基本不等式专题----完整版(非常全面)

合集下载

不等式基本原理专题 ---(非常全面)

不等式基本原理专题 ---(非常全面)

不等式基本原理专题 ---(非常全面)不等式基本原理专题 - 完整版概述在数学不等式中,有一些基本的原理和定理,这些定理不仅在不等式证明中起到重要的作用,而且在实际问题中也有着广泛的应用。

在本文中,将阐述几个不同的不等式基本原理,并通过相关例题进行演示。

一、加减法原理不等式加减法原理指的是,如果两个不等式关系成立,则将它们加起来或从其中一个减去另一个,得到的结果仍然是不等式关系。

例如:如果 $a>b$ 且 $c>d$,则 $a+c>b+d$如果 $a>b$ 且 $c>d$,则 $a-c>b-d$二、乘法原理不等式乘法原理指的是,如果不等式关系的两侧均为正或均为负,则将它们相乘,得到的结果仍然是不等式关系,而如果一侧为正,另一侧为负,则将它们相乘,则得到一种新的不等式关系。

例如:如果 $a>b>0$ 且 $c>d>0$,则 $ac>bd$如果 $a>b>0$ 且 $c<d<0$ 或 $a<b<0$ 且 $c>d>0$,则 $ac<bd$三、倒数性质不等式倒数性质指的是,如果 $a>b>0$,则$\frac{1}{a}<\frac{1}{b}$。

例如:如果 $3>2>0$,则$\frac{1}{3}<\frac{1}{2}$。

四、平均值不等式平均值不等式是一个常用的不等式概念,它指的是对于一组实数 $a_1,a_2,...,a_n$,它们的算术平均值、几何平均值与调和平均值有以下关系:$\frac{a_1+a_2+...+a_n}{n}\geq \sqrt[n]{a_1 a_2 ... a_n}\geq\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}}$。

例如:对于一组实数 $1,2,3$,它们的算术平均值是 $2$,几何平均值是 $\sqrt[3]{6}$,调和平均值是$\frac{3}{\frac{1}{1}+\frac{1}{2}+\frac{1}{3}}=\frac{9}{5}$。

最新基本不等式完整版(非常全面)

最新基本不等式完整版(非常全面)

基本不等式专题辅导一、知识点总结1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+3、基本不等式的两个重要变形 (1)若*,R b a ∈,则ab ba ≥+2(2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab总结:当两个正数的积为定植时,它们的和有最小值;当两个正数的和为定植时,它们的积有最小值;特别说明:以上不等式中,当且仅当b a =时取“=”4、求最值的条件:“一正,二定,三相等”5、常用结论 (1)若0x >,则12x x+≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x+≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)(4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab ba +≤+≤≤+特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式(1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++(3)设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有 222(a a a ++⋅⋅⋅+)222)b b b ++⋅⋅⋅+(2()a b a b a b ≥++⋅⋅⋅+二、题型分析题型一:利用基本不等式证明不等式1、设b a ,均为正数,证明不等式:ab ≥ba 112+2、已知cb a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2223、已知1a b c ++=,求证:22213a b c ++≥ 4、已知,,a b c R+∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥---5、已知,,a b c R+∈,且1a b c ++=,求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 223322-≥-题型二:利用不等式求函数值域1、求下列函数的值域 (1)22213x x y += (2))4(x x y -=(3))0(1>+=x x x y (4))0(1<+=x xx y题型三:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值;题型四:利用不等式求最值 (二)(凑系数)1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值;变式2:设230<<x ,求函数)23(4x x y -=的最大值。

基本不等式(完整版)

基本不等式(完整版)

