6.1 倒推法解题

合集下载

小学六年级奥数系列讲座:倒推法解题(含答案解析)

小学六年级奥数系列讲座:倒推法解题(含答案解析)

倒推法解题一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。

所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。

二、精讲精练【例题1】一本文艺书,小明第一天看了全书的1/3,第二天看了余下的3/5,还剩下48页,这本书共有多少页?【思路导航】从“剩下48页”入手倒着往前推,它占余下的1-3/5=2/5。

第一天看后还剩下48÷2/5=120页,这120页占全书的1-1/3=2/3,这本书共有120÷2/3=180页。

即48÷(1-3/5)÷(1-1/3)=180(页)答:这本书共有180页。

练习1:1.某班少先队员参加劳动,其中3/7的人打扫礼堂,剩下队员中的5/8打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2.一辆汽车从甲地出发,第一天走了全程的3/8,第二天走了余下的2/3,第三天走了250千米到达乙地。

甲、乙两地间的路程是多少千米?3.把一堆苹果分给四个人,甲拿走了其中的1/6,乙拿走了余下的2/5,丙拿走这时所剩的3/4,丁拿走最后剩下的15个,这堆苹果共有多少个?【例题2】筑路队修一段路,第一天修了全长的1/5又100米,第二天修了余下的2/7 ,还剩500米,这段公路全长多少米?【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-2/7=5/7,第一天修后还剩500÷5/7=700米,如果第一天正好修全长的1/5,还余下700+100=800米,这800米占全长的1-1/5=4/5,这段路全长800÷4/5=1000米。

列式为:【500÷(1-2/7)+100】÷(1-1/5)=1000米答:这段公路全长1000米。

练习2:1.一堆煤,上午运走2/7,下午运的比余下的1/3还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2.用拖拉机耕一块地,第一天耕了这块地的1/3又2公顷,第二天耕的比余下的1/2多3公顷,还剩下35公顷,这块地共有多少公顷?3.一批水泥,第一天用去了1/2多1吨,第二天用去了余下1/3少2吨,还剩下16吨,原来这批水泥有多少吨?【例题3】有甲、乙两桶油,从甲桶中倒出1/3给乙桶后,又从乙桶中倒出1/5给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?【思路导航】从最后的结果出发倒推,甲、乙两桶共有(24×2)=48千克,当乙桶没有倒出1/5给甲桶时,乙桶内有油24÷(1-1/5)=30千克,这时甲桶内只有48-30=18千克,而甲桶已倒出1/3给了乙桶,可见甲桶原有的油为18÷(1-1/3)=27千克,乙桶原有的油为48-27=21千克。

