相似三角形综合练习相似与圆(难)

合集下载

相似三角形综合题精选

相似三角形综合题精选

九年级数学提升练习--相似三角形的综合题1.如图,已知一次函数的图象与轴交于点,与轴交于点,二次函数经过点,且与一次函数的图象交于点.(1)求一次函数与二次函数的解析式.(2)在轴上是否存在点,使得以点,,为顶点的三角形与相似?若存在,请求出点的坐标;若不存在,请说明理由.2.将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A 分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(﹣3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.3.如图(1)(感知)如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°,求证:=.(2)(探究)如图②,在四边形ABCD中,∠C=∠ADC=90°,点E在边CD上,点F在边AD的延长线上,∠FEG=∠AEB=90°,且=,连接BG交CD于点H.求证:BH=GH.(3)(拓展)如图③,点E在四边形ABCD内,∠AEB+∠DEC=180°,且=,过E作EF交AD于点F,若∠EFA=∠AEB,延长FE交BC于点G.求证:BG=CG.4.在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线设BD、CE和DE的长;(2)规律探究:(Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE 的数量关系并说明理由;(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;.(3)尝试应用:在图③中,延长线设BD交线段AC于点F,若CE=3,DE=1,求S△BFC5.如图,在Rt ABC中,AC=BC=6,∠ACB=90°,正方形BDEF的边长为2,将正方形BDEF绕点B旋转一周,连接AE、BE、CF.(1)如图1所示,求证ABE∼CBF,并直接写出的值;(2)在正方形BDEF绕点B旋转过程中,当A、E、F三点共线时,求CF的长;(3)如图2所示,在正方形BDEF旋转过程中,设AE的中点为M,连接FM,请直接写出FM 长度的最大值.6.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连结AD,若,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)△ABC中,BC=9,,,点D是BC边上的“好点”,求线段BD 的长.(3)如图3,△ABC是的内接三角形,OH⊥AB于点H,连结CH并延长交于点D.①求证:点H是△BCD中CD边上的“好点”.②若的半径为9,∠ABD=90°,OH=6,请直接写出的值.7.已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.8.如图,已知AC为⊙O的直径,连接AB,BC,OB,过点O作OE⊥AB于点E,点F是半径OC 的中点,连接EF,BF.(1)如图1,设⊙O的半径为2,若∠BAC=30°,求线段EF的长.(2)如图2,设BO交EF于点P,延长BO交⊙O于点D,连接DF.①求证:PE=PF;②若DF=EF,求∠BAC的度数.9.如图1,矩形ABCD的一边BC在直角坐标系中x轴上,折叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m<0.(1)求点E、F的坐标(用含m的式子表示);(2)连接OA,若△OAF是等腰三角形,求m的值;(3)如图2,设抛物线y=a(x﹣m+6)2+h经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求a、h、m的值.10.综合与实践“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段同侧有两点B,D,连接,,,,如果,那么A,B,C,D四点在同一个圆上.探究展示:如图2,作经过点A,C,D的,在劣弧上取一点E(不与A,C重合),连接,则(依据1)点A,B,C,E四点在同一个圆上(对角互补的四边形四个顶点共圆)点B,D在点A,C,E所确定的上(依据2)点A,B,C,E四点在同一个圆上(1)反思归纳:上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:;依据2:.(2)图3,在四边形中,,,则的度数为.(3)展探究:如图4,已知是等腰三角形,,点D在上(不与的中点重合),连接.作点C关于的对称点E,连接并延长交的延长线于F,连接,.①求证:A,D,B,E四点共圆;②若,的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.11.如图,和均为等腰直角三角形,.现将绕点C旋转.(1)如图1,若三点共线,,求点B到直线的距离;(2)如图2,连接,点F为线段的中点,连接,求证:;(3)如图3,若点G在线段上,且,在内部有一点O,请直接写出的最小值.12.如图,△ABC内接于⊙O,AD平分∠BAC交BC边于点E,交⊙O于点D,过点A作AF⊥BC 于点F,设⊙O的半径为R,AF=h.(1)过点D作直线MN∥BC,求证:MN是⊙O的切线;(2)求证:AB•AC=2R•h;(3)设∠BAC=2α,求的值(用含α的代数式表示).13.抛物线经过点和,与x轴交于另一点B.(1)则抛物线的解析式为;(2)点P为第四象限内抛物线上的点,连接,,,设点P的横坐标为.①如图1,当时,求的值;②如图2,过点P作x轴的垂线,垂足为点D,过点C作的垂线,与射线交于点E,与x轴交于点F.连接,当时,求m的值.14.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx-5与x轴交于A(-1,0),B(5,0)两点,与y 轴交与点C.(1)求抛物线的函数表达式;(2)若点D是y轴上的点,且以B、C、D为顶点的三角形与△ABC相似,求点D的坐标;(3)如图2,CE//x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y 轴平行的直线与BC、CE分别相交于点F,G,试探求当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积.15.在△ABC中,AD为BC边上的中线,E为AD上一动点,设DE=nEA,连接CE并延长,交AB 于点F.(1)尝试探究:如图1,当∠BAC=90°,∠B=30°,DE=EA时,BF,BA之间的数量关系是;(2)类比延伸:如图2,当△ABC为锐角三角形,DE=EA时,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)拓展迁移:如图3,当△ABC为锐角三角形,DE=nEA时,请直接写出BF,BA之间的数量关系.16.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,中,点是边上一点,连接,若,则称点是中边上的“好点”.(1)如图2,的顶点是网格图的格点,请仅用直尺画出(或在图中直接描出)边上的“好点”;(2)中,,,,点是边上的“好点”,求线段的长;(3)如图3,是⊙O的内接三角形,点在上,连结并延长交⊙O于点.若点是中边上的“好点”.①求证:;②若,⊙O的半径为,且,求的值.答案解析部分1.【答案】(1)∵一次函数的图象与轴交于点,∴当x=0时,y=-2,B(0,-2),∵一次函数的图象过点,∴,∴,∴一次函数解析式为,∵经过点,点,代入得,解方程组得,∴二次函数解析式为:;(2)存在,理由如下,∵已知一次函数的图象与轴交于点,∴y=0,x=2,∴A(2,0),B(0,-2),∴OA=2,OB=2,∠AOB=90°,在Rt△AOB中,由勾股定理AB=,由勾股定理BC=,①当点M为直角顶点时,CM⊥y轴,CM∥OA,∴∠MCB=∠OAB,∠MBC=∠OBA,∴△CMB∽△AOB,∴即,∴,∴OM=MB-OB=6-2=4,∴M(0,4),②当点C为直角顶点时,∴CM⊥BC,∴∠MCB=∠AOB=90°,∠MBC=∠ABO,∴△MCB∽△AOB,∴即,∴,∴OM=MB-OB=12-2=10,∴M(0,10),∴以点,,为顶点的三角形与相似点的坐标为M(0,4)或(0,10). 2.【答案】(1)解:如图,∵抛物线y=ax 2+bx+c (a≠0)的图象经过点A (0,6),∴c=6.∵抛物线的图象又经过点(﹣3,0)和(6,0),∴,解之得,故此抛物线的解析式为:y=﹣x 2+x+6.(2)解:设点P 的坐标为(m ,0),则PC=6﹣m ,S △ABC =BC•AO=×9×6=27;∵PE ∥AB ,∴△CEP ∽△CAB ;∴,即=()2,∴S △CEP =(6﹣m )2,∵S △APC =PC•AO=(6﹣m )×6=3(6﹣m ),∴S △APE =S △APC ﹣S △CEP =3(6﹣m )﹣(6﹣m )2=﹣(m ﹣)2+;当m=时,S △APE 有最大面积为;此时,点P 的坐标为(,0).(3)解:如图,过G 作GH ⊥BC 于点H ,设点G 的坐标为G (a ,b ),连接AG 、GC ,∵S 梯形AOHG =a (b+6),S △CHG =(6﹣a )b ,∴S 四边形AOCG =a (b+6)+(6﹣a )b=3(a+b ).∵S △AGC =S四边形AOCG ﹣S △AOC ,∴=3(a+b )﹣18,∵点G (a ,b )在抛物线y=﹣x 2+x+6的图象上,∴b=﹣a 2+a+6,∴=3(a ﹣a 2+a+6)﹣18,化简,得4a 2﹣24a+27=0,解之得a 1=,a 2=;故点G 的坐标为(,)或(,).3.