2b+a≥2,ab>0; ab
a+b 3ab≤ 2 2,a,b∈R;
当且仅当 a=b 时 等号成立.
4a2+b2≥
a+b 2
2,a,b∈R
2
(5) 2 ab a b a2 b2 (a 0,b 0) .
11
2
2
ab
一、直接法
【例 1】以下结论,正确的是( ) A.y=x+ ≥4
B.ex+ >2
A. 2
B.2
C.2 2
D.4
解析:由1+2= ab知 a>0,b>0,所以 ab=1+2≥2 2 ,即 ab≥2 2,
ab
ab
ab
1=2,
ab 当且仅当 1+2=
即 a=4 2,b=2 4 2时取“=”,所以 ab 的最小值为 2 ab,
2.故选 C
ab
变式 1:若实数 x、y 满足 2x+2y=1,则 x+y 的取值范围是( )
证明: (a b)2 0 a2 2ab b2 0 a2 b2 2ab
推论: ab a2 b2 ( a,b R ). 2
2、如果 a 0 , b 0 ,则 a b 2 ab ,(当且仅当 a b 时取等号“=”).
推论: ab
(a b )2 ( a
a2 0 ,b 0 );
C.x(1﹣x)≤(
)2 =
D.sinx+
(0<x<π)的最小值是 2
解:A:当 x<0 时,不满足题意;B:
C:由基本不等式可得,x(1﹣x) 等号,故 C 符合题意; D:当 0<x<π时,0<sinx≤1,则 故选:C.
=2,不符合题意; = ,当且仅当 x=1﹣x 即 x= 时取

基本不等式专题----完整版(打印)

基本不等式专题----完整版(打印)

第三讲:基本不等式专题一、知识点总结1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+3、基本不等式的两个重要变形 (1)若*,R b a ∈,则ab ba ≥+2(2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最大值;4、求最值的条件:“一正,二定,三相等”5、常用结论 (1)若0x >,则12x x+≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)(3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)(4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab ba +≤+≤≤+(1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++(3)设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有 222(a a a ++⋅⋅⋅+)222)b b b ++⋅⋅⋅+(2()a b a b a b ≥++⋅⋅⋅+二、题型分析题型一:利用基本不等式证明不等式1、设b a ,均为正数,证明不等式:ab ≥ba 112+2、已知cb a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2223、已知,,a b c R+∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥---4、已知,,a b c R+∈,且1a b c ++=,求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭题型二:利用不等式求函数值域1、求下列函数的值域(1)22213x x y += (2))4(x x y -=(3))0(1>+=x x x y (4))0(1<+=x xx y题型三:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值; 题型四:利用不等式求最值 (二)(凑系数)1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值;2、若02<<x ,求y x x =-()63的最大值;变式:若40<<x ,求)28(x x y -=的最大值;3、求函数)2521(2512<<-+-=x x x y 的最大值;(提示:平方,利用基本不等式)变式:求函数)41143(41134<<-+-=x x x y 的最大值;题型五:巧用“1”的代换求最值问题1、已知12,0,=+>b a b a ,求t a b=+11的最小值;法一:法二:变式1:已知22,0,=+>b a b a ,求t a b=+11的最小值;变式2:已知28,0,1x y x y>+=,求xy 的最小值;变式3:已知0,>y x ,且119x y+=,求x y +的最小值。

基本不等式完整版

基本不等式完整版

基本不等式完整版一、知识点总结1.基本不等式原始形式:若 $a,b\in\mathbb{R}$,则 $a^2+b^2\geq 2ab$。

2.基本不等式一般形式(均值不等式):若 $a,b\in\mathbb{R^*}$,则 $a+b\geq 2\sqrt{ab}$。

3.基本不等式的两个重要变形:1)若 $a,b\in\mathbb{R^*}$,则 $\frac{a+b}{2}\geq \sqrt{ab}$。

2)若 $a,b\in\mathbb{R^*}$,则 $ab\leq\left(\frac{a+b}{2}\right)^2$。

总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。

特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。

4.求最值的条件:“一正,二定,三相等”。

5.常用结论:1)若 $x>0$,则 $x+\frac{1}{x}\geq 2$(当且仅当$x=1$ 时取“=”)。

2)若 $x<0$,则 $x+\frac{1}{x}\leq -2$(当且仅当 $x=-1$ 时取“=”)。

3)若 $a,b>0$,则 $\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当 $a=b$ 时取“=”)。

4)若 $a,b>0$,则 $ab\leq \left(\frac{a+b}{2}\right)^2\leq \frac{a^2+b^2}{2}$。

5)若 $a,b\in\mathbb{R^*}$,则 $\frac{1}{a+b}\leq\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\leq\frac{1}{2}\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}$。

特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。

6.柯西不等式:1)若 $a,b,c,d\in\mathbb{R}$,则$(a^2+b^2)(c^2+d^2)\geq (ac+bd)^2$。

基本不等式及其应用(优秀经典专题及答案详解)