苏教版六年级数学上册 第14讲 倒推法解题

苏教版六年级数学上册   第14讲  倒推法解题

苏教版六年级数学上册倒推法解题知识概述我们在解答问题时,有些应用题顺着题目的要求一步一步地计算,往往比较麻烦。

但如果能从最后的结果出发,顺次倒着往前推算,直到求出所求问题,用倒推的方法去解,就可以化难为易。

例1、某数加上10,再乘10,减去10,除以10,结果等于10。

这个数是多少?练习:1、某数加上6,再乘6,减去6,除以6,结果等于6。

这个数是多少?2、有人问刘明的年龄,刘明说:“用我的年龄数减去8,乘7,加上6,除以5,正好等于4,请你算一算,我今年几岁?”请你算一算刘明今年的年龄。

3、赵阳在做一道加法计算题时,把一个加数个位上的4看成了7,十位上的8看成了2,结果和是306。

正确的答案应该是多少?例2、甲、乙、丙三个小朋友共有画片120张,如果甲给乙13张,乙给丙23张后,他们每人的张数相等。

原来三人各有画片几张?练习:1.甲、乙、丙三个组共有图书90本,如果乙组向甲组借3本后,又送给丙组5本,结果三个组所有图书刚好相等。

甲、乙、丙三个组原来各有图书多少本?2、甲、乙两个车站共停了90辆汽车,如果从乙站开到甲站12辆汽车,又从甲站开出30辆汽车,这时甲站停的汽车辆数是乙站的3倍。

原来甲、乙两站各停了多少辆汽车?3、某车间分成甲、乙两个组,因生产需要,把甲组工人的一半调到乙组去了。

后来改变工作程序,又把乙组工人中的25人调到了甲组,这时甲组有45人,乙组有22人。

甲、乙两个组原来各有多少人?例3、有一筐苹果,甲取出一半又1个,乙取出余下的一半文1个,丙取出再余下的一半又1个,这时管里只剩下1个苹果。

这筐苹果原来共有多少个?练习:1、有一篮鸡蛋,第一次取出一半多2个,第二次取出余下的一半多2个,第三次拿出8个,篮里还剩2个鸡蛋。

篮里原来有多少个鸡蛋?2、仓库运出三次原料,第一次运出总数的一半,第二次运出余下的一半,第三次运出前两次运完后余下的一半,最后把剩下的原料分给甲、乙两个工厂,甲厂得6吨,是乙厂的2倍。

