八年级上数学定义公式
八年级上数学定义公式

第十一章三角形1、三角形定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;2、三角形两边的和大于第三边;三角形的两边的差小于第三边;3、判定三条线段能否围成三角形的简易方法:较小两边之和大于第三边最大边;4、三角形四心:1重心:三条中线交点;2垂心:三条高的交点;3内心:三个角平分线的交点;4外心:三边垂直平分线的交点;5、三角形内角和定理:三角形三个内角的和等于180o;6、直角三角形的性质:直角三角形的两个锐角互余;7、直角三角形的判定定理:有两个角互余的三角形是直角三角形;8、三角形的一边与另一边延长线组成的角,叫做三角形的外角;9、三角形的外角等于和它不相邻的两个内角的和;10、由一些线段首尾顺次相接组成的封闭图形叫做多边形;11、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线;多边形一个顶点对角线为:n-3条多边形对角线总条数为:nn -3÷2 条12、正多边形定义:各个角都相等,各条边都相等的多边形叫做正多边形;13、多边形内角和公式:n边形内角和等于n-2×180 o14、多边形的外角和等于360 o;第十二章全等三角形1、全等形:能够完全重合的两个图形叫做全等形;2、全等三角形:能够完全重合的两个三角形叫做全等三角形;3、把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角;4、全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等;5、三角形全等的判定定理:1SSS三边分别相等的两个三角形全等;2SAS两边和它们的夹角分别相等的两个三角形等;3ASA两角和它们的夹边分别相等的两个三角形全等;4AAS两角和其中一个角的对边分别相等的两个三角形全等;5HL斜边和一条直角边分别相等的两个直角三角形全等;直角三角形的判定6、角的平分线的性质:角的平分线上的点到角的两边的距离相等;1角相等且两垂直;2垂线段相等7、角的平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上;1两垂直且垂线段相等;2角相等第十三章轴对称1、一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形这条直线就是它的对称轴;一个图形2、一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点;两个图形3、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称;4、线段垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线;5、轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的重直平分线;两个图形6、轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线;一个图形7、线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等;8、线段的垂直平分线的判定定理:与一条线段的两个端点距离相等的点,在这条线段的垂直平分线上;9、点x,y关于x轴对称的点的坐标为x,-y;点x,y关于y轴对称的点的坐标为-x, y;点x,y关于原点对称的点的坐标为-x, -y;10、等腰三角形的性质:性质1 等腰三角形的两个底角相等等边对等角;性质2等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合;三线合一11、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等等角对等边;12、等边三角形的性质:等边三角形的三个内角都相等,并且每个角都等于60°.13、等边三角形的判定定理:1三个角都相等的三角形是等边三角形;2有一个角是60°的等腰三角形是等边三角形;14、30°的直角三角形的性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;15、最短路径问题:1两点的所有连线中,线段最短;两点之间,线段最短;2连接直线外的一点与直线上各点的所有线段中,垂线段最短;垂线段最短第十四章 整式的乘法与因式分解1、同底数幂的乘法:a m a n = a m+n m,n 都是正整数;同底数幂相乘,底数不变,指数相加;2、同底数幂相除除法公式:a m ÷a n = a m-n a ≠0,m,n 都是正整数,并且m >n; 同底数幂相乘,底数不变,指数相减;3、幂的乘方:a mn = a mn m,n 都是正整数;幂的乘方,底数不变,指数相乘;4、积的乘方:ab n = a n b n n 是正整数;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;5、a 0=1 a ≠0任何不等于0的数的0次幂都等于1;6、分式乘方法则:⎪⎭⎫ ⎝⎛b a n = b a7、整式的乘法单项式与单项式相乘:单项式与单项式相乘,把它们的系数、同底数幂分n n别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;单项式与多项式相乘:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加;多项式与多项式相乘:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;a+bp+q=ap+aq+bp+bq8、整式的除法单项式除以单项式:单项式除以单项式,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加;9、乘法公式:1平方差公式:a+ba-b = a2-b2两个数的和与这两个数的差的积,等于这两个数的平方差;2 完全平方公式:a+b2 = a2+2ab+ b2a-b2 = a2-2ab+ b2两个数的和或差的平方,等于它们的平方和,加上或减去它们的积的2倍;3x+px+q=x2+p+qx+pq10、添括号法则:添括号时,如果括号前面是正号,括到括号的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.11、因式分解:把一个多项式化成了几个整式的积的形式,叫做这个多项式的因式分解,也叫做把这个多项式分解因式;12、因式分解的方法:1提公因式法:如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法;2公式法:平方差公式:a 2-b 2=a +ba -b两个数的平方差,等于这两个数的和与这两个数的差的积;完全平方公式:a 2+2ab + b 2 =a +b 2a 2-2ab + b 2 =a -b 2两个数的平方和加上或减去这两个数的积的2倍;等于这两个数的和或差的平方,十字相乘法公式:x 2+p+qx+pq=x+px+q第十五章 分式1、分式的基本性质:分式的分子与分母乘或除以一个不等于0的整式,分式的值不变; CB C A B A ••= C B C A B A ÷÷= C ≠0 2、分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分; 最简分式:分子与分母没有公因式的分式,叫做最简分式;分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;3、分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母;4、分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘;5、分式乘方法则:⎪⎭⎫ ⎝⎛b a n = b a 分式乘方要把分子、分母分别乘方;6、分式的加减法法则:1同分母分式相加减,分母不变,把分子相加减;2异分母分式相加减,先通分,变为同分母的分式,再加减;7、a -n = a 1 8、除以一个数等于乘以这个数的倒数;除以一个数等于乘以这个数的指数的相反数;9、将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解;10、解分式方程的步骤:1方程两边乘以最简公分母去分母2解得3检验 当 时,最简公分母≠0或最简公分母=0 n nn。
【华东师大版】2018年春八年级数学下册八年级上数学定义公式

第十一章三角形1、三角形定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形两边的和大于第三边;三角形的两边的差小于第三边。
3、判定三条线段能否围成三角形的简易方法:较小两边之和大于第三边(最大边)。
4、三角形四心:(1)重心:三条中线交点;(2)垂心:三条高的交点;(3)内心:三个角平分线的交点;(4)外心:三边垂直平分线的交点。
5、三角形内角和定理:三角形三个内角的和等于180º。
6、直角三角形的性质:直角三角形的两个锐角互余。
7、直角三角形的判定定理:有两个角互余的三角形是直角三角形。
8、三角形的一边与另一边延长线组成的角,叫做三角形的外角。
9、三角形的外角等于和它不相邻的两个内角的和。
10、由一些线段首尾顺次相接组成的封闭图形叫做多边形。
11、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
多边形一个顶点对角线为:(n-3)条多边形对角线总条数为:n(n-3)÷2 条12、正多边形定义:各个角都相等,各条边都相等的多边形叫做正多边形。
13、多边形内角和公式:n边形内角和等于(n-2)×180 º14、多边形的外角和等于360 º。
第十二章全等三角形1、全等形:能够完全重合的两个图形叫做全等形。
2、全等三角形:能够完全重合的两个三角形叫做全等三角形。
3、把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
4、全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等。
5、三角形全等的判定定理:(1)SSS 三边分别相等的两个三角形全等。
(2)SAS 两边和它们的夹角分别相等的两个三角形等。
(3)ASA 两角和它们的夹边分别相等的两个三角形全等。
(4)AAS 两角和其中一个角的对边分别相等的两个三角形全等。
(5)HL 斜边和一条直角边分别相等的两个直角三角形全等。
最全面的初中数学概念定义公式大全

初中数学定义定理公式总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0〔原点,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
八年级数学几何定理定义公式汇总:中心对称图形

中心对称图形1、中心对称:如果把一个图形绕一个点旋转180°后能够与另一个图形完全重合,那么这两个图形关于这点成中心对称。
2、中心对称图形:把一个图形绕一个点旋转180°后能够与自身完全重合,那么这个图形是中心对称图形。
3、中心对称的性质:①关于中心对称的两个图形是全等的。
②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
4、真命题:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点成中心对称。
5、平行四边形的定义:两组对边分别平行的四边形叫作平行四边形。
6、平行四边形性质:①平行四边形的对角相等。
②平行四边形的对边相等。
③平行四边形的对角线互相平分。
7、平行四边形判定:①两组对边分别相等的四边形是平行四边形。
②对角线互相平分的四边形是平行四边形。
③一组对边平行且相等的四边形是平行四边形。
④真命题:两组对角分别相等的四边形是平行四边形。
⑤真命题:一组对边平行,一组对角相等的四边形是平行四边形。
注意:假命题...:一组对边相等,一组对角相等的四边形是平行四边形。
(×)8、矩形的定义:有一个角是直角的平行四边形叫作矩形。
9、矩形的性质:①矩形的四个角都是直角。
②矩形的对角线相等。
10、矩形的判定:①有三个角是直角的四边形是矩形。