【答案】(1)证明:∵∠C=∠D=∠AEB=90°,∴∠BEC+∠AED=∠AED+∠EAD=90°,∴∠BEC=∠EAD ,∴Rt △AED ∽Rt △EBC ,∴;(2)证明:如图1,过点G作GM⊥CD于点M,同(1)的理由可知:,∵,,∴,∴CB=GM,在△BCH和△GMH中,,∴△BCH≌△GMH(AAS),∴BH=GH;(3)证明:如图2,在EG上取点M,使∠BME=∠AFE,过点C作CN∥BM,交EG的延长线于点N,则∠N=∠BMG,∵∠EAF+∠AFE+∠AEF=∠AEF+∠AEB+∠BEM=180°,∠EFA=∠AEB,∴∠EAF=∠BEM,∴△AEF∽△EBM,∴,∵∠AEB+∠DEC=180°,∠EFA+∠DFE=180°,而∠EFA=∠AEB,∴∠CED=∠EFD,∵∠BMG+∠BME=180°,∴∠N=∠EFD,∵∠EFD+∠EDF+∠FED=∠FED+∠DEC+∠CEN=180°,∴∠EDF=∠CEN,∴△DEF∽△ECN,∴,又∵,∴,∴BM=CN,在△BGM和△CGN中,,∴△BGM≌△CGN(AAS),∴BG=CG.4.【答案】(1)解:∠BAC=90°,AB=AC,∴∠ABC=∠ACB==45°,∵l∥BC,∴∠DAB=∠ABC=45°,∠EAC=∠ACE=45°,∴BD⊥AE,CE⊥DE,即∠BDA=∠CEA=90°,∴∠ABD=90°-45°=45°,∠ACE=90°-45°=45°,∴∠DAB=∠ABD=∠EAC=∠ACE=45°,∴AD=BD=ABsin∠DAB==1,∴AE=CE=ACsin∠EAC==1,∴DE=AD+AE=2;(2)解:(Ⅰ)DE=CE+BD;理由如下:∵BD⊥AE,CE⊥DE,∴∠BDA=∠CEA=90°,∴∠DAB+∠DBA=90°,∴∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠DBA=∠CAE,∴AB=AC,∴△ABD≌△CAE,∴AD=CE,BD=AE,∴DE=AD+AE=CE+BD,即DE=CE+BD;(Ⅱ)BD=CE+DE,理由如下:∵BD⊥AE,CE⊥DE,∴∠BDA=∠CEA=90°,∴∠DAB+∠DBA=90°,∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠DBA=∠CAE,∵AB=AC,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴BD=AE=AD+DE=CE+DE,即BD=CE+DE.(3)解:由(2)可知,AD=CE=3,∴AE=AD+DE=3+1=4,在Rt△AEC中,AC==5,∵BD⊥AE,CE⊥AE,∴DF∥CE,∴,即,解得:AF=,∴CF=AC-AF=5-=,∵AB=AC=5,=CF×AB=××5=.∴S△BFC5.【答案】(1)解:=,Rt△ABC中,AC=BC,∴AB=CB,∠ABC=45°,∵四边形BDEF是正方形,∴BE=BF,∠EBF=45°,∴=,∠ABC=∠EBF=45°,∴∠ABE=∠CBF,∴△ABE∽△CBF,∴=;(2)解:①如图2-1,当点F在A、E之间时,∵AC=BC=6,∠ACB=90°,∴AB=6,又∵∠AFB=90°,∴AF==8,∴AE=8+2,由(1)知,AE=CF,∴CF=4+2;②如图2-2,当点E在A、F之间时,同理可得AF=8,AE=8−2,∴CF=4−2;综上所述:CF=4+2或4-2;(3)3+26.【答案】(1)解:如图所示:D点及为AB边上的“好点”(2)解:作AE⊥BC于点E,由,可设AE=4x,则BE=3x,CE=6x,∴BC=9x=9,∴,∴BE=3,CE=6,AE=4,设DE=a,①若点D在点E左侧,由点D是BC边上的“好点”知,,∴,即,解得,(舍去),∴.②若点D在点E右侧,由点D是BC边上的“好点”知,,∴,即,解得,(舍去)∴.∴或5.(3)解:①∵∠CHA=∠BHD,∠ACH=∠DBH∴△AHC∽△DHB∴,即∵OH⊥AB∴AH=BH∴∴点H是△BCD中CD边上的“好点”.②连接AD.∵∠ABD=90°∴AD为直径,∵OH⊥AB,OH=6∴,BD=2OH=12∴BH=AH=∴由①得:即∴CH=∴.7.【答案】(1)解:∵AB是⊙O的直径,∴∠ADB=90°,即BD⊥AC∵AB=BC,∴△ABD≌△CBD∴∠ABD=∠CBD在⊙O中,AD与DE分别是∠ABD与∠CBD所对的弦∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴,∵AB=BC=10,CE=2,D是AC的中点,∴CD=;(3)解:延长EF交⊙O于M,在Rt △ABD 中,AD=,AB=10,∴BD=3,∵EM ⊥AB ,AB 是⊙O 的直径,∴,∴∠BEP=∠EDB ,∴△BPE ∽△BED ,∴,∴BP=,∴DP=BD-BP=,∴S △DPE :S △BPE =DP :BP=13:32,∵S △BCD =××3=15,S △BDE :S △BCD =BE :BC=4:5,∴S △BDE =12,∴S △DPE =.8.【答案】(1)解:∵OE ⊥AB ,∠BAC =30°,OA =2,∴∠AOE =60°,OE =OA =1,AE =EB =OE =,∵AC 是直径,∴∠ABC =90°,∴∠C =60°,∵OC =OB ,∴△OCB 是等边三角形,∵OF =FC ,∴BF⊥AC,∴∠AFB=90°,∵AE=EB,∴EF=AB=.(2)解:①证明:如图2中,过点F作FG⊥AB于G,交OB于H,连接EH.∵∠FGA=∠ABC=90°,∴FG∥BC,∴△OFH∽△OCB,∴=,同理=,∴FH=OE,∵OE⊥AB.FH⊥AB,∴OE∥FH,∴四边形OEHF是平行四边形,∴PE=PF.②解:∵OE∥FG∥BC,∴=1,∴EG=GB,∴EF=FB,∵DF=EF,∴DF=BF,∵DO=OB,∴FO⊥BD,∴∠AOB=90°,∵OA=OB,∴△AOB是等腰直角三角形,∴∠BAC=45°.解法二:可以过E点作EG∥OB交AC于点G,连接DG.∵EG∥OB,AE=EB,∴AG=OG∵OF=FC,∴OG=OF,∴OD﹣FG,∵AE⊥OE,AG=OG,∴EG=AO=OG,∵∠DOG=∠FGE,∴DOG≌△FGE(SAS),∴DG=EF,∵DF=EF,∴DG=DF,∴DO⊥FG,∴EG⊥AO,∴EA=EO,∴∠BAC=45°9.【答案】(1)解:∵四边形ABCD是矩形,AB=8,AD=10,∴AD=BC=10,AB=CD=8,∠D=∠DCB=∠ABC=90°,由折叠对称性:AF=AD=10,FE=DE,在Rt△ABF中,BF==6,∴FC=4,设DE=x,则CE=8﹣x,在Rt△ECF中,42+(8﹣x)2=x2,得x=5,∴CE=8﹣x=3,∵点B的坐标为(m,0),∴点E的坐标为(m﹣10,3),点F的坐标为(m﹣6,0)(2)解:分三种情形讨论:若AO=AF,∵AB⊥OF,BF=6,∴OB=BF=6,∴m=﹣6;若OF=AF,则m﹣6=﹣10,得m=﹣4;若AO=OF,在Rt△AOB中,AO2=OB2+AB2=m2+64,∴(m﹣6)2=m2+64,得m=﹣;由上可得,m=﹣6或﹣4或﹣(3)解:由(1)知A(m,8),E(m﹣10,3),∵抛物线y=a(x﹣m+6)2+h经过A、E两点,∴,解得,,∴该抛物线的解析式为y=(x﹣m+6)2﹣1,∴点M的坐标为(m﹣6,﹣1),设对称轴交AD于G,∴G(m﹣6,8),∴AG=6,GM=8﹣(﹣1)=9,∵∠OAB+∠BAM=90°,∠BAM+∠MAG=90°,∴∠OAB=∠MAG,又∵∠ABO=∠MGA=90°,∴△AOB∽△AMG,∴,即,解得,m=﹣12,由上可得,a=,h=﹣1,m=﹣12.10.【答案】(1)圆内接四边形对角互补;同圆中,同弧所对的圆周角相等(2)45°(3)解:①,,点与点关于对称,,,四点共圆;②,理由如下,如图,四点共圆,,关于对称,,,,,,,,又,,,,,.11.【答案】(1)解:∵,,∴,∴,又∵,,∴(SAS),∴,,∵,,∴,∵若三点共线,∴,如图,过B点作BH⊥CE交CE延长线于点H,∴,∴,即:点B到直线的距离为;(2)解:延长CF到N,使FN=CF,连接BN,∵FD=FB,,∴(SAS)∴,∵,∴,又∵,∴,∴,又∵,,∴(SAS ),∴,又∵,∴,∴,即,(3)解:的最小值为;过程如下:如解图3,过点G 作,且,过点G 作,且,连接OC 、、,∴,,∴,∵,∴,∴,即,∵,∴,∵,仅当C 、O 、、在同一条直线上等号成立;如解图4,过点作,垂足为H,过点作,垂足为P,∵,∴,,∵,∴,∴,∵,∴,∴,,∴,,∴,∴,∴的最小值为:,∴的最小值为. 12.【答案】(1)解:证明:如图1,连接OD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴=,又∵OD是半径,∴OD⊥BC,∵MN∥BC,∴OD⊥MN,∴MN是⊙O的切线;(2)证明:如图2,连接AO并延长交⊙O于H,∵AH是直径,∴∠ABH=90°=∠AFC,又∵∠AHB=∠ACF,∴△ACF∽△AHB,∴,∴AB•AC=AF•AH=2R•h;(3)解:如图3,过点D作DQ⊥AB于Q,DP⊥AC,交AC延长线于P,连接CD,∵∠BAC=2α,AD平分∠BAC,∴∠BAD=∠CAD=α,∴=,∴BD=CD,∵∠BAD=∠CAD,DQ⊥AB,DP⊥AC,∴DQ=DP,∴Rt△DQB≌Rt△DPC(HL),∴BQ=CP,∵DQ=DP,AD=AD,∴Rt△DQA≌Rt△DPA(HL),∴AQ=AP,∴AB+AC=AQ+BQ+AC=2AQ,∵cos∠BAD=,∴AD=,∴==2cosα.13.【答案】(1)(2)解:①∵,,,∴,,,∵,∴,∴,化简得:,解得或,∵,∴,∴,作轴于点如图1,在中,;②∵,∴,∴.∴,轴,∴,又∵,∴,∴,∴,∴,∴,∵,,设直线为,解得直线的解析式为,,∴,∴,解得,12,,经检验知,,12,都是原方程的解,∵,∴,.14.【答案】(1)解:把A(-1,0),B(5,0)代入y=ax2+bx-5可得,解得二次函数的解析式为y=x2-4x-5.(2)解:如图1,令x=0,则y=−5,∴C(0,−5),∴OC=OB,∴∠OBC=∠OCB=45°,∴AB=6,BC=5,要使以B,C,D为顶点的三角形与△ABC相似,则有或,当时,CD=AB=6,∴D(0,1),当时,∴,∴CD=,∴D(0,),即:D的坐标为(0,1)或(0,);(3)解:设H(t,t2-4t-5)∥x轴,,又因为点E在抛物线上,即,解得(舍去)∴BC所在直线解析式为y=x-5,∴则,而CE是定值,∴当HF的值最大时,四边形CHEF有最大面积。