数学倒推归纳法经典例题及解析

数学倒推归纳法经典例题及解析

数学倒推归纳法经典例题及解析一、什么是倒推归纳法倒推归纳法呢,就像是我们走迷宫的时候从出口往入口找路一样。

它是一种特殊的数学归纳法啦。

通常我们先从比较大的数或者比较复杂的情况开始考虑,然后逐步往小的数或者简单的情况推导。

比如说,有这么一个例题。

二、经典例题例题:证明对于所有的正整数n,有1 + 3 + 5 + … + (2n - 1)=n²。

三、解析1. 当n = 1的时候呢,左边就是1,右边就是1² = 1,等式成立。

这就像是我们搭积木的第一块,很重要哦。

2. 假设当n = k(k是一个比较大的正整数啦)的时候这个等式成立,也就是1+3 + 5+…+(2k - 1)=k²。

3. 现在我们要证明当n = k + 1的时候等式也成立。

当n = k + 1的时候,左边就变成了1+3 + 5+…+(2k - 1)+(2(k + 1)- 1)。

根据我们之前的假设,1+3 + 5+…+(2k - 1)=k²,所以现在左边就等于k²+(2(k + 1)- 1)=k²+2k + 1。

而右边呢,当n = k + 1的时候,(k + 1)²=k²+2k + 1。

左边等于右边,所以当n = k + 1的时候等式也成立。

从这个例题就可以看出倒推归纳法的厉害之处啦。

它可以让我们在证明一些关于正整数的命题的时候,有一个新的思路。

就像我们在解决生活中的问题一样,有时候从结果往前推,反而更容易找到解决的办法呢。

再看一个例题哈。

四、例题证明不等式(1 + 1/2)(1 + 1/4)…(1 + 1/2ⁿ)<4。

五、解析1. 当n = 1的时候,左边就是(1 + 1/2)=3/2,3/2肯定是小于4的,这第一步就走通啦。

2. 假设当n = k的时候不等式成立,也就是(1 + 1/2)(1 + 1/4)…(1 + 1/2ⁿ)<4。

3. 当n = k + 1的时候,左边就变成了(1 + 1/2)(1 + 1/4)…(1 + 1/2ⁿ)(1 + 1/2^(k + 1))。

数学倒推法的解题技巧

数学倒推法的解题技巧

数学倒推法的解题技巧数学倒推法是一种常用的解题技巧,它通常被用于解决需要逆向思维的问题。

该方法的基本思想是从问题的结果逆推回问题的起始点,通过分析问题中的各个因素和条件,逐步推导出正确的答案。

在实际应用中,数学倒推法可以帮助我们更加深入地理解问题,从而更加准确地解决问题。

以下是一些常见的数学倒推法的解题技巧:1. 确定问题的终点:在使用数学倒推法解题时,首先需要明确问题中需要求解的终点,即最终的结果。

只有明确了问题的终点,才能够从结果中逆推回问题的起始点。

2. 确定逆推方向:在确定问题的终点后,需要根据问题的具体情况确定逆推的方向。

有些问题需要从终点向前逆推,有些问题需要从前面的条件向后逆推。

在逆推方向确定后,我们就可以开始逐步推导出正确的答案。

3. 分析问题中的条件:在使用数学倒推法解题时,需要对问题中的各个条件进行分析和综合。

通过对条件的分析,我们可以找出问题中的规律和关系,从而更加准确地推导出答案。

4. 确定逆推的步骤:在逆推过程中,需要根据问题的具体情况确定逆推的步骤。

有些问题需要逐步推导,有些问题可以直接得到答案。

在逆推的过程中,需要注意每一步的正确性和逻辑性,避免出现错误。

5. 检验答案的正确性:在使用数学倒推法解题后,需要对答案的正确性进行检验。

这可以通过反向验证和多种方法的比较来实现。

只有在经过严密的验证后,我们才能够确定答案的正确性。

总之,数学倒推法是一种重要的解题技巧,它可以帮助我们更加深入地理解问题,从而更加准确地解决问题。

在使用这种方法时,需要注意逆推方向的确定、条件的分析、逆推步骤的确定和答案的验证等问题,避免出现错误。

6.1 倒推法解题

6.1  倒推法解题

01 倒推法解题学习目标:1、使学生在解决实际问题的过程中学会用“倒推”的策略寻求解决问题的思路,并能根据实际的问题确定合理的解题步骤,从而有效地解决问题。

2、使学生在对自己解决实际问题过程的不断反思中,感受“逆推”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。

3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

教学重点:学会用倒推的解题策略解决实际问题。

教学难点:在正确运用策略的过程中感受“倒推”的策略对于解决特定问题的价值。

教学过程:一、情景体验1、路线倒推师:前不久,学校组织大家去春游,还记得吗?生:记得师:游玩后一位同学写了这样的一篇数学日记。

来,听一听。

(录音:我们8点从学校出发,一路经过黄鹤楼、长江大桥、归元寺,最后到达动物园。

下午沿原路返回,你知道我们的返回路线吗?出示:学校→黄鹤楼→长江大桥→归元寺→动物园)师:谁能回答?生:返回路线是从动物园出发,经过归元寺、长江大桥、黄鹤楼,最后到学校。

(出示:学校←黄鹤楼←长江大桥←归元寺←动物园)师:原来你是倒过来想的。

2、翻牌倒推师:下面老师玩一个小魔术,想不想看?生:想师:看好了。

(出示三张牌:先第一张和第二张交换位置,再将第二张和第三张交换位置)师:要想知道原来这三张牌是怎样摆放的,怎么办?生:(上台操作)先交换第二张和第三张位置,再交换第一张和第二张位置。

师:你为什么这样操作?生:我是倒过来想的,刚才最后交换的是第二和第三张,那我就先交换这两张,在交换第一张和第二张。

师:原来你也是倒过来想的。

3、小结师:刚才这2个问题,大家都是怎么想的?生:倒过来想的师:在数学上,我们把倒过来想的方法称之为“倒推”(板书:倒推)今天这节课,我们就一起来研究怎样用倒推解决生活中的实际问题。

二、思维探索(建立知识模型)展示例题:例1:有一个数如果用它加上6,然后乘以6,再减去6,最后除以6,所得的商等于6.求这个数。

倒推法的解题技巧

倒推法的解题技巧

倒推法的解题技巧在学习数学的过程中,倒推法是一种常见的解题方法,尤其是解决那些“从既定条件出发,结合一定的规律,总结出结论”的问题时尤为重要。

那么,倒推法到底是什么,它又有哪几个步骤?通过本文,我们将逐一解答。

首先,我们来解释一下倒推法的概念。

倒推法是方便快捷解决问题的一种方法,它有利于提高问题解决的效率,减少解题时间,从而更好地解决数学问题。

它的核心思想是从已知的结论出发,运用一定的规律及技巧,经过逐步推理,最终追溯到初始条件。

其次,我们来描述倒推法在解题时的几个步骤。

首先,仔细阅读题干,了解问题的含义,确定解题要用到的规律。

其次,可以从题目中给出的结论出发,根据规律不断推理,一步步追溯到初始条件。

第三,不断检验推理的正确性,确保途中所有步骤的准确性,直到最终得出所求的结果。

最后,根据实际情况进行一些可能的修改,一定程度上增加解题的准确性。

可以看出,倒推法在解决数学问题时有其独到的优势。

它能够有效简化问题,有针对性地找出问题的解,迅速帮助我们找到题目的答案。

举一个例子,如果题目是:一共有25只鸡,其中有15只母鸡,那么它们一共有多少只公鸡?在这种情况下,我们可以倒推法来解答,首先,我们把题目中已知的条件25只鸡,15只母鸡综合起来,可以得出:总鸡数25只=母鸡15只+公鸡x。