②对角线相等的平行四边形是矩形。
11、菱形的定义:有一组邻边相等的平行四边形叫作菱形。
12、菱形的性质:①菱形的四条边都相等。
②菱形的对角线互相垂直,并且每一条对角线平分一组对角。
13、菱形面积等于对角线乘积的一半。
推而广之:(真命题)对角线互相垂直的四边形的面积等于对角线乘积的一半。
14、菱形的判定:①四边都相等的四边形是菱形。
②对角线互相垂直的平行四边形是菱形。
③真命题:一条对角线平分一个内角的平行四边形是菱形。
15、正方形的定义:有一个角是直角,并且有一组邻边相等的平行四边形叫作正方形。
16、正方形性质:正方形的四个角都是直角,四条边都相等,正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
八年级上册数学必背概念定义全部公式总结

八年级上册数学必背概念定义全部公式总结章节一:数与代数基础1. 整数- 定义:由整数集合(Z)中的正整数、负整数和零组成。
- 公式:Z={...,-3,-2,-1,0,1,2,3,...}2. 实数- 定义:由有理数集合(Q)和无理数集合的全体组成。
- 公式:R=Q∪D3. 代数表达式- 定义:由常数、变量和运算符号组成的式子。
- 公式:a+bx+c=x^2+2章节二:平面几何1. 对称- 定义:两个点、图形、式子在某个点、轴等方面相同。
- 公式:点(x,y)关于原点的对称点为(-x,-y)。
2. 相似- 定义:两个图形的形状相同,但尺寸不同。
- 公式:∆ABC∼∆DEF,则AB/DE=BC/EF=AC/DF。
3. 勾股定理- 定义:直角三角形中,斜边的平方等于两直角边的平方之和。
- 公式:c²=a²+b² (c为斜边)章节三:函数与方程1. 函数- 定义:一组有序数对,在数对中,第一元素为定义域中的一个数,第二元素为值域中的一个数。
- 公式:y=f(x)2. 一元一次方程- 定义:形如ax+b=c(a≠0)的方程。
- 解法:等式两边同时减去b,再同除以a。
- 公式:ax+b=c, x=(c-b)/a3. 二元一次方程组- 定义:两个形如ax+by=c的方程。
- 解法:用消元法将两个方程消去其中一个变量,再带回求解另一个变量。
- 公式:ax+by=c, dx+ey=f数与代数基础是数学学科的基本内容。
在中学数学的学习过程中,了解这些基础概念、定义与公式是非常必要的。
本章主要包括整数、实数、代数表达式等知识点。
首先,整数的定义是由整数集合(Z)中的正整数、负整数和零组成。
在计算中,我们可以使用整数实现对于数量的整数计量。
例如,当我们需要表达“3个苹果减去5个苹果,在数学中可以表示为3-5=-2。
整数的范围非常广泛,因此我们可以应用它们来完成数学分析、几何分析、统计分析等。
人教版八年级上、下册数学概念定义公式

八年级上册数学概念、定义、公式归纳1.2.全等三角形的对应边相等,对应角相等。
3.全等三角形对应边上的中线、对应角的平分线、对应边上的高相等。
4.作图:作一个角等于已知角(课本P8)、作已知角的平分线(课本P19)、作线段的垂直平分线(课本P35)、作轴对称图形(课本P40)。
5.全等三角形的判定方法:三边对应相等的两个三角形全等。
(简写成SSS)两边和它们的夹角对应相等的两个三角形全等。
(简写成SAS)两角和它们的夹边对应相等的两个三角形全等。
(简写成ASA)两个角和其中一个角的对边对应相等的两个三角形全等。
(简写成AAS)斜边和一条直角边对应相等的两个直角三角形全等。
(简写成HL)6.7.8.9.10.成轴对称的两个图形全等。
11.12.13.14.15.“最短问题”解题方法:课本P4216.17.18.19.20.21.22.负数没有算术平方根。
任何非负数的算术平方根只有一个。
23.24.25. 1²=1 2²=4 3²=9 4²=16 5²=25 6²=36 7²=49 8²=64 9²=81 10²=100 11²=121 12²=144 13²=169 14²=196 15²=225 16²=256 17²=289 18²=324 19²=361 20²=400 1³=1 2³=8 3³=27 4³=64 5³=125 6³=216 7³=343 8³=512 9³=72926.27.28.29.30.3132.33.在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量叫常量。
34.35.36.37.38.39.40.41.42.4344.45.整式乘除法公式和方法:46.因式分解定义:47.因式分解方法:(1)提公因式法(2)公式法(将平方差公式、完全平方公式逆用)八年级下册数学概念、定义、公式归纳1.2.3.利用分式基本性质,约去分子和分母的公因式,不改变分式的值,这样的变形叫做分式的约分。
八年级数学之一次函数的图像知识点最新5篇

八年级数学之一次函数的图像知识点最新5篇数学一次函数知识点篇一一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2、当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b.(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限四、确定一次函数的)○(表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b.(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b.所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1、当时间t一定,距离s是速度v的一次函数。
s=vt.2、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
八年级上册数学公式定理

八年级上册数学公式定理-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN八年级上册数学公式定理1.全等形定义:能够完全重合的两个图形叫做全等形。
2.把两个全等的图形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