圆与相似三角形、三角函数专题(含答案)

圆与相似三角形、三角函数专题(含答案)

圆与相像三角形、解直角三角形及二次函数的综合种类一:圆与相像三角形的综合1.如图, BC 是⊙ A 的直径,△ DBE的各个极点均在⊙ A 上, BF⊥ DE于点 F.求证: BD·BE= BC·BF.2.如图,在 Rt△ ABC中,∠ ACB= 90°,以 AC为直径的⊙ O 与 AB 边交于点 D,过点 D 作⊙O 的切线,交 BC 于点 E.(1)求证:点 E 是边 BC的中点;求证:2=BD·BA;(2)BC(3)当以点 O, D, E,C 为极点的四边形是正方形时,求证:△ABC是等腰直角三角形.解:(1) 连接 OD,∵ DE为切线,∴∠ EDC+∠ ODC=90° .∵∠ ACB=90°,∴∠ ECD+∠ OCD= 90° .又∵ OD= OC,∴∠ ODC=∠ OCD,∴∠ EDC=∠ ECD,∴ ED= EC.∵AC 为直径,∴∠ADC= 90°,∴∠ BDE+∠ EDC= 90°,∠ B+∠ECD= 90°,∴∠ B=∠ BDE,∴ ED= EB,∴ EB=EC,即点 E 为边 BC的中点(2)∵ AC为直径,∴∠ ADC=∠ ACB=90° .又∵∠ B=∠ B,∴△ ABC∽△ CBD,∴ABBC= BCBD,∴B C2= BDBA(3)当四边形 ODEC为正方形时,∠ OCD= 45° .∵AC 为直径,∴∠ ADC= 90°,∴∠ CAD=90°-∠ OCD= 90°- 45°= 45°,∴ Rt△ ABC 为等腰直角三角形种类二:圆与解直角三角形的综合3.如图,在△ ABC中,以 AC 为直径作⊙ O 交 BC 于点 D,交 AB 于点 G,且 D 是 BC 的中点,DE⊥ AB,垂足为点 E,交 AC 的延伸线于点 F.(1)求证:直线EF是⊙ O 的切线;(2)已知 CF= 5, cosA=25,求 BE 的长.解: (1)连接 OD.∵ CD=DB,CO= OA,∴ OD 是△ ABC的中位线,∴OD∥ AB, AB=2OD.∵ DE⊥ AB,∴ DE⊥OD,即 OD⊥ EF,∴直线 EF是⊙ O 的切线(2)∵ OD∥ AB,∴∠ COD=∠ A,∴ cos∠ COD= cosA= 25.在 Rt△ DOF中,∵∠ ODF= 90°,∴ cos∠ FOD= ODOF= 25.设⊙ O 的半径为 r,则 rr + 5= 25,解得 r= 103,∴ AB= 2OD= AC= 203.在 Rt△ AEF中,∵∠ AEF= 90°,∴ cosA= AEAF=AE5+ 203=25,∴ AE= 143,∴ BE=AB- AE=203- 143= 24.(2015 ·资阳 )如图,在△ ABC中, BC是以 AB 为直径的⊙ O 的切线,且⊙ O 与 AC 订交于点D, E 为 BC 的中点,连接 DE.(1)求证: DE 是⊙ O 的切线;(2)连接 AE,若∠ C= 45°,求 sin∠ CAE的值.解: (1)连接 OD,BD,∵ OD= OB,∴∠ ODB=∠ OBD.∵ AB 是直径,∴∠ ADB= 90°,∴∠ CDB= 90° .∵ E为 BC的中点,∴ DE=BE,∴∠ EDB=∠ EBD,∴∠ ODB+∠ EDB=∠ OBD+∠ EBD,即∠ EDO=∠ EBO.∵ BC 是以 AB 为直径的⊙ O 的切线,∴ AB⊥ BC,∴∠ EBO=90°,∴∠ ODE= 90°,∴ DE 是⊙ O 的切线(2)过点 E 作 EF⊥ CD于点 F,设 EF= x,∵∠ C=45°,∴△ CEF,△ABC 都是等腰直角三角形,∴CF= EF= x,∴ BE= CE= 2x,∴AB= BC= 22x.在 Rt△ ABE中, AE= AB2+ BE2= 10x,∴ sin∠ CAE= EFAE= 10105.如图,△ ABC 内接于⊙ O,直径 BD 交 AC 于点 E,过点 O 作 FG⊥ AB,交 AC 于点 F,交 AB 于点 H,交⊙ O 于点 G.(1)求证: OF·DE= OE·2OH;(2)若⊙ O 的半径为12,且 OE∶OF∶ OD= 2∶3∶ 6,求暗影部分的面积. (结果保存根号 )解: (1)∵ BD 是直径,∴∠ DAB= 90° .∵ FG⊥ AB,∴ DA∥ FO,∴△FOE∽△ADE,∴FOAD=OEDE,即OFDE=OEAD.∵O 是BD 的中点, DA∥ OH,∴ AD= 2OH,∴ OFDE= OE2OH(2)∵⊙ O 的半径为12,且 OE∶ OF∶ OD=2∶ 3∶ 6,∴ OE= 4, ED=8,OF= 6,∴ OH= 6.在 Rt△OBH 中,OB= 2OH,∴∠ OBH= 30°,∴∠ BOH= 60°,∴ BH= BOsin60°= 12× 32= 63,∴ S 暗影= S 扇形 GOB-S△OHB=60×π× 122360- 12× 6×63= 24π- 183种类三:圆与二次函数的综合6.如图,在平面直角坐标系中,已知 A(- 4,0), B(1,0),且以 AB 为直径的圆交 y 轴的正半轴于点 C(0,2),过点 C作圆的切线交 x 轴于点 D.(1)求过 A,B, C 三点的抛物线的分析式;(2)求点 D 的坐标;(3)设平行于 x 轴的直线交抛物线于E,F 两点,问:能否存在以线段EF为直径的圆,恰巧与x轴相切若存在,求出该圆的半径,若不存在,请说明原因.解: (1)y=- 12x2- 32x+2(2)以 AB 为直径的圆的圆心坐标为O′ (-32,0),∴O′ C= 52, O′ O= 32.∵ CD为圆 O′的切线,∴O′ C⊥ CD,∴∠ O′CO+∠ DCO= 90° .又∵∠CO′ O+∠ O′ CO=90°,∴∠ CO′ O=∠DCO,∴△ O′ CO∽△ CDO,∴ O′ OOC= OCOD,∴322= 2OD,∴ OD= 83,∴点 D 的坐标为 (83,0)(3)存在.抛物线的对称轴为直线x=- 32,设满足条件的圆的半径为|r| ,则点 E 的坐标为 (- 32+ r, r)或 F(- 32-r , r),而点 E 在抛物线y =- 12x2- 32x+2 上,∴ r=- 12(- 32+ |r|)2 - 32(- 32+ |r|) + 2,∴ r1=- 1+ 292, r2=-1- 292(舍去 ).故存在以线段EF 为直径的圆,恰巧与x 轴相切,该圆的半径为-1+ 2927.如图,抛物线y=ax2+ bx- 3 与 x 轴交于 A, B 两点,与y 轴交于点C,经过 A,B, C 三点的圆的圆心抛物线的极点为M(1 ,m)恰幸亏此抛物线的对称轴上,E.⊙ M的半径为.设⊙ M与y 轴交于点D,(1)求 m 的值及抛物线的分析式;(2)设∠ DBC=α,∠ CBE=β,求 sin( α-β)的值;(3)研究坐标轴上能否存在点 P,使得以 P, A, C 为极点的三角形与△ BCE相像若存在,请指出点 P 的地点,并直接写出点 P 的坐标;若不存在,请说明原因.解: (1)由题意,可知 C(0,- 3),- b2a=1,∴抛物线的分析式为 y= ax2- 2ax- 3(a> 0).过点 M 作 MN ⊥y 轴于点 N,连接 CM,则 MN = 1, CM= 5,∴ CN= 2,于是 m=- 1.同理,可求得 B(3,0),∴ a× 32- 2a× 3- 3=0,解得 a= 1. ∴抛物线的分析式为 y= x2- 2x-3(2)由 (1)得, A(-1 ,0), E(1,- 4), D(0, 1),∴△ BCE为直角三角形, BC=32, CE= 2,∴OBOD=31= 3, BCCE= 322=3,∴ OBOD= BCCE,即 OBBC= ODCE,∴ Rt△BOD∽ Rt△BCE,得∠ CBE=∠ OBD=β,所以 sin(α-β )=sin(∠ DBC-∠ OBD)= sin∠ OBC= COBC= 22(3)明显 Rt△ COA∽ Rt△ BCE,此时点 O(0, 0).过点 A 作 AP2⊥ AC 交 y 轴的正半轴于点 P2,由 Rt△ CAP2∽Rt△ BCE,得 P2(0,13).过点 C 作 CP3⊥ AC交 x 轴的正半轴于点 P3,由 Rt△P3CA∽ Rt△ BCE,得 P3(9,0).故在座标轴上存在三个点 P1(0, 0),P2(0, 13),P3(9, 0),使得以 P, A, C为极点的三角形与△ BCE相像。

中考数学相似三角形分类专练 证明相似三角形中的对应线段成比例重难点专练(解析版)

中考数学相似三角形分类专练 证明相似三角形中的对应线段成比例重难点专练(解析版)
同上,AB可以与DE对应,也可以与DF对应,∴ 或 ,B不一定成立;
同上,AB可以与DE对应,也可以与DF对应,∴相似比可能是 ,也可能是 ,C不一定成立;
∵∠A=∠D,即∠A与∠D是对应角,∴它们的对边一定是对应比,即BC与EF是对应比,
∴相似比为 ,∴D一定成立,
故选D.
【考点知悉】
本题考查相似三角形的性质,注意相似三角形的性质是针对对应角和对应边而言的.
17.如图,点D、E分别在 的边AB、AC上,且 ,若DE=3,BC=6,AC=8,则 _______.
18.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.
19.如图,在△ABC中,AB=9,AC=6,D为AB边上一点,且△ABC∽△ACD,则AD=__.
∴这个三角形的边长扩大到原来的4倍,
故选B.
【考点知悉】
本题考查了相似三角形的相似比和周长比之间的关系,属于简单题,熟练掌握相似三角形的性质是解题关键.
10.D
【思路点拨】
根据①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项,进行判断即可.
30.如图, , , , ,则 ________.
31.如图,△ABC中,DE∥BC, ,△ADE的面积为8,则△ABC的面积为______
三、解答题
32.已知:如图,AB是半圆O的直径,弦CD∥AB,动点P、Q分别在线段OC、CD上,且DQ=OP,AP的延长线与射线OQ相交于点E、与弦CD相交于点F(点F与点C、D不重合),AB=20,cos∠AOC= .设OP=x,△CPF的面积为y.
∴ ,