根据等式,我们就可以推出,公鸡一共有10只。

通过以上例子,我们可以清楚地看到,倒推法的解题步骤及其效率,因此它的作用十分重要。

但同时也不可忽视,倒推法虽然有很多优势,但也有一定的局限性,尤其是在某些非数值形式的复杂问题中,比如说一些文字题,倒推法并不总能得到正确的答案,这时我们不妨试试其他解题技巧,以期达到更好的效果。

综上所述,倒推法的解题技巧有其独特的优势,它能够有效帮助我们快速有效解决数学问题,但同时也存在一定的局限性,我们在实际应用中也应当加强对倒推法的认识。

最后,希望能够在学习中多多使用这种解题技巧,提高自身的解题水平,为数学学习和考试取得更好的成绩。

(完整word版)六年级倒推法解题

(完整word版)六年级倒推法解题

倒推法解题【知识点】有些应用题如果按照一般方法, 顺着题目的要求一步一步地列出算式求解, 过程比较繁琐, 量与量之间的关系也不好找。

对于这种类型的应用题, 解题时, 我们可以从最后的结果出发, 运用加与减、乘与除之间的互逆关系, 从后往前一步一步推算, 这种思考问题的方法就叫倒推法。

运用这种方法, 反向倒推过去, 反而易于解决问题。

【练习题】1. 张大爷提篮去卖蛋, 第一次卖了全部的一半又半个, 第二次卖了余下的一半又半个, 第三次卖了第二次余下的一半又半个, 第四次卖了第三次余下的一半又半个。

这时, 鸡蛋都卖完了。

问张大爷篮中原来有鸡蛋多少个?(15)2.三只猴子去吃篮里的桃子, 第一只猴子吃了, 第二只猴子吃了剩下的, 第三只猴子吃了第二只剩下的, 最后篮子里还剩下6只桃子。

原有桃子多少只?(18)3.一捆电线, 第一次用去全长的一半多3米, 第二次用去余下的一半少10米, 第三次用去15米, 最后还剩7米。

这捆电线原有多少米?(54)4.修一段路, 第一天修全路的还多2千米, 第二天修余下的少1千米, 第三天修余下的还多1千米, 这样还剩下20千米没有修完, 求公路的全长?(85)5.一只猴子偷吃桃子, 它第一天偷吃了树上桃子的, 以后的8天每天偷吃树上桃子的、、……, 这时树上还剩下10个桃子。

问树上原来有多少个桃子?(100)6. 甲、乙二人分16个苹果, 分完后, 甲将自己所得苹果数的分给了乙, 乙又将自己现有苹果数的还给甲;最后甲又将自己现有苹果数的给了乙, 这时两人苹果数恰好相等。

问: 最初甲分得几个苹果?(15)一瓶酒精, 第一次倒出, 然后倒回瓶中40克, 第二次倒出瓶中剩下酒精的, 第三次倒出180克, 瓶中还剩下60克。

问原来瓶中有酒精多少克?(750)8、甲、乙、丙三人共有人民币168元, 第一次甲拿出与乙相等的钱给乙;第二次乙拿出与丙相等的钱给丙;第三次丙拿出与甲相等的钱给甲, 这时, 三人的钱刚好相等。