3.全等三角形的性质:(1)全等三角形的对应边相等。
(2)全等三角形的对应角相等。
4.三角形全等的判定:(1)三边对应相等的两个三角形全等。
(可以简写成“边边边”或“SSS”)(2)两边和它们的夹角对应相等的两个三角形全等。
(可以简写成“边角边”或“SAS”)(3)两角和它们的夹边对应相等的两个三角形全等。
(可以简写成“角边角”或“ASA”)(4)两个角和其中一个角的对边对应相等的两个三角形全等。
(可以简写成“角角边”或“AAS”)5.直角三角形全等的判定:斜边和一条直角边对应相等的两个三角形全等。
(可以简写成“斜边直角边”或“HL”)6.角平分线的性质:角的平分线上的点到角的两边的距离相等。
7.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上。
8.轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
9.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
10.垂直平分线的定义:经过线段中点而且垂直于这条线段的直线,叫做这条线段的垂直平分线。
11.线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。
12.线段垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
13.点(x,y)关于x轴对称的点的坐标为(x,-y)。
点(x.y)关于y轴对称的点的坐标为(-x,y)。
14.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章三角形
1、三角形定义:由不在同一条直线上的三条线段首尾顺次相接所组
成的图形叫做三角形。
2、三角形两边的和大于第三边;三角形的两边的差小于第三边。
3、判定三条线段能否围成三角形的简易方法:较小两边之和大于第
三边(最大边)。
4、三角形四心:(1)重心:三条中线交点;(2)垂心:三条高的交
点;(3)内心:三个角平分线的交点;(4)外心:三边垂直平分线的交点。
5、三角形内角和定理:三角形三个内角的和等于180º。
6、直角三角形的性质:直角三角形的两个锐角互余。
7、直角三角形的判定定理:有两个角互余的三角形是直角三角形。
8、三角形的一边与另一边延长线组成的角,叫做三角形的外角。
9、三角形的外角等于和它不相邻的两个内角的和。
10、由一些线段首尾顺次相接组成的封闭图形叫做多边形。
11、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多
边形的对角线。
多边形一个顶点对角线为:(n-3)条多边形对角线总条数为:n(n-3)÷2 条
12、正多边形定义:各个角都相等,各条边都相等的多边形叫做正多
边形。
13、多边形内角和公式:n边形内角和等于(n-2)×180º
14、多边形的外角和等于360 º。
第十二章全等三角形
1、全等形:能够完全重合的两个图形叫做全等形。
2、全等三角形:能够完全重合的两个三角形叫做全等三角形。
3、把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重
合的边叫做对应边,重合的角叫做对应角。
4、全等三角形的性质:全等三角形的对应边相等,全等三角形的对
应角相等。
5、三角形全等的判定定理:
(1)SSS三边分别相等的两个三角形全等。
(2)SAS两边和它们的夹角分别相等的两个三角形等。
(3)ASA两角和它们的夹边分别相等的两个三角形全等。
(4)AAS两角和其中一个角的对边分别相等的两个三角形全等。
(5)HL斜边和一条直角边分别相等的两个直角三角形全等。
(直角三角形的判定)
6、角的平分线的性质:角的平分线上的点到角的两边的距离相等。
【(1)角相等且两垂直;(2)垂线段相等】
7、角的平分线的判定定理:角的内部到角的两边的距离相等的点在
角的平分线上。
【(1)两垂直且垂线段相等;(2)角相等】
第十三章轴对称
1、一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,
这条直线就是它的对称轴。
(一个图形)
2、一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,
那么就说这两个图形
对称轴,折叠后重合的点是对应点,叫做对称点。
(两个图形)3、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;
把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。
4、线段垂直平分线:经过线段中点并且垂直于这条线段的直线,叫
做这条线段的垂直平分线。
5、轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是
任何一对对应点所连线段的重直平分线。
(两个图形)
6、轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所
连线段的垂直平分线。
(一个图形)
7、线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两
个端点的距离相等。
8、线段的垂直平分线的判定定理:与一条线段的两个端点距离相等
的点,在这条线段的垂直平分线上。
9、点(x,y)关于x轴对称的点的坐标为(x,-y);
点(x,y)关于y轴对称的点的坐标为(-x,y);
点(x,y)关于原点对称的点的坐标为(-x,-y);
10、等腰三角形的性质:
性质1 等腰三角形的两个底角相等(等边对等角);
性质2等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
(三线合一)
11、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这
两个角所对的边也相等(等角对等边)。
12、等边三角形的性质:等边三角形的三个内角都相等,并且每个角
都等于60°.