【精编版】数学中考专题训练——相似三角形与圆的综合

【精编版】数学中考专题训练——相似三角形与圆的综合

中考专题训练——相似三角形与圆的综合1.如图,AB是⊙O的直径,C是⊙O上一点,D是的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F.(1)求证:AE是⊙O的切线;(2)若⊙O的半径10,,求线段DH的长.2.如图,AD是⊙O的弦,PO交⊙O于点B,∠ABP=∠ABD,且AB2=PB•BD,连接P A.(1)求证:P A是⊙O的切线;(2)若P A=2PB=4,求BD的长.3.如图,在⊙O中,直径AB与弦CD相交于点H,点B是弧CD的中点,过点A作AE∥CD,交射线DO于点E,DE与⊙O交于点F,BF与CD交于点G.(1)求证:AE是⊙O的切线.(2)已知AO=5,AE=,求BG的长.4.如图,AB是⊙O的直径,C、D是⊙O上两点,且,过点D的直线DE⊥AC交AC的延长线于点E,交AB的延长线于点F,连接AD、OE交于点G.(1)求证:DE是⊙O的切线;(2)若,⊙O的半径为2,求阴影部分的面积.5.某数学小组在研究三角形的内切圆时,遇到了如下问题:如图①,已知等腰△ABC的底边AB为12,底边上的高CD为8,如何在这个等腰三角形中画出其内切圆?小红同学经过计算,在高CD上截取DO=3,以点O为圆心,以3为半径作的圆即为所求.(1)小红的方法是否正确?如果正确,给出理由;如果不正确,请给出你的方法.(2)如图②,在图①的基础上,以AB为边作一个正方形ABEF,连接FC并延长与BE 交于点G,则BG:GE的值为.6.如图,AB是⊙O的直径,CD是一条弦.过点A作DC延长线的垂线,垂足为点E.连接AC,AD.(1)证明:△ABD∽△ACE.(2)若,BD=5,CD=9.①求EC的长.②延长CD,AB交于点F,点G是弦CD上一点,且∠CAG=∠F,求CG的长.7.如图,△ABC内接于⊙O,BC是直径,AD平分∠BAC交于点D,EF切⊙O于D,BF ⊥AB交EF于F.(1)求证:四边形BCEF为平行四边形.(2)若BF=,AB=4,求AE的长.8.如图,AB为⊙O的直径,四边形ABCD内接于⊙O.点D为的中点,对角线AC,BD 交于点E,⊙O的切线AF交BD的延长线于点F,切点为A.(1)求证:AE=AF;(2)若AB=4,BF=5,求sin∠BDC的值.9.如图,在矩形ABCD中,以AB的中点O为圆心,以OA为半径作半圆,连接OD交半圆于点E,在上取点F,使=,连接BF,DF.(1)求证:DF与半圆相切;(2)如果AB=10,BF=6,求矩形ABCD的面积.10.如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P在OE延长线上,且满足∠PCA=∠ABC,连接P A,PC,AF.(1)求证:PC是⊙O的切线;(2)证明:PE•OD=DE•OE.11.如图,在Rt△ABC中,∠ACB=90°,以AB为直径作⊙O,过点B的切线交AC延长线于点D,点E为上一点,且BC=EC,连接BE交AC于点F.(1)求证:BC平分∠DBE;(2)若AB=2,tan E=,求EF的长.12.如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠F AC=∠BDC.(1)求证:AF是⊙O的切线;(2)若BC=6,sin B=,求⊙O的半径及OD的长.13.如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.14.如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC的角平分线AF交BC于点D,交⊙O于点E,连接BE和BF,∠F=∠ABE.(1)求证:BF是⊙O的切线;(2)若AC=5,AB=13,求CD的长.15.如图,在△ABC中,AD平分∠BAC交BC于点D,以AD为直径作⊙O交AC于点F,点B恰好落在⊙O上,过D点作⊙O的切线DE交AC于点E,连接DF.(1)求证:∠FDE=∠CDE;(2)若AB=12,tan∠C=,求线段DE的长.16.如图,以△ABC的一边AB为直径作⊙O,交BC于点D,交AC于点E,点D为BE的中点.(1)试判断△ABC的形状,并说明理由;(2)若直线l切⨀O于点D,与AC及AB的延长线分别交于点F、点G.∠BAC=45°,求的值.17.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.求证:(1)BC是⊙O的切线;(2)CD2=CE•CA.18.如图,AB是⊙O的直径,点C,D在⊙O上,且弧CD=弧CB,过点C作CE∥BD,交AB的延长线于点E,连接AC交BD于F.(1)求证:CE是⊙O的切线;(2)过点C作CH⊥AE于H点,CH交BD于M,若CA=CE=6,求CH和BF的长.19.如图,⊙O上有A,B,C三点,AC是直径,点D是的中点,连接CD交AB于点E,点F在AB延长线上且FC=FE.(1)若∠A=40°,求∠DCB的度数;(2)求证:CF是⊙O的切线;(3)若,BE=6,求⊙O的半径长.20.已知:如图,AB、AC是⊙O的两条弦,AB=AC,点M、N分别在弦AB、AC上,且AM=CN,AM<AN,联结OM、ON.(1)求证:OM=ON;(2)当∠BAC为锐角时,如果AO2=AM•AC,求证:四边形AMON为等腰梯形.21.如图,在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O的直径.22.如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.(1)求证:△CED∽△BAD;(2)当DC=2AD时,求CE的长.23.如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AE=12,,求⊙O的半径和EF的长.参考答案与试题解析1.如图,AB是⊙O的直径,C是⊙O上一点,D是的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F.(1)求证:AE是⊙O的切线;(2)若⊙O的半径10,,求线段DH的长.【分析】(1)由垂径定理得出OD⊥AC,进而得出∠F AO+∠AOF=90°,由圆周角定理结合已知条件得出∠AOF=∠CAE,得出∠F AO+∠CAE=90°,即∠OAE=90°,即可证明AE是⊙O的切线;(2)连接AD,利用解直角三角形得出tan B==,设AD=3x,则BD=4x,AB=5x,由⊙O的半径10,得出AB=5x=20,求出x=4,求出AD=12,BD=16,继而证明△ADH∽△BDA,利用相似三角形的性质即可求出DH的长.【解答】(1)证明:如图1,∵D是的中点,∴OD⊥AC,∴∠AFO=90°,∴∠F AO+∠AOF=90°,∵∠AOF=2∠C,∠CAE=2∠C,∴∠AOF=∠CAE,∴∠F AO+∠CAE=90°,即∠OAE=90°,∵OA是半径,∴AE是⊙O的切线;(2)解:如图2,连接AD,∵∠C=∠B,,tan B=,∵AB是直径,∴∠ADB=90°,∴tan B==,设AD=3x,则BD=4x,AB=5x,∵⊙O的半径10,∴AB=5x=20,∴x=4,∴AD=3×4=12,BD=4×4=16,∵D是的中点,∴AD=CD=12,∴∠DAC=∠C,∵∠B=∠C,∴∠DAC=∠B,∵∠ADH=∠BDA∴△ADH∽△BDA,∴,即,∴DH=9.2.如图,AD是⊙O的弦,PO交⊙O于点B,∠ABP=∠ABD,且AB2=PB•BD,连接P A.(1)求证:P A是⊙O的切线;(2)若P A=2PB=4,求BD的长.【分析】(1)延长BO交⊙O于点E,连接AE,先证明△PBA∽△ABD,得出∠P AB=∠ADB,由圆周角定理得出∠P AB=∠E,由等腰三角形的性质得出∠OAE=∠E,进而得出∠P AB=∠OAE,由圆周角定理得出∠BAE=∠BAO+∠OAE=90°,进而得出∠BAO+∠P AB=∠P AO=90°,即可证明P A是⊙O的切线;(2)延长BO交⊙O于点E,连接AE,DE,利用勾股定理列方程求出⊙O的半径为3,进而得出OA=3,OP=5,BE=6,再证明△P AO∽△EDB,利用相似三角形的性质即可求出BD的长度.【解答】(1)证明:如图1,延长BO交⊙O于点E,连接AE,∵AB2=PB•BD,∴,∵∠ABP=∠ABD,∴△PBA∽△ABD,∴∠P AB=∠ADB,∵∠ADB=∠E,∴∠P AB=∠E,∵OA=OE,∴∠OAE=∠E,∴∠P AB=∠OAE,∵BE为直径,∴∠BAE=∠BAO+∠OAE=90°,∴∠BAO+∠P AB=∠P AO=90°,∵OA是半径,∴P A是⊙O的切线;(2)解:如图2,延长BO交⊙O于点E,连接AE,DE,∵P A=2PB=4,∴PB=2,设OA=OB=x,则OP=x+2,∵∠P AO=90°,∴P A2+AO2=OP2,即42+x2=(x+2)2,解得:x=3,∴OA=3,OP=2+3=5,BE=3+3=6,∵△PBA∽△ABD,∴∠P=∠BAD,∵∠BAD=∠BED,∴∠P=∠BED,∵BE为直径,∴∠BDE=90°,∴∠P AO=∠EDB=90°,∴△P AO∽△EDB,∴,即,∴BD=.3.如图,在⊙O中,直径AB与弦CD相交于点H,点B是弧CD的中点,过点A作AE∥CD,交射线DO于点E,DE与⊙O交于点F,BF与CD交于点G.(1)求证:AE是⊙O的切线.(2)已知AO=5,AE=,求BG的长.【分析】(1)利用垂径定理的推论得到AB⊥CD,利用平行线的性质和圆的切线的判定定理解答即可;(2)过点F作FM⊥AB于点M,利用勾股定理和相似三角形的判定与性质求出线段OE,OM,MF的长,利用全等三角形的判定与性质求得线段BH的长,利用勾股定理和相似三角形的判定与性质得出比例式即可求得结论.【解答】(1)证明:∵点B是弧CD的中点,AB为⊙O的直径,∴AB⊥CD,∵AE∥CD,∴AE⊥OA.∵OA为⊙O的半径,∴AE是⊙O的切线;(2)解:过点F作FM⊥AB于点M,如图,∵AO=5,AE=,AE⊥OA,∴OE==.∵AE⊥AB,FM⊥AB,∴FM∥AE,∴△OMF∽△OAE,∴,∴,∴OM=3,MF=4.∴BM=OB+OM=5+3=8,∴BF==4.在△OFM和△ODH中,,∴△OFM≌△ODH(AAS),∴OM=OH=3,∴BH=OB﹣OH=2.∵FM⊥AB,AB⊥CD,∴CD∥FM,∴△BGH∽△BFM,∴,∴,∴BG=.4.如图,AB是⊙O的直径,C、D是⊙O上两点,且,过点D的直线DE⊥AC交AC的延长线于点E,交AB的延长线于点F,连接AD、OE交于点G.(1)求证:DE是⊙O的切线;(2)若,⊙O的半径为2,求阴影部分的面积.【分析】(1)连接OD,证明DE是⊙O的切线,关键是证明OD⊥DE;(2)连接BD,根据(1)中OD∥AE得△OGD∽△AEG,从而求出AE的长,再根据△AED∽△ADB求出AD的长,再利用三角函数求出DF的长,利用S阴影=S△DOF﹣S扇形DOB求出阴影部分的面积.【解答】(1)证明:如图所示,连接OD,∵,∴∠CAD=∠DAB,∵OA=OD,∴∠DAB=∠ODA,∴∠CAD=∠ODA,∴OD//AE,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图所示,连接BD,∵OD//AE,∴△OGD∽△EGA,∴,∵,⊙O的半径为2,∴,∴AE=3.∵AB是⊙O的直径,DE⊥AE,∴∠AED=∠ADB=90°,∵∠CAD=∠DAB,∴△AED∽△ADB,∴,即,∴,在Rt△ADB中,,∴∠DAB=30°,∴∠EAF=60°,∠DOB=60°,∴∠F=30°,∵OD=2,∴,∴.5.某数学小组在研究三角形的内切圆时,遇到了如下问题:如图①,已知等腰△ABC的底边AB为12,底边上的高CD为8,如何在这个等腰三角形中画出其内切圆?小红同学经过计算,在高CD上截取DO=3,以点O为圆心,以3为半径作的圆即为所求.(1)小红的方法是否正确?如果正确,给出理由;如果不正确,请给出你的方法.(2)如图②,在图①的基础上,以AB为边作一个正方形ABEF,连接FC并延长与BE 交于点G,则BG:GE的值为.【分析】(1)过点O作OH⊥AC于点H,由等腰三角形的性质得出AD=BD=6,OC=5,由勾股定理得出AC=10,证明△CHO∽△CDA,,由相似三角形的性质得出OH=3,继而得出AC是⊙O的切线,同理,BC是⊙O的切线,AB是⊙O的切线,即可得出⊙O是等腰△ABC的内切圆;(2)延长DC交FE于点M,由正方形的性质得出BE=AB=12,EF∥AB,由CA=CB,CD⊥AB,得出AD=BD=6,DM⊥EF,继而得出FM=ME=6,DM=BE=12,由三角形中位线的性质得出GE=8,进而得出BG=4,即可求出BG:GE的值.