六年级《倒推法解题》

六年级《倒推法解题》
【思路导航】财迷一共走了五个来回,每一次都要给老人32个铜板。
往返次数
离开老人 身边的铜 板数
回到老人 身边的铜 板数
第五次 16
32
第四次 24
48
第三次 28
56
第二次 30
60
第一次 31
62
3 课后小结
课后小结
(1)本节课我们学习了哪些知识?
2 例题讲解
例题讲解
例1、某工程队修一条铁路,第一天修了全长的1/3多20千米,第二天修了余下的1/4,还剩45千米 。这条铁路长多少千米?
【思路导航】从“还剩45千米”入手倒着往前推,45千米占了余下的(1-1/4),第一天 修后还剩下45÷(1-1/4)=60(千米),如果第一天就修了全长的1/3,那么60+20=80( 千米)就占了全长的(1-1/3), 由此可求出这条铁路的全长。
解答示范 [45÷(1-1/4)+20]÷(1-1/3)=120km 答:这条铁路长120千米。
例题讲解
例2。例修一条公路,第一天修这条路的1/2还多2千米,第二天修余下的1/3少1千 米,第三天修了余下的1/4还多1千米,还剩20千米没有修。求这条公路的全长。
从最后的“还剩20千米”倒推出(20+1)千米是第二天修后余下的(1-1/4),由此求出第二天修后 余下的公路长为(20+1)÷(1-1/4)=28(千米),(28-1)千米是第一天修后余下的(1-1/3), 由此可以求出第一天修后余下的公路长为(28-1)÷(1-1/3)=40.5(千米)。(40.5+2)千米是全 长的1/2,由此可求出这条公路的全长。
例3、有26块砖,兄弟二人争着挑,弟弟抢在前面,刚摆好砖,哥哥赶到了,哥哥看弟弟挑得 太多,就抢去一半,弟弟不服,又从哥哥那儿抢去一半,哥哥不肯,弟弟只好给哥哥5块,这 时哥哥比弟弟多挑2块。问:最先弟弟准备挑几块?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

01 倒推法解题
学习目标:
1、使学生在解决实际问题的过程中学会用“倒推”的策略寻求解决问题的思路,并能根据实际的问题确定合理的解题步骤,从而有效地解决问题。

2、使学生在对自己解决实际问题过程的不断反思中,感受“逆推”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。

3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

教学重点:
学会用倒推的解题策略解决实际问题。

教学难点:
在正确运用策略的过程中感受“倒推”的策略对于解决特定问题的价值。

教学过程:
一、情景体验
1、路线倒推
师:前不久,学校组织大家去春游,还记得吗?
生:记得
师:游玩后一位同学写了这样的一篇数学日记。

来,听一听。

(录音:我们8点从学校出发,一路经过黄鹤楼、长江大桥、归元寺,最后到达动物园。

下午沿原路返回,你知道我们的返回路线吗?出示:学校→黄鹤楼→长江大桥→归元寺→动物园)
师:谁能回答?
生:返回路线是从动物园出发,经过归元寺、长江大桥、黄鹤楼,最后到学校。

(出示:学校←黄鹤楼←长江大桥←归元寺←动物园)
师:原来你是倒过来想的。

2、翻牌倒推
师:下面老师玩一个小魔术,想不想看?
生:想
师:看好了。

(出示三张牌:先第一张和第二张交换位置,再将第二张和第三张交换位置)师:要想知道原来这三张牌是怎样摆放的,怎么办?
生:(上台操作)先交换第二张和第三张位置,再交换第一张和第二张位置。

师:你为什么这样操作?
生:我是倒过来想的,刚才最后交换的是第二和第三张,那我就先交换这两张,在交换第一张和第二张。

师:原来你也是倒过来想的。

3、小结
师:刚才这2个问题,大家都是怎么想的?
生:倒过来想的
师:在数学上,我们把倒过来想的方法称之为“倒推”(板书:倒推)今天这节课,我们就一起来研究怎样用倒推解决生活中的实际问题。

二、思维探索(建立知识模型)
展示例题:
例1:有一个数如果用它加上6,然后乘以6,再减去6,最后除以6,所得的商等于6.求这个数。

师:你了解到哪些信息?
生:我知道一个数加上6,然后乘以6,再减去6,最后除以6,所得的商等于6。

求这个数是多少?
师:你能将这些信息进行整理吗?
同座位讨论,其中一人记录。

生:(同座位讨论整理过程)
师:谁来介绍一下你们是怎么整理的?
生:原数→加6→乘以6→减6→除以6→最后得6
师:我们已经整理了信息,你准备怎样解决这个问题?试一试。