13、等边三角形的判定定理:
(1)三个角都相等的三角形是等边三角形;
(2)有一个角是60°的等腰三角形是等边三角形。
14、30°的直角三角形的性质:在直角三角形中,如果一个锐角等于
30°,那么它所对的直角边等于斜边的一半。
15、最短路径问题:
(1)两点的所有连线中,线段最短。
(两点之间,线段最短。
)(2)连接直线外的一点与直线上各点的所有线段中,垂线段最短。
(垂线段最短)
第十四章 整式的乘法与因式分解
1、同底数幂的乘法:a m •a n = a m+n (m,n 都是正整数)。
同底数幂相乘,底数不变,指数相加。
2、同底数幂相除除法公式:a m ÷a n = a m-n (a ≠0,m,n 都是正整数,并
且m >n)。
同底数幂相乘,底数不变,指数相减。
3、幂的乘方:(a m )n = a mn (m,n 都是正整数)。
幂的乘方,底数不变,指数相乘。
4、积的乘方:(ab)n = a n b n (n 是正整数)。
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
5、a 0=1(a ≠0)
任何不等于0的数的0次幂都等于1。
6、分式乘方法则:⎪⎭
⎫ ⎝⎛b a n = b a 7、整式的乘法
单项式与单项式相乘:单项式与单项式相乘,把它们的系数、同底
数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
单项式与多项式相乘:单项式与多项式相乘,就是用单项式去乘多项
式的每一项,再把所得的积相加。
多项式与多项式相乘:多项式与多项式相乘,先用一个多项式的每n n
一项乘另一个多项式的每一项,再把所得的积相加。
(a+b)(p+q)=ap+aq+bp+bq
8、整式的除法
单项式除以单项式:单项式除以单项式,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
9、乘法公式:
(1)平方差公式:(a+b)(a-b) = a2-b2
两个数的和与这两个数的差的积,等于这两个数的平方差。
(2) 完全平方公式:(a+b)2 = a2+2ab+b2
(a-b)2 = a2-2ab+b2
两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
(3)(x+p)(x+q)=x2+(p+q)x+pq
10、添括号法则:添括号时,如果括号前面是正号,括到括号的各项都
不变符号;如果括号前面是负号,括到括号里的各项都改变符号. 11、因式分解:把一个多项式化成了几个整式的积的形式,叫做这个
多项式的因式分解,也叫做把这个多项式分解因式。
12、因式分解的方法:
(1)提公因式法:如果多项式的各项有公因式,可以把这个公
因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法。
(2)公式法:
平方差公式:a 2-b 2=(a +b )(a -b)
两个数的平方差,等于这两个数的和与这两个数的差的积。
完全平方公式:a 2+2ab + b 2 =(a +b )2
a 2-2a
b + b 2 =(a -b )2
两个数的平方和加上(或减去)这两个数的积的2倍。
等于这两个数
的和(或差)的平方,
十字相乘法公式:x 2+(p+q )x+pq=(x+p )(x+q )
第十五章 分式
1、分式的基本性质:分式的分子与分母乘(或除以)一个不等于0的整式,分式的值不变。
C B C A B A ••=C
B C A B A ÷÷=(C ≠0) 2、分式的约分:把一个分式的分子与分母的公因式约去,叫做分式
的约分。
最简分式:分子与分母没有公因式的分式,叫做最简分式。
分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分
母的分式,叫做分式的通分。
3、分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母
的积作为积的分母。
4、分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置
后,与被除式相乘。
5、分式乘方法则:⎪⎭
⎫ ⎝⎛b a n = b a 分式乘方要把分子、分母分别乘方。
6、分式的加减法法则:
(1)同分母分式相加减,分母不变,把分子相加减;
(2)异分母分式相加减,先通分,变为同分母的分式,再加减。
7、a -n =
a 1 8、除以一个数等于乘以这个数的倒数。
除以一个数等于乘以这个数的指数的相反数。
9、将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
10、解分式方程的步骤:(1)方程两边乘以最简公分母(去分母)(2)解得(3)检验 当 时,最简公分母≠0(或最简公分母=0)
n n n。