【解答】解:(1)小红的方法正确,理由如下:如图①,过点O作OH⊥AC于点H,∵等腰△ABC的底边AB为12,底边上的高CD为8,OD=3,∴AD=BD=6,OC=CD﹣OD=8﹣3=5,∴AC===10,∵∠CHO=∠CDA=90°,∠HCO=∠DCA,∴△CHO∽△CDA,∴,即,∴OH=3,∵OH⊥AC,∴AC是⊙O的切线,同理,BC是⊙O的切线,∵OD⊥AB,OD=3,∴AB是⊙O的切线,∴⊙O是等腰△ABC的内切圆;(2)如图②,延长DC交FE于点M,∵四边形ABEF是正方形,AB=12,∴BE=AB=12,EF∥AB,∵CA=CB,CD⊥AB,∴AD=BD=6,DM⊥EF,∴FM=ME=6,DM=BE=12,∴MC是△EFG的中位线,MC=DM﹣CD=12﹣8=4,∴GE=2CM=2×4=8,∴BG=BE﹣GE=12﹣8=4,∴,故答案为:.6.如图,AB是⊙O的直径,CD是一条弦.过点A作DC延长线的垂线,垂足为点E.连接AC,AD.(1)证明:△ABD∽△ACE.(2)若,BD=5,CD=9.①求EC的长.②延长CD,AB交于点F,点G是弦CD上一点,且∠CAG=∠F,求CG的长.【分析】(1)利用圆内接四边形的性质求得∠ACD+∠ABD=180°,推出∠ABD=∠ACE,即可证明;(2)①由△ABD∽△ACE,推出AE=3CE,在Rt△ADE中,利用勾股定理求解即可;②证明△EAG∽△EDA,利用三角形的性质求解即可.【解答】(1)证明:∵AB是⊙O的直径,AE⊥CE,∴∠AEC=∠ADB=90°,∵四边形ABDC是圆内接四边形,∴∠ACD+∠ABD=180°,又∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∴△ABD∽△ACE;(2)解:①在Rt△BDA中,AB=5,BD=5,∴AD==15,∵△ABD∽△ACE,∴,即,∴AE=3CE,在Rt△ADE中,AD2=AE2+DE2,∴152=(3CE)2+(9+CE)2,解得:CE=﹣(舍去)或CE=3;∴EC的长为3;②∵△ABD∽△ACE,∴∠BAD=∠CAE,∵∠CAG=∠F,∠EAG=∠CAE+∠CAG,∠EDA=∠BAD+∠F,∴∠EAG=∠EDA,∴△EAG∽△EDA,∴,∴AE2=GE•ED,即AE2=(EC+CG)•ED,∵CE=3,∴AE=3CE=9,∴92=(3+CG)×12,∴CG=.7.如图,△ABC内接于⊙O,BC是直径,AD平分∠BAC交于点D,EF切⊙O于D,BF ⊥AB交EF于F.(1)求证:四边形BCEF为平行四边形.(2)若BF=,AB=4,求AE的长.【分析】(1)连接OD,证明BF∥AE,BC∥EF,可得结论;(2)根据平行四边形的性质可得CE=BF=,如图,连接OD,过点C作CG⊥EF于G,证明四边形CODG是正方形,△ABC∽△GCE,列比例式可得AE的长.【解答】(1)证明:连接OD,∵BF⊥AB,∴∠ABF=90°,∵BC是⊙O的直径,∴∠BAC=90°,∴∠BAC+∠ABF=180°,∴BF∥AE,∵AD平分∠BAC,∴∠BAD=∠CAD,∴=,∴BC⊥OD,∵EF切⊙O于D,∴EF⊥OD,∴BC∥EF,∴四边形BCEF为平行四边形;(2)解:由(1)知:四边形BCEF为平行四边形,∴CE=BF=,如图,连接OD,过点C作CG⊥EF于G,∴∠COD=∠ODG=∠CGD=90°,∵OC=OD,∴四边形CODG是正方形,∴CG=OC,∠BCG=90°,∴∠ACB+∠ECG=90°,∵∠ACB+∠ABC=90°,∴∠ECG=∠ABC,∵∠CGE=∠BAC=90°,∴△ABC∽△GCE,∴=,设⊙O的半径是r,则BC=2r,∴=,∴r=(负值舍),∴BC=2,∴AC===2,∴AE=AC+CE=2+=.8.如图,AB为⊙O的直径,四边形ABCD内接于⊙O.点D为的中点,对角线AC,BD 交于点E,⊙O的切线AF交BD的延长线于点F,切点为A.(1)求证:AE=AF;(2)若AB=4,BF=5,求sin∠BDC的值.【分析】(1)由点D为的中点,可得∠CBD=∠ABD,根据AB为⊙O的直径,有∠AEF=∠BEC=90°﹣∠CBD,又AF是⊙O的切线,AB为⊙O的直径,有∠F=90°﹣∠ABD,即得∠AEF=∠F,AE=AF;(2)证明△ADF≌△ADE,得AE=AF,DE=DF,由勾股定理求得AF,由三角形面积公式求得AD,进而求得DE,BE,再证明△BEC∽△AED,得BC,进而求得sin∠BAC 便可.【解答】(1)证明:∵点D为的中点,∴=,∴∠CBD=∠ABD,∵AB为⊙O的直径,∴∠ACB=90°,∴∠AEF=∠BEC=90°﹣∠CBD,∵AF是⊙O的切线,AB为⊙O的直径,∴∠BAF=90°,∴∠F=90°﹣∠ABD,∴∠AEF=∠F,∴AE=AF;(2)∵AF是⊙O的切线,∴∠F AB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠F AD=90°,∴∠ABD=∠F AD,∵∠ABD=∠CAD,∴∠F AD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF=AE,DF=DE,在Rt△ADE中,AB=4,BF=5,∴AF==3,∴AE=AF=3,∵S△ABF=AB•AF=BF•AD,∴AD===,∴DE===,∴BE=BF﹣2DE=,∵∠AED=∠BEC,∠ADE=∠BCE=90°,∴△BEC∽△AED,∴=,∴BC==,∴sin∠BAC==,∵∠BDC=∠BAC,在Rt△ACB中,∠ACB=90°∴sin∠BDC=.9.如图,在矩形ABCD中,以AB的中点O为圆心,以OA为半径作半圆,连接OD交半圆于点E,在上取点F,使=,连接BF,DF.(1)求证:DF与半圆相切;(2)如果AB=10,BF=6,求矩形ABCD的面积.【分析】(1)连接OF,证明△DAO≌△DFO(SAS),可得∠DAO=90°=∠DFO,即可得DF与半圆O相切;(2)连接AF,证明△AOD∽△FBA,可得=,DO=,在Rt△AOD中,AD==,即可得矩形ABCD的面积是.【解答】(1)证明:连接OF,如图:∵=,∴∠DOA=∠FOD,∵OA=OF,OD=OD,∴△DAO≌△DFO(SAS),∴∠DAO=∠DFO,∵四边形ABCD是矩形,∴∠DAO=90°=∠DFO,∴OF⊥DF,又OF是半圆O的半径,∴DF与半圆O相切;(2)解:连接AF,如图:∵AO=FO,∠DOA=∠DOF,∴DO⊥AF,∵AB为半圆直径,∴∠AFB=90°,∴BF⊥AF,∴DO∥BF,∴∠AOD=∠ABF,∵∠OAD=∠AFB=90°,∴△AOD∽△FBA,∴=,即=,∴DO=,在Rt△AOD中,AD===,∴矩形ABCD的面积为AD•AB=×10=,答:矩形ABCD的面积是.10.如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P在OE延长线上,且满足∠PCA=∠ABC,连接P A,PC,AF.(1)求证:PC是⊙O的切线;(2)证明:PE•OD=DE•OE.【分析】(1)连接OC,根据等腰三角形性质及圆周角定理可得∠PCO=90°,然后由切线的判定定理可得结论;(2)连接EC,FC,OC,证明Rt△ECD∽Rt△CFD,得出CD2=DE•DF,继而得出CD2=DE•OD+DE•OE,同理得出CD2=OD•DE+OD•PE,进而得出DE•OD+DE•OE=OD•DE+OD•PE,即可证明PE•OD=DE•OE.【解答】证明:(1)如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵∠PCA=∠ABC,∴∠PCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°,∴∠ACO+∠PCA=90°,即∠PCO=90°,∵OC是圆O的半径,∴PC是圆O的切线;(2)如图2,连接EC,FC,OC,∵EF是直径,∴∠ECF=90°,∴∠CEF+∠CFE=90°,∵D是AC的中点,EF是直径,∴AC⊥EF,∴∠CEF+∠ECD=90°,∠EDC=∠CDF=90°,∴∠ECD=∠CFD,∴Rt△ECD∽Rt△CFD,∴,∴CD2=DE•DF,∴CD2=DE(OD+OF)=DE(OD+OE)=DE•OD+DE•OE,同理Rt△PCD∽Rt△COD,∴,∴CD2=OD•PD=OD(PE+DE)=OD•DE+OD•PE,∴DE•OD+DE•OE=OD•DE+OD•PE,∴PE•OD=DE•OE.11.如图,在Rt△ABC中,∠ACB=90°,以AB为直径作⊙O,过点B的切线交AC延长线于点D,点E为上一点,且BC=EC,连接BE交AC于点F.(1)求证:BC平分∠DBE;(2)若AB=2,tan E=,求EF的长.【分析】(1)因为BD是⊙O的切线,所以∠∠CBD=∠A,因为BC=EC,所以∠E=∠EBC,由同弧所对的圆周角相等可得,∠A=∠E,所以∠EBC=∠CBD,即BC平分∠DBE.(2)由(1)可知,tan E=tan A=tan∠EBC=,因为AB为⊙O的直径,所以∠ACB=90°,所以tan A==,即AC=2BC,由AB=2结合勾股定理可得,BC2+AC2=AB2,即BC2+4BC2=AB2,解得BC=2,AC=4,又因为tan∠EBC==,所以CF=1,AF=3,BF=,易证△ABF∽△ECF,所以AF:EF=BF:CF,即3:EF=:1,解之即可.【解答】(1)证明:∵BD是⊙O的切线,∴∠∠CBD=∠A,∵BC=EC,∴∠E=∠EBC,∵∠A=∠E,∴∠EBC=∠CBD,即BC平分∠DBE.(2)解:由(1)知,∠A=∠E=∠EBC,∴tan E=tan A=tan∠EBC=,∵AB为⊙O的直径,∴∠ACB=90°,∴tan A==,即AC=2BC,∵AB=2,∴BC2+AC2=AB2,即BC2+4BC2=AB2,∴BC=2,AC=4,∵tan∠EBC==,∴CF=1,AF=3,BF=,∵∠A=∠E,∠ABF=∠ECF,∴△ABF∽△ECF,∴AF:EF=BF:CF,即3:EF=:1,解得EF=.12.如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠F AC=∠BDC.(1)求证:AF是⊙O的切线;(2)若BC=6,sin B=,求⊙O的半径及OD的长.【分析】(1)作OH⊥F A,垂足为H,连接OE,利用直角三角形斜边上中线的性质得AD =CD,再通过导角得出AC是∠F AB的平分线,再利用角平分线的性质可得OH=OE,从而证明结论;(2)根据BC=6,sin B=,可得AC=8,AB=10,设⊙O的半径为r,则OC=OE=r,利用Rt△AOE∽Rt△ABC,可得r的值,再利用勾股定理求出OD的长.【解答】(1)证明:如图,作OH⊥F A,垂足为H,连接OE,∵∠ACB=90°,D是AB的中点,∴CD=AD=,∴∠CAD=∠ACD,∵∠BDC=∠CAD+∠ACD=2∠CAD,又∵∠F AC=,∴∠F AC=∠CAB,即AC是∠F AB的平分线,∵点O在AC上,⊙O与AB相切于点E,∴OE⊥AB,且OE是⊙O的半径,∴OH=OE,OH是⊙O的半径,∴AF是⊙O的切线;(2)解:如图,在△ABC中,∠ACB=90°,BC=6,sin B=,∴可设AC=4x,AB=5x,∴(5x)2﹣(4x)2=62,∴x=2,则AC=8,AB=10,设⊙O的半径为r,则OC=OE=r,∵Rt△AOE∽Rt△ABC,∴,即,∴r=3,∴AE=4,又∵AD=5,∴DE=1,在Rt△ODE中,由勾股定理得:OD=.13.如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【分析】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.【解答】(1)证明:∵AD与⊙O相切于点A,∴∠DAO=90°,∴∠D+∠ABD=90°,∵AB是⊙O的直径,∴∠AEB=90°,∴∠BEC=180°﹣∠AEB=90°,∴∠ACB+∠EBC=90°,∵AB=AC,∴∠ACB=∠ABC,∴∠D=∠EBC;(2)解:∵CD=2BC,∴BD=3BC,∵∠DAB=∠CEB=90°,∠D=∠EBC,∴△DAB∽△BEC,∴==3,∴AB=3EC,∵AB=AC,AE=3,∴AE+EC=AB,∴3+EC=3EC,∴EC=1.5,∴AB=3EC=4.5,∴⊙O的半径为2.25.14.如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC的角平分线AF交BC于点D,交⊙O于点E,连接BE和BF,∠F=∠ABE.(1)求证:BF是⊙O的切线;(2)若AC=5,AB=13,求CD的长.【分析】(1)由圆周角定理得出∠ACB=∠AEB=90°,进而得出∠F+∠FBE=90°,由∠F=∠ABE,得出∠ABE+∠FBE=90°,即∠ABF=90°,即可证明BF是⊙O的切线;(2)连接OE交BC于点G,由∠ACB=∠AEB=90°,AC=5,AB=13,得出BC=12,,由圆周角定理得出,进而得出OE垂直平分BC,即可求出,OG是△ABC的中位线,得出,求出EG=4,由∠CAE=∠CBE,得出tan∠CAD=tan∠EBG,得出,即可求出.