生:(尝试解题)
师:谁来介绍你的计算方法?
生1:(6×6+6)÷6-6 =1
师:你能具体说说算式的意思吗?
生:从结果开始想,利用“倒推法”,从最后一个条件“所得的商等于6”向前逐步推算:①“最后除以6,所得的商等于6”,除以6之前的数是6×6 =36;
②“减去6,差是36”,减去6之前的数是36+6 =42;③“乘以6,积是42”,乘以6之前的数是42÷6 =7;④“加上6,和是7”,加上6之前的数是7 -6 =1。

师:你听懂了吗?
这个结果正确吗?你有办法验证吗?
小结:
从结果出发,根据加、减、乘、除互逆运算,由后往前一步一步推出原数的方法。

(即倒过来算的的方法)叫倒推法解题
展示例题:
例2:在计算一道除法算式时,把除数32看成23了,结果得到34还余18,这道计算题正确的结果是多少?
师:你从题中知道了什么?
生1:原除数为32,错误的除数为23,商是34,余数是18.
生2:被除数÷除数=商......余数
正确()÷ 32 =()......()
错误()÷ 23 = 34 (18)
师:你会解决这个问题吗?试一试。

师:谁来说说你是怎么解决的?
生:根据“被除数=除数×商+余数”可求出被除数。

被除数:23×34+18=800
正确:800÷32=25
师:如果题中没有余数或余数相同,我们还可以有其他方法解决吗?
小结:解决错中求解的倒推问题,可先根据错误答案求出不变量,再求正确答案,或根据算式中的变化规律求解。

三、思维拓展(知识模型拓展)
展示例题:
例3蔬菜市场运来一批白菜,第一天卖出总数的一半多3吨,第二天卖出剩下的一半多5吨,这时还剩下6吨白菜。

蔬菜市场运来多少吨白菜?
师:认真读题。

你会解决吗?在练习纸上画一画。

师:谁愿意说说你的方法?
生:(边展示边讲解)
生:由图中可以看出剩下的一半是(5+6)吨,所以剩下的是(5+6)×2=22(吨)再加3吨就是原有白菜的一半,所以原有白菜为(22+3)×2=50(吨)
师:大家同意他的做法吗?
小结:解决一半的倒推问题,可采用画图的方式。

展示例题:
例4:小明书包里有若干个巧克力,他每次拿出其中的一半再放回一个,一共这样操作了5次,最后书包里还有3个巧克力,小明书包里原来有多少个巧克力?
师:这题我们要画图吗?
生:可以,但是次数太多太麻烦。

师:那么可以直接计算吗?
生:可以,每个步骤都是一样的。

师:我们可以列个表格试试看。

学生尝试填写,小组讨论完成,教师评价小结。

小结:解决反复操作的倒推问题,可采用列表格的方式。

四、融汇贯通(知识模型的运用)
展示例题:
例5:孙亮、李凡、刘杰、吴莹四人共有240元钱。

现在孙亮给李凡15元,李凡给刘杰13元,刘杰给吴莹21元,吴莹给孙亮28元。

此时四人拥有的钱数相等。

问孙亮原来有多少钱?
师:分析题目,知道最后四人分别有多少元?为什么?
生:最后四人钱数相等且四人前的总数是不变的,所以分别有:240÷4=60(元)。

师:那么你们能算出原来孙亮有多少钱吗?
生1:可以列表按照他们给钱的顺序,反过来计算出每一步他们的钱数。

生2:这样太麻烦,我们只要求孙亮原来有多少钱,我们只需要观察孙亮的钱发生了什么变化。

师:非常好。

你能找出孙亮钱数的变化吗?
生:孙亮给李凡15元,吴莹给孙亮28元。

师:说得很好!你能求出孙亮原来有多少钱吗?
生:60+15-28=47元。

五、总结
通过这节课学习,你收获了什么?。

相关文档
最新文档