基本不等式及其应用(优秀经典专题及答案详解)

(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b .知识点二几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R);(5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0).知识点三算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四利用基本不等式求最值问题已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 考点一利用基本不等式求最值【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5的最大值为_______ 【答案】1【解析】因为x <54,所以5-4x >0, 则f (x )=4x -2+14x -5=-⎝⎛⎭⎫5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+14x -5的最大值为1. 【方法技巧】【方法技巧】1.通过拼凑法利用基本不等式求最值的实质及关键点通过拼凑法利用基本不等式求最值的实质及关键点拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键.2.通过常数代换法利用基本不等式求解最值的基本步骤通过常数代换法利用基本不等式求解最值的基本步骤(1)根据已知条件或其变形确定定值(常数);(2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;(4)利用基本不等式求解最值.利用基本不等式求解最值.【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【答案】6【解析】由已知得x +3y =9-xy ,因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝⎛⎭⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0,得t ≥6,即x +3y 的最小值为6.【方法技巧】通过消元法利用基本不等式求最值的策略【方法技巧】通过消元法利用基本不等式求最值的策略当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.,最后利用基本不等式求最值.考点二 利用基本不等式解决实际问题【典例2】【2019年高考北京卷理数】年高考北京卷理数】李明自主创业,李明自主创业,李明自主创业,在网上经营一家水果店,在网上经营一家水果店,在网上经营一家水果店,销售的水果中有草莓、销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】①130 ;②15.【解析】(1)x=10,顾客一次购买草莓和西瓜各一盒,需要支付60+80-10=130元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8yy x y x -≥≤,即min 158y x ⎛⎫≤= ⎪⎝⎭元,所以x 的最大值为15。

完整版)基本不等式知识点和基本题型

完整版)基本不等式知识点和基本题型

完整版)基本不等式知识点和基本题型基本不等式专题辅导一、知识点总结1.基本不等式原始形式若a,b∈R,则a+b≥2ab若a,b∈R,则ab≤(a^2+b^2)/22.均值不等式若a,b∈R,则a+b/2≥√(ab)3.基本不等式的两个重要变形若a,b∈R,则(a+b)/2≥√(ab)若a,b∈R,则ab≤(a+b)^2/4特别说明:以上不等式中,当且仅当a=b时取“=”4.求最值的条件:“一正,二定,三相等”5.常用结论1.x+1/x≥2 (当且仅当x=1时取“=”)2.x+1/x≤-2 (当且仅当x=-1时取“=”)3.若ab>0,则(a/b+b/a)/2≥2 (当且仅当a=b时取“=”)4.若a,b∈R,则ab≤(a^2+b^2)/2≤(a+b)^2/2特别说明:以上不等式中,当且仅当a=b时取“=”6.柯西不等式若a,b∈R,则(a^2+b^2)(1+1)≥(a+b)^2二、题型分析题型一:利用基本不等式证明不等式1.设a,b均为正数,证明不等式:ab≥(a+b)^2/42.已知a,b,c为两两不相等的实数,求证:a^2/(b-c)^2+b^2/(c-a)^2+c^2/(a-b)^2≥23.已知a+b+c=1,求证:a^2+b^2+c^2+3(ab+bc+ca)≥4/34.已知a,b,c∈R,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc5.已知a,b,c∈R,且a+b+c=1,求证:|a-b|+|b-c|+|c-a|≥4√2/3题型二:利用不等式求最值1.已知a+b=1,求证:a^3+b^3≥1/42.已知a,b,c>0,且abc=1,求证:a/b+b/c+c/a≥a+b+c3.已知a,b,c>0,且a+b+c=1,求证:a/b+b/c+c/a≥34.已知a,b,c>0,求证:(a^2+b^2)/(a+b)+(b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)≥(3/2)(a+b+c)5.已知a,b,c>0,求证:(a+b+c)(1/a+1/b+1/c)≥9基本不等式专题辅导一、知识点总结1.基本不等式原始形式若a,b∈R,则a+b≥2ab若a,b∈R,则ab≤(a²+b²)/22.均值不等式若a,b∈R,则a+b/2≥√(ab)3.基本不等式的两个重要变形若a,b∈R,则(a+b)/2≥√(ab)若a,b∈R,则ab≤(a+b)²/4特别说明:以上不等式中,当且仅当a=b时取“=”4.求最值的条件:“一正,二定,三相等”5.常用结论1.x+1/x≥2 (当且仅当x=1时取“=”)2.x+1/x≤-2 (当且仅当x=-1时取“=”)3.若ab>0,则(a/b+b/a)/2≥2 (当且仅当a=b时取“=”)4.若a,b∈R,则ab≤(a²+b²)/2≤(a+b)²/2特别说明:以上不等式中,当且仅当a=b时取“=”6.柯西不等式若a,b∈R,则(a²+b²)(1+1)≥(a+b)²二、题型分析题型一:利用基本不等式证明不等式1.设a,b均为正数,证明不等式:ab≥(a+b)²/42.已知a,b,c为两两不相等的实数,求证:a²/(b-c)²+b²/(c-a)²+c²/(a-b)²≥23.已知a+b+c=1,求证:a²+b²+c²+3(ab+bc+ca)≥4/34.已知a,b,c∈R,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc5.已知a,b,c∈R,且a+b+c=1,求证:|a-b|+|b-c|+|c-a|≥4√2/3题型二:利用不等式求最值1.已知a+b=1,求证:a³+b³≥1/42.已知a,b,c>0,且abc=1,求证:a/b+b/c+c/a≥a+b+c3.已知a,b,c>0,且a+b+c=1,求证:a/b+b/c+c/a≥34.已知a,b,c>0,求证:(a²+b²)/(a+b)+(b²+c²)/(b+c)+(c²+a²)/(c+a)≥(3/2)(a+b+c)5.已知a,b,c>0,求证:(a+b+c)(1/a+1/b+1/c)≥9选修4-5:不等式选讲1.设a,b,c均为正数,且a+b+c=1,证明:Ⅰ) ab+bc+ca≤1/3;Ⅱ) a^2b+b^2c+c^2a≥1/9.2.已知a≥b>0,求证:2a-b≥2ab-b^2.3.求下列函数的值域:1) y=3x+2;2) y=x(4-x);3) y=x+(x>2);4) y=x+(x<2)。