【解答】(1)证明:如图1,∵AB是直径,∴∠ACB=∠AEB=90°,∴∠F+∠FBE=90°,∵∠F=∠ABE,∴∠ABE+∠FBE=90°,即∠ABF=90°,∴AB⊥BF,∵AB是⊙O的直径,∴BF是⊙O的切线;(2)解:如图2,连接OE交BC于点G,∵∠ACB=∠AEB=90°,AC=5,AB=13,∴BC===12,,∵AF平分∠BAC,∴∠CAE=∠BAE,∴,∴OE垂直平分BC,∴,OG是△ABC的中位线,∴,∴EG=OE﹣OG=﹣=4,∵∠CAE=∠CBE,∴tan∠CAD=tan∠EBG,∴,即,∴.15.如图,在△ABC中,AD平分∠BAC交BC于点D,以AD为直径作⊙O交AC于点F,点B恰好落在⊙O上,过D点作⊙O的切线DE交AC于点E,连接DF.(1)求证:∠FDE=∠CDE;(2)若AB=12,tan∠C=,求线段DE的长.【分析】(1)由切线的性质及圆周角定理得出∠ADF+∠FDE=90°,∠ADB+∠CDE=90°,证明△F AD≌△BAD,得出∠ADF=∠ADB,即可证明∠FDE=∠CDE;(2)由解直角三角形得出BC=16,由勾股定理得出AC=20,由全等三角形的性质得出AF=AB=12,进而得出CF=8,由解直角三角形得出DF=6,进而得出BD=DF=6,由勾股定理得出AD=6,证明△EAD∽△DAB,由相似三角形的性质得出AE=15,再利用勾股定理即可求出DE=3.【解答】(1)证明:∵DE是⊙O的切线,AD为直径,∴AD⊥DE,∴∠ADF+∠FDE=90°,∠ADB+∠CDE=90°,∵AD是直径,∴∠AFD=∠ABD=90°∵AD平分∠BAC,∴∠F AD=∠BAD,在△F AD和△BAD中,,∴△F AD≌△BAD(AAS),∴∠ADF=∠ADB,∴∠FDE=∠CDE;(2)解:在Rt△ABC中,AB=12,tan∠C=,∴BC===16,∴AC===20,∵△F AD≌△BAD,∴AF=AB=12,∴CF=AC﹣AF=20﹣12=8,在Rt△CDF中,DF=CF•tan∠C=8×=6,∴BD=DF=6,∴AD===6,∵∠ABD=∠ADE=90°,∠EAD=∠DAB,∴△EAD∽△DAB,∴,即,∴AE=15,∴DE===3.16.如图,以△ABC的一边AB为直径作⊙O,交BC于点D,交AC于点E,点D为BE的中点.(1)试判断△ABC的形状,并说明理由;(2)若直线l切⨀O于点D,与AC及AB的延长线分别交于点F、点G.∠BAC=45°,求的值.【分析】(1)连接AD,由AB为⊙O的直径可得出AD⊥BC,由点D为弧BE的中点利用圆周角定理可得出∠BAD=∠DAC,利用等角的余角相等可得出∠ABD=∠ACD,进而可证出△ABC为等腰三角形;(2)连接OD,则OD⊥GF,由OA=OD可得出∠ODA=∠BAD=∠DAC,利用“内错角相等,两直线平行”可得出OD∥AC,根据平行线的性质可得出=、∠GOD =∠BAC=45°,根据等腰直角三角形的性质可得出GO=DO=BO,进而可得出===.【解答】解:(1)△ABC是等腰三角形,理由如下:连接AD,如图1所示.∵AB为⊙O的直径,∴AD⊥BC.∵点D为弧BE的中点,∴=,∴∠BAD=∠DAC,∴∠ABD=∠ACD,∴△ABC为等腰三角形.(2)连接OD,如图2所示.∵直线l是⊙O的切线,点D是切点,∴OD⊥GF.∵OA=OD,∴∠ODA=∠BAD=∠DAC,∴OD∥AC,∴=,∠GOD=∠BAC=45°,∴△GOD为等腰直角三角形,∴GO=DO=BO,∴===.∴=.17.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.求证:(1)BC是⊙O的切线;(2)CD2=CE•CA.【分析】(1)连接OD,证DO∥AB,得出∠ODB=90°即可得出结论;(2)连接DE,证△CDE∽△CAD,根据线段比例关系即可得出结论.【解答】证明:(1)连接OD,∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,∴∠DAO=∠ADO,∴DO∥AB,而∠B=90°,∴∠ODB=90°,∵OD是⊙O的半径,∴BC是⊙O的切线;(2)连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴,∴CD2=CE•CA.18.如图,AB是⊙O的直径,点C,D在⊙O上,且弧CD=弧CB,过点C作CE∥BD,交AB的延长线于点E,连接AC交BD于F.(1)求证:CE是⊙O的切线;(2)过点C作CH⊥AE于H点,CH交BD于M,若CA=CE=6,求CH和BF的长.【分析】(1)连接OC,由垂径定理的推论得出OC⊥BD,由CE∥BD,得出OC⊥CE,即可证明CE是⊙O的切线;(2)连接OC,BC,由等腰三角形的性质得出∠CAB=∠E,由圆周角定理得出∠BOC =2∠E,由OC⊥CE,得出∠BOC+∠E=90°,求出∠E=30°,进而求出CH=3,EH =3,由等腰三角形的性质得出∠CAB=30°,AE=6,由圆周角定理得出∠ACB =90°,由解直角三角形求出AB=4,由CE∥BD,得出,代入计算即可求出BF=4,得出答案.【解答】(1)证明:如图1,连接OC,∵弧CD=弧CB,OC是半径,∴OC⊥BD,∵CE∥BD,∴OC⊥CE,∵OC是半径,∴CE是⊙O的切线;(2)解:如图2,连接OC,BC,∵CA=CE=6,∴∠CAB=∠E,∵∠BOC=2∠BAC,∴∠BOC=2∠E,∵OC⊥CE,∴∠BOC+∠E=90°,∴2∠E+∠E=90°,∴∠E=30°,∵CH⊥AE,∴CH=CE=×6=3,EH===3,∵CA=CE=6,CH⊥AE,∴∠CAB=∠E=30°,AE=2EH=6,∵AB为直径,∴∠ACB=90°,∴cos∠CAB=,∴AB====4,∵CE∥BD,∴,即,∴BF=4,∴CH的长为3,BF的长为4.19.如图,⊙O上有A,B,C三点,AC是直径,点D是的中点,连接CD交AB于点E,点F在AB延长线上且FC=FE.(1)若∠A=40°,求∠DCB的度数;(2)求证:CF是⊙O的切线;(3)若,BE=6,求⊙O的半径长.【分析】(1)由圆周角定理得出∠ABC=90°,由∠A=40°,得出∠ACB=50°,由点D是的中点,即可求出∠DCB=∠ACB=25°;(2)由圆周角定理得出∠BCD+∠CEF=90°,由点D是的中点,得出∠DCB=∠DCA,由等腰三角形的性质得出∠FCE=∠FEC,进而得出∠ACF=90°,即可证明CF 是⊙O的切线;(3)由解直角三角形得出=,设BC=4x,则CF=5x,BF=5x﹣6,由勾股定理得出方程(4x)2+(5x﹣6)2=(5x)2,解方程求出x=3,得出BC=12,CF=15,BF=9,再证明△CFB∽△AFC,利用相似三角形的性质求出AC=20,即可求出⊙O的半径长为10.【解答】(1)解:∵AC是直径,∴∠ABC=90°,∵∠A=40°,∴∠ACB=90°﹣∠A=90°﹣40°=50°,∵点D是的中点,∴∠DCB=∠DCA=∠ACB=×50°=25°;(2)证明:∵AC是直径,∴∠ABC=90°,∴∠BCD+∠CEF=90°,∵点D是的中点,∴∠DCB=∠DCA,∵FC=FE,∴∠FCE=∠FEC,∴∠DCA+∠FCE=90°,即∠ACF=90°,∴AC⊥CF,∵AC是直径,∴CF是⊙O的切线;(3)解:在Rt△CBF中,sin∠F=,∵,BE=6,∴=,∴设BC=4x,则CF=5x,BF=5x﹣6,∵BC2+BF2=CF2,∴(4x)2+(5x﹣6)2=(5x)2,解得:x=3或(不符合题意,舍去),∴BC=12,CF=15,BF=9,∵∠CBF=∠ACF=90°,∠CFB=∠AFC,∴△CFB∽△AFC,∴,即,∴AC=20,∴OA=AC=×20=10,∴⊙O的半径长为10.20.已知:如图,AB、AC是⊙O的两条弦,AB=AC,点M、N分别在弦AB、AC上,且AM=CN,AM<AN,联结OM、ON.(1)求证:OM=ON;(2)当∠BAC为锐角时,如果AO2=AM•AC,求证:四边形AMON为等腰梯形.【分析】(1)过点O作OE⊥AB于点E,OF⊥AC于点F,利用圆心角,弦,弧,弦心距之间的关系定理可得OE=OF,AE=CF=AB,利用等式的性质可得EM=FN,再利用全等三角形的判定与性质解答即可;(2)连接OB,利用相似三角形的判定与性质得到∠AOM=∠B,利用同圆的半径线段,等腰三角形的性质和角平分线性质定理的逆定理得到∠AOM=∠OAC,则得OM∥ON,利用等腰梯形的定义即可得出结论.【解答】证明:(1)过点O作OE⊥AB于点E,OF⊥AC于点F,如图,∵AB=AC,OE⊥AB,OF⊥AC,∴OE=OF,AE=CF=AB.∵AM=CN,∴AE﹣AM=FC﹣CN,即:EM=FN.在△OEM和△OFN中,,∴△OEM≌△OFN(SAS).∴OM=ON;(2)连接OB,如图,∵AO2=AM•AC,AC=AB,∴AO2=AM•AB,∴.∵∠MAO=∠OAB,∴△OAM∽△BAO,∴∠AOM=∠B.∵OA=OB,∴∠OAB=∠B,∴∠OAB=∠AOM,∴OM=AM.∵OM=ON,∴AM=ON.∵OE=OF,OE⊥AB,OF⊥AC,∴∠OAB=∠OAC,∴∠AOM=∠OAC,∴OM∥AN.∵AM<AN,∴OM<AN,∴四边形AMON为梯形,∵AM=ON,∴四边形AMON为等腰梯形.21.如图,在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O的直径.【分析】(1)连接OE,利用圆的切线的性质定理,平行线的判定与性质,同圆的半径相等和等腰三角形的判定定理解答即可;(2)连接BE,利用直径所对的圆周角为直角,直角三角形的边角关系定理和相似三角形的判定与性质解答即可.【解答】(1)证明:连接OE,如图,∵AC是⊙O的切线,∴OE⊥AC.∵AC⊥BC,∴OE∥BC,∴∠OED=∠F.∵OD=OE,∴∠ODE=∠OED,∴∠BDE=∠F,∴BD=BF;(2)解:连接BE,如图,∵∠BDE=∠F,∴tan∠BDE=tan∠F=2,∵CF=1,tan∠F=,∴CE=2.∵BD是⊙O直径,∴∠BED=90°,∴BE⊥EF.∵EC⊥BF,∴△ECF∽△BCE,∴,∴EC2=BC•CF.∴BC=4.∴BF=BC+CF=5.∴BD=BF=5,即⊙O的直径为5.22.如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.(1)求证:△CED∽△BAD;(2)当DC=2AD时,求CE的长.【分析】(1)由对顶角的性质,圆周角定理得出∠CDE=∠BDA,∠A=∠E,即可证明△CED∽△BAD;(2)过点D作DF⊥EC于点F,由等边三角形的性质得出∠A=60°,AC=AB=6,由DC=2AD,得出AD=2,DC=4,由相似三角形的性质得,得出EC=3DE,由含30°角的直角三角形的性质得出DE=2EF,设EF=x,则DE=2x,DF=x,EC=6x,进而得出FC=5x,利用勾股定理得出一元二次方程(x)2+(5x)2=42,解方程求出x的值,即可求出EC的长度.【解答】(1)证明:如图1,∵∠CDE=∠BDA,∠A=∠E,∴△CED∽△BAD;(2)解:如图2,过点D作DF⊥EC于点F,∵△ABC是边长为6等边三角形,∴∠A=60°,AC=AB=6,∵DC=2AD,∴AD=2,DC=4,∵△CED∽△BAD,∴,∴EC=3DE,∵∠E=∠A=60°,DF⊥EC,∴∠EDF=90°﹣60°=30°,∴DE=2EF,设EF=x,则DE=2x,DF=x,EC=6x,∴FC=5x,在Rt△DFC中,DF2+FC2=DC2,∴(x)2+(5x)2=42,解得:x=或﹣(不符合题意,舍去),∴EC=6x=.23.如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AE=12,,求⊙O的半径和EF的长.【分析】(1)连接OE,根据直径所对的圆周角是直角可得∠AEB=90°,从而可得∠AEO+∠OEB=90°,再利用角平分线和等腰三角形的性质可得∠CAE=∠AEO,从而可得∠BEF=∠AEO,然后可得∠BEF+∠OEB=90°,从而求出∠OEF=90°,即可解答;(2)利用(1)的结论可得∠BEF=∠EAO,从而可证△FEB∽△F AE,然后利用相似三角形的性质可求出BE的长,再在Rt△ABE中利用勾股定理求出AB的长,从而求出EF 的长,即可解答.【解答】(1)证明:连接OE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠AEO+∠OEB=90°,∵OA=OE,∴∠EAO=∠AEO,∵AE平分∠CAB,∴∠EAO=∠CAE,∴∠CAE=∠AEO,∵∠BEF=∠CAE,∴∠BEF=∠AEO,∴∠BEF+∠OEB=90°,∴∠OEF=90°,∵OE是⊙O的半径,∴EF是⊙O的切线;(2)解:∵∠BEF=∠AEO,∠EAO=∠AEO,∴∠BEF=∠EAO,∵∠F=∠F,∴△FEB∽△F AE,∴==,∴==,∴BE=6,∴AB===30,∴=,∴EF=20,∴⊙O的半径为15,EF的长为20.。

