路、增速回路、速度换接回路等
一、调速回路
节流调速回路
类 型
容积调速回路
进油节流调速回路 回油节流调速回路
旁路节流调速回路
变量泵-定量执行元件 定量泵-变量执行元件 变量泵-变量执行元件
容积节流调速回路:变量泵+流量阀
(一)节流调速回路
1、进油节流调速回路
回路组成方式:
将流量控制阀串接在执行元件 的进油路上,且在泵与流量阀 之间有与之并联的溢流阀 。
:
速度刚度 活塞运动速度随负载变化而变化的程度。用T表示
:
。
速度负载特性曲线(v-R曲线)
v AT1
AT2 AT3
0
分析:
AT1 > AT2 > AT3
Rmax
R
① R一定时,v与AT成正比 ;高速时的速度刚度比低速 时的小; ② AT一定时,R增加则速 度减小;重载区域的速度刚 度比轻载时的小。
(2)特点
PP qP (1)速度-负载特性分析
※ 列活塞受力平衡方程 ※ 求出节流阀前后压差:ΔP ※ 求出活)
v
AT1< AT2< AT3 AT1
0
分析:
AT3 AT2
Rmax3 Rmax2 Rmax1
R
① R一定时, AT越大,v越小,速度刚度越差;
2、回油节流调速回路
A1 A2
Py
qy
P1
q1
P2
q2
qp
Pp
回路组成方式:
将流量控制阀串接 在执行元件的回油 路上,且在泵与执 行元件之间有与之 并联的溢流阀。
(1)速度-负载特性分析
系统稳定工作时,活塞受力平衡方程:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:顺序阀3的
调定压力至少应比 溢流阀5的调定压力 低10%-20%。
大流量泵1的卸 荷减少了动力消耗, 回路效率较高。这 种回路常用在执行 元件快进和工进速 度相差较大的场合, 特别是在机床中得 到了广泛的应用。
设定小流量泵2的最高 工作压力
第二节 速度控制回路(一) ——调速回路
q1CTA (ppp1)m=
CAT
(
pp
F A1
)m
于是 q A1 1A C 1 1T m A(ppA1F)m (2)
式中
C —与油液种类等有关的系数; AT —节流阀的开口面积;
pT —节流阀前后的压强差,pTppp1
m —为节流阀的指数;当为薄壁孔口时,m
=0.5。
q A1 1A C 1 1T m A(ppA1F)m (2)
(5)进油节流调速回路容易实现压力控制。工作部件运动碰到死挡
铁后,液压缸进油腔压力上升至溢流阀调定压力,压力继电器发出信号, 可控制下一步动作。
进油路、回油路节流调速回路结构简单,但效率较低, 只宜用在负载变化不大,低速、小功率场合,如某些机床 的进给系统中。
达的排量来调节执行元件的运动速度。 (3)容积节流调速回路(联合调速) 下面主要讨论节流调速回路和容积调速回路。
一. 定量泵节流调速回路
节流调速回路有进油路节流调速,回油节路流调速,旁 路节流调速三种基本形式。
设节流口为薄壁小孔,节流口压力流量方程中 m=1/2。
(一) 进油路节流调速回路
V
节流阀串联在 泵和缸之间
(2)功率特性
图1中,液压泵输出功率即为该回路的输入功率为:
Pp ppqp
V
而缸的输出功率为:
q
P1FFA1
pq 11
1
回路的功率损失为:
P P p P 1 p p q p p 1 q 1
= p p (q 1q ) (p pp T )q 1图1进油路节流调速回路
= ppqpTq1
Ppp q pTq1
对于液压缸来说,通过改变其有效作用面积 A(相当于排量)来调速是不现实的,一般只 能用改变流量的方法来调速。
对变量马达来说,调速既可以改变流量,也 可改变马达排量。
目前常用的调速回路主要有以下几种: (1)节流调速回路 采用定量泵供油,通过改变回路
中节流面积的大小来控制流量,以调节其速度。 (2)容积调速回路 通过改变回路中变量泵或变量马
调速方法概述
液压系统常常需要调节液压缸和液压马达的运动速
度,以适应主机的工作循环需要。液压缸和液压马达的
速度决定于排量及输入流量。
液压缸的速度为: 液压马达的转速:
式中
q A
n q VM
q — 输入液压缸或液压马达的流量;
A — 液压缸的有效面积(相当于排量);
VM — 液压马达的每转排量。
由以上两式可以看出,要控制缸和马达的速 度,可以通过改变流入流量来实现,也可以通 过改变排量来实现。
式 (2)为进油路节流 调速回路的速度负载特
性方程。以v为纵坐
标,FL为横坐标,将式(2) 按不同节流阀通流面积 AT作图,可得一组抛物 线,称为进油路节流调 速回路的速度负载特性 曲线。
q A 1 1 A C 1 1 T m A(ppA 1F)m
Rcmaxm mainx100
图2 进油路节流调速回路速度负载特性曲线
式中 —q溢流阀的溢流量, q。qpq1
进油路节流调速回路的功率损失由两部分组成:溢流功
率损失 P1和p节p流q功率损失
P2pTq1
V
Pp
P
p1q1
(3)
Pp
ppqp
(二) 回油路节流调速回路
采用同样的分析方 法可以得到与进油 路节流调速回路相 似的速度负载特性.