最全基本不等式(一步到位)

最全基本不等式(一步到位)
基本不等式总结
(a b)2 0
a2 b2 2ab
左边构造完全平方
右边构造完全平方
(a b)2 4ab 2(a2 b2 ) (a b)2
( a b)2 ab 2
a2 b2 (a b)2
2
2
a2 b2 ( a b )2 ab
2
2
开方 (a 0,b 0)
a2 b2 a b
mn
在平面直角坐标系xOy中,过坐标原点的一条直线与函 数f(x)= 2 的图象交于P,Q两点,求线段PQ长的最小值。
x
若不等式x2 ax 1 0对一切x (0,1]恒成立,求a的最小值。
若对任意x
0,
x2
x 3x
1
a恒成立,求实数a的取值范围。
已知x 0, y 0, x, a,b, y成等差数列,x, c, d, y成等比数列,则
(a b)2 的最小值是 ( ) cd
A.0
B.1
C.2
D.4
设x, y为实数,若4x2 y2 xy 1, 求2x y的最大值。
11 (2) 8
a2 b2
设a,b, c都是正数,求证:bc ca ab a b c. ab c
已知a>b>0,求证:a2 16 16 b(a b)
求函数y x2 5 的最小值。 x2 4
求函数y sin2 x 4 的最小值。 sin2 x
函数y loga (x 3) 1 (a>0,a 1)的图象恒过点A, 若点A的坐标满足方程mx+ny+1=0上,其中mn>0, 求 1 2 的最小值。
已知a,b 0, 求证:a2 b2 a b ba
若正数a,b满足ab a b 3,求ab的取值范围。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、设 , ,求 之最小值为,此时
(析: )
4、(2013年湖南卷(理))已知
则 的最小值是( )
5、(2013年湖北卷(理))设 ,且满足: , ,求 的值;
6、求 的最大值与最小值。( :最大值为 ,最小值为 )
析:令 (2sin, cos,cos), (1,sin,cos)
二、题型分析
题型一:利用基本不等式证明不等式
1、设 均为正数,证明不等式: ≥
2、已知 为两两不相等的实数,求证:
3、
6、(2013年新课 标Ⅱ卷数学(理)选 修4—5:不等式选 讲
设 均为正数,且 ,证明:
(Ⅰ) ; (Ⅱ) .
7、(2013年江苏卷(数学)选 修4—5:不等式选 讲
4、求最值的条件:“一正,二定,三相等”
5、常用结论
(1)若 ,则 (当且仅当 时取“=”)
(2)若 ,则 (当且仅当 时取“=”)
(3)若 ,则 (当且仅当 时取“=”)
(4)若 ,则
(5)若 ,则
特别说明:以上不等式中,当且仅当 时取“=”
6、柯西不等式
(1)若 ,则
(2)若 ,则有:
(3)设 是两组实数,则有
3、已知 , ,求 最小值;
变式1:已知 ,满足 ,求 范围;
变式2:(2010山东)已知 , ,求 最大值;(提示:通分或三角换元)
变式3:(2011浙江)已知 , ,求 最大值;