第24章 专题06 相似三角形的性质重难点专练(学生版)

第24章 专题06 相似三角形的性质重难点专练(学生版)

专题06 相似三角形的性质重难点专练第I 卷(选择题)一、单选题1.(2021·上海九年级专题练习)如图,在Rt ABC ∆中,90,BAC BA CA ∠=︒==D 为BC 边的中点,点E 是CA 延长线上一点,把CDE ∆沿DE 翻折,点C 落在C '处,EC '与AB 交于点F ,连接BC '.当43FA EA =时,BC '的长为( )AB .CD .第II 卷(非选择题)二、解答题2.(2021·上海中考真题)如图,在梯形ABCD 中,//,90,,AD BC ABC AD CD O ∠=︒=是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于E .(1)当点E 在边CD 上时,①求证:DAC OBC ∽;①若BE CD ⊥,求AD BC的值; (2)若2,3DE OE ==,求CD 的长.3.(2021·上海金山区·九年级二模)已知在①ABC 中,AB =AC=①BAC =120°,①ADE 的顶点D 在边BC 上,AE 交BC 于点F (点F 在点D 的右侧),①DAE =30°.(1)求证:①ABF ①①DCA ;(2)若AD =ED .①联结EC ,当点F 是BC 的黄金分割点(FC >BF )时,求ABF FEC S S.①联结BE ,当DF =1时,求BE 的长.4.(2021·上海崇明区·九年级二模)已知:如图,梯形ABCD 中,AD ①BC ,AB =DC ,点E 在下底BC 上,①AED =①B .(1)求证:CE •AD =DE 2; (2)求证:22CE ABADAE =.5.(2021·上海静安区·九年级二模)如图,已知半圆O 的直径AB =4,点P 在线段OA 上,半圆P 与半圆O 相切于点A ,点C 在半圆P 上,CO ①AB ,AC 的延长线与半圆O 相交于点D ,OD 与BC 相交于点E .(1)求证:AD •AP =OD •AC ;(2)设半圆P 的半径为x ,线段CD 的长为y ,求y 与x 之间的函数解析式,并写出定义域; (3)当点E 在半圆P 上时,求半圆P 的半径.6.(2021·上海松江区·九年级二模)如图,已知在①ABC 中,BC >AB ,BD 平分①ABC ,交边AC 于点D ,E 是BC 边上一点,且BE =BA ,过点A 作AG ①DE ,分别交BD 、BC 于点F 、G ,联结FE .(1)求证:四边形AFED 是菱形;(2)求证:AB 2=BG •BC ;(3)若AB =AC ,BG =CE ,联结AE ,求ADE ABCS S ∆∆的值.7.(2021·上海九年级专题练习)(1)问题发现如图1,①ABC与①ADE都是等腰直角三角形,且①BAC=①DAE=90°,直线BD,CE交于点F,直线BD,AC交于点G.则线段BD和CE的数量关系是,位置关系是;(2)类比探究如图2,在①ABC和①ADE中,①ABC=①ADE=α,①ACB=①AED=β,直线BD,CE交于点F,AC与BD相交于点G.若AB=kAC,试判断线段BD和CE的数量关系以及直线BD 和CE相交所成的较小角的度数,并说明理由;(3)拓展延伸如图3,在平面直角坐标系中,点M的坐标为(3.0),点N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转90得到线段MP,连接NP,OP.请直接写出线段OP长度的最小值及此时点N的坐标.8.(2021·上海九年级专题练习)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC ,AB 上,DQ AE ⊥于点O ,点G ,F 分别在边CD ,AB 上,GF AE ⊥.求证:FG AE =;(2)类比探究:如图(2),在矩形ABCD 中,23BC AB =将矩形ABCD 沿GF 折叠,使点A 落在BC 边上的点E 处,得到四边形EFGP ,EP 交CD 于点H ,连接AE 交GF 于点O .试探究GF 与AE 之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP ,若34BE BF =,GF =,求CP 的长. 9.(2021·上海九年级专题练习)如图,P 是正方形ABCD 边BC 上一个动点,线段AE 与AD 关于直线AP 对称,连接EB 并延长交直线AP 于点F ,连接CF .(1)如图(1),①BAP =20°,直接写出①AFE 的大小;(2)如图(2),求证:BE CF ;(3)如图(3),连接CE ,G 是CE 的中点,AB =1,若点P 从点B 运动到点C ,直接写出点G 的运动路径长.10.(2021·上海宝山区·九年级期中)如图,在ABCD 中,BAD ∠的平分线交边BC 于点E ,交DC 的延长线于点F ,点G 在AE 上,联结,GD GDF F ∠=∠(1)求证:2AD DG AF =⋅;(2)连结BG ,如果BG AE ⊥,且6,9AB AD ==,求AF 的长.11.(2021·上海九年级专题练习)已知:如图,四边形ABCD 是菱形,点M 、N 分别在边BC 、CD 上,联结AM 、AN 交对角线BD 于E 、F 两点,且MAN ABD ∠=∠. (1)求证:2AB BF DE =⋅;(2)若BE DN DE DC=,求证://EF MN .12.(2021·上海九年级专题练习)如图,在ABC 中,90ABC ∠=︒,3AB =,4BC =,过点A 作射线//AM BC ,点D 、E 是射线AM 上的两点(点D 不与点A 重合,点E 在点D 右侧),连接BD 、BE 分别交边AC 于点F 、G ,DBE C ∠=∠. (1)当1AD =时,求FB 的长(2)设AD x =,FG y =,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结DG 并延长交边BC 于点H ,如果DBH △是等腰三角形,请直接写出AD 的长.13.(2021·上海闵行区·九年级一模)如图,在矩形ABCD 中,2AB =,1AD =,点E 在边AB 上(点E 与端点A 、B 不重合),联结DE ,过点D 作DF DE ⊥,交BC 的延长线于点F ,连接EF ,与对角线AC 、边CD 分别交于点G 、H .设AE x =,DH y =.(1)求证:ADE CDF ∽△△,并求EFD ∠的正切值;(2)求y 关于x 的函数解析式,并写出该函数的定义域;(3)连接BG ,当BGE △与DEH △相似时,求x 的值.14.(2021·上海九年级专题练习)如图,已知正方形ABCD 中,BC =4,AC 、BD 相交于点O ,过点A 作射线AM ①AC ,点E 是射线AM 上一点,联结OE 交AB 边于点F .以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,联结DH .(1)求证:①HDO ①①EAO ;(2)设BF =x ,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域; (3)联结AG ,当①AEG 是等腰三角形时,求BF 的长.15.(2021·上海九年级专题练习)如图,已知ABC 是等边三角形,点D 、E 分别在边BC 、AC 上,且CD CE =,联结DE 并延长至点F ,使EF AE =,联结AF ,CF ,联结BE 并延长交CF 于点G .(1)求证:BC DF =;(2)若2BD DC =,求证:2GF EG =;16.(2021·上海九年级专题练习)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域; (3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.17.(2020·上海市位育初级中学九年级期中)如图,在边长为10的正方形ABCD 中,内接有六个大小相同的正方形,点P ,Q ,M ,N 是落在大正方形边上的小正方形的顶点,则每个小正方形的面积为_____.18.(2021·上海)如图1,在Rt ABC 中,90,,C AC BC D ︒∠==是AB 边上一点,E 是在AC 边上的一个动点(与点A C 、不重合),,DF DE DF ⊥与射线BC 相交于点F . (1)如图2,如果点D 是边AB 的中点,求证:DE DF =;(2)如果:AD DB k =,求:DE DF 的值;(3)如果6,:1:2AC BC AD DB ===,设,AE x BF y ==,求y 关于x 的函数关系式,并写出定义域;19.(2021·上海)如图,在Rt①ABC 中,①C=90°,AC=BC=6,点D 为AC 中点,点E 为边AB 上一动点,点F 为射线BC 上一动点,且①FDE=90°.(1)当DF//AB 时(图1),联结EF ,求DE :DF 值;(2)当点F 在线段BC 上时(图2),设AE=x ,BF=y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结CE ,若①CDE 为等腰三角形,求BF 的长.20.(2021·上海)如图.已知在ABC ∆中.90,5,3ACB AB BC ︒∠===,点D 是边AB 上任意一点.连接DC ,过点C 作CE CD ⊥,垂足为点C ,连接DE ,使得EDC A ∠=∠,连接BE(1)求证:.AC BE BC AD ⋅=⋅(2)设AD x =,四边形BDCE 的面积为S ,求S 关于x 的函数解析式及x 的取值范围 (3)当14BDE ABC S S ∆∆=,求CD 的值. 21.(2020·上海上外附中九年级月考)已知直角三角形斜边上的高为12,且斜边上的高把斜边分成3:4两段,则斜边上的中线长是__________22.(2021·上海九年级专题练习)如图,直角梯形OABC 的直角顶点O 是坐标原点,边OA 、OC 分别在x 轴、y 轴的正半轴上,OA//BC ,D 是BC 上一点,BD=0.25OA=根号2,AB=3,①OAB=45°,E 、F 分别是线段OA 、AB 上的两动点,且始终保持①DEF=45°(1)直接写出D 点的坐标;(2)设OE x =,AF y =,试确定y 与x 之间的函数关系;(3)当AEF ∆是等腰三角形时,将AEF ∆沿EF 折叠,得到A EF '∆,求A EF '∆与五边形OEFBC 重叠部分的面积23.(2020·上海市西南模范中学九年级月考)在平面直角坐标系中,四边形AOBC 的顶点O 是坐标原点,点B 在x 轴的负半轴上,且CB x ⊥轴,点A 的坐标为()0,6,在OB 边上有一点P ,满足AP =(l )求P 点的坐标;(2)如果AOP 与APC △相似,且90PAC ∠=︒,求点C 的坐标.24.(2020·上海浦东新区·九年级月考)如图,梯形ABCD 中,AD//BC ,DC BC ⊥,且45B ∠=,1AD DC ==.点M 为边BC 上一动点,连接AM 并延长交射线DC 于点F ,作45FAE ∠=交射线BC 于点E 、交边DC 于点N ,联结EF .(1)当:1:4CM CB =时,求CF 的长;(2)连接AC ,求证:2AC CE CF =⋅(3)设CM x =,CE y =,求y 关于x 的函数关系式,并写出定义域.25.(2021·上海九年级专题练习)如图,在Rt①ABC 中,①B =90°,AB =2,BC =1,点D ,E 分别是边BC ,AC 的中点,连接DE .将①EDC 绕点C 按顺时针方向旋转,记旋转角为α. (1)①当α=0°时,AE BD = ; ①当α=180°时,AE BD= ; (2)试判断:当0°≤α<360°时,AE BD 的大小有无变化?请仅就图2的情况给出证明. (3)当①EDC 旋转至A 、B 、E 三点共线时,直接写出线段BD 的长.26.(2020·上海市青浦区第一中学)在四边形ABCD 中,AB BC ⊥,AD 平行于BC ,3AB =,2AD =,点P 在线段AB 上,联结PD ,过点D 作PD DC ⊥,与BC 交于点C ,设AP 的长为x .(1)当AP AD =时,求线段PC 的长;(2)设PDC ∆的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当APD ∆与DPC ∆相似时,求线段BC 的长.27.(2021·上海九年级专题练习)如图,在直角梯形ABCD 中,//AB DC ,①DAB =90°,AB =8,CD =5,BC(1)求梯形ABCD 的面积;(2)联结BD ,求①DBC 的正切值.28.(2021·上海九年级专题练习)已知:如图,点E 为□ABCD 对角线AC 上的一点,点F 在线段BE 的延长线上,且EF=BE ,线段EF 与边CD 相交于点G .(1)求证:DF //AC ;(2)如果AB=BE ,DG=CG ,联结DE 、CF ,求证:四边形DECF 是矩形.三、填空题29.(2021·上海九年级专题练习)如图,Rt ①ABC 中,AC =BC =3,D 为AB 中点,点E 在线段BC 上,且BE =2CE ,连接AE ,过点C 作CF ①AE ,垂足为F ,连接DF ,则DF 的长为_____.30.(2021·上海九年级专题练习)如图,等边①ABC 的边长为3,点D 在边AC 上,12AD =,线段PQ 在边BA 上运动,12PQ =, (1)若①ADQ ①①BPC ,则AQ =_____;(2)四边形PCDQ 面积的最大值为_____.31.(2021·上海九年级专题练习)如图,在ABC ∆中,AB BC =,AD BC ⊥于点D ,CE AB ⊥于点E ,点F 在DA 有延长线上,连接BF 交CE 延长线于点M ,tan 2DCA ∠=,:25:38BM MF =,若5EM =,则AF 的长为_____________.32.(2021·上海金山区·九年级一模)如图,在□ABCD 中,点E 在边BC 上,DE 交对角线AC 于F ,若2CE BE =,ABC ∆的面积等于15,那么FEC ∆的面积等于______.33.(2021·上海九年级一模)如图,在ABC 中,点D 是边BC 的中点,直线DF 交边AC 于点F ,交AB 的延长线于点E ,如果CF①CA=a①b ,那么BE①AE 的值为______.(用含a 、b 的式子表示)34.(2021·上海)如图,已知矩形纸片ABCD ,点E 在边AB 上,且1BE =,将CBE △沿直线CE 翻折,使点B 落在对角线AC 上的点F 处,联结DF ,如果点D,F,E 在同一直线上,则线段AE 的长为____.35.(2021·上海九年级专题练习)在Rt ABC ∆中,①C =90°,AC =2,BC =4, ,点,D E 分别是边BC 、AB 的中点,将BDE ∆绕着点B 旋转,点,D E 旋转后的对应点分别为点,D E '',当直线,D E ''经过点A 时,线段CD '的长为 ____________36.(2021·上海九年级专题练习)如图,AB 、CD 都是BD 的垂线,AB =4,CD =6,BD =14,P 是BD 上一点,联结AP 、CP ,所得两个三角形相似,则BP 的长是_____.37.(2021·上海九年级专题练习)如图,正方形纸片ABCD 的边长为4,E 是边CD 的中点,连接AE ,折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,则GE 的长为_____.38.(2021·上海)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,AB =E 为OC 上一点,2OE =,连接BE ,过点A 作AF BE ⊥于点F ,与BD 交于点G ,则EF 的长是______.39.(2021·上海九年级专题练习)如图,正方形ABCD 的对角线AC 上有一点E ,且4CE AE =,点F 在DC 的延长线上,连接EF ,过点E 作EG EF ⊥,交CB 的延长线于点G ,连接GF 并延长,交AC 的延长线于点P ,若10AB =,4CF =,则线段EP 的长是__________.40.(2020·上海上外附中九年级月考)如图,G 是ABC ∆的重心,延长BG 交AC 于点D ,延长CG 交AB 于点,,E P Q 分别是BCE ∆和BCD ∆的重心,则PQ BC=____________41.(2020·上海上外附中九年级月考)如图,P 是ABC ∆内一点,过点P 分别作直线平行于ABC ∆各边,形成三个小三角形面积分别为1233,12,27S S S ===,则ABC S ∆=__________42.(2020·上海上外附中九年级月考)如图,已知在ABC ∆中,60,CAB P ︒∠=为ABC ∆内一点且120,3,2APB APC AP BP ︒∠=∠===,则CP = ____________43.(2020·上海市西南模范中学九年级月考)已知,平行四边形ABCD 中,点E 是AB 的中点,在直线AD 上截取2AF FD =,连接EF ,EF 交AC 于G ,则AG AC=___________. 44.(2021·上海九年级专题练习)如图,在ABC 中,90ACB ∠=︒,AC BC =,点E 是边AC 上一点,以BE 为斜边往BC 侧作等腰Rt BEF △,连接,CF AF ,若6AB =,四边形ABFC 的面积为12,则AE =_________,AF =_________.45.(2021·上海)如图,在矩形ABCD 中, AB =3,BC =4,将矩形ABCD 绕点C 旋转,点A 、B 、D 的对应点分别为A’ 、B’、 D’,当A’ 落在边CD 的延长线上时,边A’ D’ 与边 AD 的延长线交于点F ,联结CF ,那么线段CF 的长度为____.46.(2021·上海九年级专题练习)如图,Rt①ABC 中,①BAC=90°,CE 平分①ACB ,点 D 在 CE 的延长线上,连接 BD ,过B 作BF①BC 交 CD 于点 F ,连接 AF ,若CF=2BD ,DE :CE=5:8 , BF =AF 的长为_________.47.(2021·上海九年级专题练习)如图,在矩形ABCD中,点E是边DC上一点,连结BE,将①BCE沿BE对折,点C落在边AD上点F处,BE与对角线AC交于点M,连结FM.若FM①CD,BC=4.则AF=_____48.(2021·上海)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕着点B顺时针旋转后得到矩形A'BC'D',点A的对应点A'在对角线AC上,点C、D分别与点C'、D'对应,A′D'与边BC交于点E,那么BE的长是_____.49.(2021·上海九年级专题练习)定义:如果三角形的两个内角①α与①β满足①α=2①β,那么,我们将这样的三角形称为“倍角三角形”.如果一个等腰三角形是“倍角三角形”,那么这个等腰三角形的腰长与底边长的比值为____.50.(2021·上海九年级专题练习)如图,在Rt①ABC中,①C=90°,AC=6,BC=8,点D、E分别是边BC、AB上一点,DE①AC,BD=,把①BDE绕着点B旋转得到①BD'E'(点D、E分别与点D',E'对应),如果点A,D'、E'在同一直线上,那么AE'的长为_____.。