CA A21Tm(ppA1
F)m
节流阀串联在液 压缸的回油路上,
液压基本回路
快速运动回路
快速运动回路的功用在于使执行元件获
得尽可能大的工作速度,以提高劳动生产率并 使功率得到合理的利用。实现快速运动可以有 几种方法。
这里仅介绍液压缸差动连接的快速运动 回路和双泵供油的快速运动回路。
液压缸差动连接的快 速运动回路
换向阀2处于原位时,液 压泵1输出的液压油同时与 液压缸3的左右两腔相通, 两腔压力相等。由于液压 缸无杆腔的有效面积A1大 于有杆腔的有效面积A2, 使活塞受到的向右作用力 大于向左的作用力,导致 活塞向右运动。
注意
进油节流调速回路正 常工作的条件:泵的出 口压力为溢流阀的调 定压力并保持定值。
图1进油路节流调速回路
(1)速度负载特性
当不考虑泄漏和压缩时,活塞运动速度为:
q1
(1)
V
A1
活塞受力方程为:
p1
F A1
式 中 :F — 外负载力; p2 — 液压缸回油腔压力,p20。
缸的流量方程为: q1CTA (pT)m 图1进油路节流调速回路
液压缸差动连接的快速运动回路
液压缸差动连接的快 速运动回路
于是无杆腔排出的油 液与泵1输出的油液合 流进入无杆腔,即在不 增加泵流量的前提下增 加了供给无杆腔的油液 量,使活塞快速向右运 动。
液压缸差动连接的快速运动回路
这种回路比较简单也比较经济,但液压缸的速度加 快有限,差动连接与非差动连接的速度之比为:
低压大流量泵1和高压 小流量泵2组成的双联 泵作为系统的动力源。
注意:顺序阀3的
调定压力至少应比 溢流阀5的调定压力 低10%-20%。
换向阀6的电磁 铁通电后, 缸有杆腔 经节流阀7回油箱, 系统压力升高,达到 顺序阀3的调定压力 后,大流量泵1通过阀 3卸荷,单向阀4自动 关闭,只有小流量泵2 单独向系统供油,活 塞慢1 (A1 A2 )
有时仍不能
满足快速运动的
要求,常常要求
和其它方法(如
限压式变量泵)
联合使用。
液压缸差动连接的快速运动回路
双泵供油的快速运动回路
设定双泵供油时 系统的最高工作 压力
图双泵供油的快速运动回路
当换向阀6处于 图示位置,并且由于 外负载很小,使系统 压力低于顺序阀3的 调定压力时,两个泵 同时向系统供油,活 塞快速向右运动;
图3回油路节流调速回路
进油路和回油路节流调速的比较
(1) 承受负值负载的能力 回油节流调速能承受一定的负值负载
(2) 运动平稳性 回油节流调速回路运动平稳性好。 (3) 油液发热对回路的影响 进油节流调速的油液发热会使缸的内外 泄漏增加;
(4) 启动性能 回油节流调速回路中重新启动时背压不能立即建 立,会引起瞬间工作机构的前冲现象。