4、(2013年山东(理))设正实数 满足 ,则当 取得最大值时, 的最大值为( )( )
A. B. C. D.
(提示:代入换元,利用基本不等式以及函数求最值)
1、当 时,求 的最大值;
变式1:当 时,求 的最大值;
变式2:设 ,求函数 的最大值。
2、若 ,求 的最大值;
变式:若 ,求 的最大值;
3、求函数 的最大值;
(提示:平方,利用基本不等式)
变式:求函数 的最大值;
题型五:巧用“1”的代换求最值问题
1、已知 ,求 的最小值;
法一:
法二:
变式1:已知 ,求 的最小值;
已知 ,求证:
题型二:利用不等式求函数值域
1、求下列函数的值域
(1) (2)
(3) (4)
题型三:利用不等式求最值 (一)(凑项)
1、已知 ,求函数 的最小值;
变式1:已知 ,求函数 的最小值;
变式2:已知 ,求函数 的最大值;
练习:1、已知 ,求函数 的最小值;
2、已知 ,求函数 的最大值;
题型四:利用不等式求最值 (二)(凑系数)
变式2:已知 ,求 的最小值;
变式3:已知 ,且 ,求 的最小值。
变式4:已知 ,且 ,求 的最小值;
变式5:
(1)若 且 ,求 的最小值;
(2)若 且 ,求 的最小值;
变式6:已知正项等比数列 满足: ,若存在两项 ,使得 ,求 的最小值;
题型六:分离换元法求最值(了解)
1、求函数 的值域;
变式:求函数 的值域;
若 ,则
2、二维形式的柯西不等式的变式
3、二维形式的柯西不等式的向量形式
4、三维柯西不等式
若 ,则有:
5、一般 维柯西不等式
设 是两组实数,则有:
题型分析
题型一:利用柯西不等式一般形式求最值
1、设 ,若 ,则 的最小值为时,
析:
∴ 最小值为
此时
∴ , ,
2、设 , ,求 的最小值 ,并求此时 之值。
2、求函数 的最大值;(提示:换元法)
变式:求函数 的最大值;
题型七:基本不等式的综合应用
1、已知 ,求 的最小值
2、(2009天津)已知 ,求 的最小值;
变式1:(2010四川)如果 ,求关于 的表达式 的最小值;
变式2:(2012湖北武汉诊断)已知,当 时,函数 的图像恒过定点 ,若点 在直线 上,求 的最小值;
基本不等式专题辅导
一、知识点总结
1、基本不等式原始形式
(1)若 ,则
(2)若 ,则
2、基本不等式一般形式(均值不等式)
若 ,则
3、基本不等式的两个重要变形
(1)若 ,则
(2)若 ,则
总结:当两个正数的积为定植时,它们的和有最小值;
当两个正数的和为定植时,它们的积有最小值;
特别说明:以上不等式中,当且仅当 时取“=”
变式:设 是正数,满足 ,求 的最小值;
题型八:利用基本不等式求参数范围
1、(2012沈阳检测)已知 ,且 恒成立,求正实数 的最小值;
2、已知 且 恒成立,如果 ,求 的最大值;(参考:4)
(提示:分离参数,换元法)
变式:已知 满则 ,若 恒成立,求 的取值范围;
题型九:利用柯西不等式求最值
1、二维柯西不等式
相关文档
最新文档