相似三角形经典练习题

相似三角形经典练习题

相似三角形经典练习题一.选择题(共9小题)1.在直角三角形中,两直角边分别为3和4,则这个三角形的斜边与斜边上的高的比为( )A.B.C.D.2.如图,在Rt△ABC中,AD为斜边BC上的高,若S△CAD=3S△ABD,则AB:AC等于( )A.1:3B.1:4C.1:D.1:23.如图,在△ABC中,D,E分别是边AB,AC的中点,△ADE和四边形BCED的面积分别记为S1,S2,那么的值为( )A.B.C.D.4.如图,▱ABCD中,Q是CD上的点,AQ交BD于点P,交BC的延长线于点R,若DQ:CQ=4:3,则AP:PR=( )A.4:3 B.4:7 C.3:4 D.3:75.如图,△ADE∽△ACB,其中∠AED=∠B,那么能成立的比例式是( )A.B.C.D.6.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于( )A.B.C.D.7.如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC相似,则AE等于( )A.B.10C.或10D.以上答案都不对8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )A.B.C.D.9.如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的C′处,并且C′D∥BC,则CD的长是( )A.B.C.D.二.填空题(共11小题)10.a=4,b=9,则a、b的比例中项是 .11.在△ABC中,∠ACB=90°,CD⊥AB于点D,则下列说法正确的有 (填序号).①AC•BC=AB•CD;②AC2=AD•DB;③BC2=BD•BA;④CD2=AD•DB.12.如图,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,则AD= .13.如图,DE∥AC,BE:EC=2:1,AC=12,则DE= .14.如图,平行四边形ABCD中,E是BD上一点,AE的延长线与BC的延长线交于F,与CD交于G,若AE=4,EG=3,则EF= .15.如图,在平行四边形ABCD中,M、N为AB的三等分点,DM、DN分别交AC于P、Q两点,则AP:PQ:QC= .16.如图,若∠B=∠DAC,则△ABC∽ ,对应边的比例式是 .17.如图,将①∠BAD=∠C;②∠ADB=∠CAB;③AB2=BD•BC;④;⑤;⑥中的一个作为条件,另一个作为结论,组成一个真命题,则条件是 ,结论是 .(注:填序号)18.已知:AM:MD=4:1,BD:DC=2:3,则AE:EC= .19.如图,将三个全等的正方形拼成一个矩形ADHE,则:∠ABE+∠ACE+∠ADE等于 度.20.一张等腰三角形纸片,底边长为15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第 张.三.解答题(共10小题)21.如图,D,E分别是AC,AB上的点,.已知△ABC的面积为60cm2,求四边形BCDE的面积.22.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.23.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.24.平行四边形ABCD中,AB=28,E、F是对角线AC上的两点,且AE=EF=FC,DE交AB于点M,MF交CD于点N.求AM、CN的长.25.如图,A,B,D,E四点在⊙O上,AE,BD的延长线相交于点C,直径AE为8,OC=12,∠EDC=∠BAO.(1)求证:;(2)计算CD•CB的值,并指出CB的取值范围.26.已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC 于点E.(1)求的值;(2)若AB=a,FB=EC,求AC的长.27.如图△ABC中,边BC=60,高AD=40,EFGH是内接矩形,HG交AD于P,设HE=x,(1)求矩形EFGH的周长y与x的函数关系式;(2)求矩形EFGH的面积S与x的函数关系式.28.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O 开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么(1)设△POQ的面积为y,求y关于t的函数解析式;(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;(3)当t为何值时,△POQ与△AOB相似.29.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC 方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?30.如图,已知A、B两点的坐标分别为(40,0),(0,30),动点P从点A 开始在线段AO上以每秒2个长度单位的速度向原点O运动,动直线EF从x 轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)当t为何值时,△EOP与△BOA相似.相似三角形经典练习题20161115参考答案与试题解析一.选择题(共9小题)1.在直角三角形中,两直角边分别为3和4,则这个三角形的斜边与斜边上的高的比为( )A.B.C.D.【考点】勾股定理.【分析】本题主要利用勾股定理和面积法求高即可.【解答】解:∵在直角三角形中,两直角边分别为3和4,∴斜边为5,∴斜边上的高为=.(由直角三角形的面积可求得)∴这个三角形的斜边与斜边上的高的比为5:=.故选A.【点评】此题考查了勾股定理和利用面积法求高,此题考查了学生对直角三角形的掌握程度.2.如图,在Rt△ABC中,AD为斜边BC上的高,若S△CAD=3S△ABD,则AB:AC等于( )A.1:3B.1:4C.1:D.1:2【考点】相似三角形的判定与性质.【分析】根据已知及相似三角形的面积比等于相似比的平方,即可求解.【解答】解:∵∠ADC=∠ADB=90°,∠C=∠BAD∴△ACD∽△BAD∵S △CAD =3S △ABD ,且这两三角形高相等∴AB :AC=1:故选C .【点评】本题考查了三角形的面积公式,及相似三角形的判定及性质. 3.如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,△ADE 和四边形BCED 的面积分别记为S 1,S 2,那么的值为( )A .B .C .D .【考点】三角形中位线定理;相似三角形的判定与性质.【分析】根据已知可得到△ADE ∽△ABC ,从而可求得其面积比,则不难求得的值.【解答】解:根据三角形的中位线定理,△ADE ∽△ABC ,DE :BC=1:2,所以它们的面积比是1:4,所以=,故选C .【点评】本题考查了三角形的中位线定理和相似三角形的性质:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比. 4.(2012秋•桐城市校级月考)如图,▱ABCD 中,Q 是CD 上的点,AQ 交BD 于点P ,交BC 的延长线于点R ,若DQ :CQ=4:3,则AP :PR=( )A .4:3B .4:7C .3:4D .3:7【考点】相似三角形的判定与性质;平行四边形的性质.【分析】利用“平行线法”证得△ADQ∽△RCD,则对应边成比例:=;同理,证得△ADP∽△RBP,则=,即=.【解答】解:如图,∵在▱ABCD中,AD∥BC,且AD=BC,∴△ADQ∽△RCD,∴=,即=,∴RC=AD.同理,△ADP∽△RBP,则=,即=,∴==,即AP:PR=4:7.故选:B.【点评】本题考查了相似三角形的判定与性质,平行四边形的性质.平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.5.如图,△ADE∽△ACB,其中∠AED=∠B,那么能成立的比例式是( )A.B.C.D.【考点】相似三角形的性质.【分析】本题可根据相似三角形的性质求解,已知了∠AED和∠B对应相等,因此AD、AC是对应边,AE、AB是对应边,DE、BC是对应边,根据相似三角形的对应边的比例相等,即可判断哪个选项正确.【解答】解:∵△ADE∽△ACB,且∠AED=∠B∴AD、AE、DE的对应边分别是AC、AB、BC因而有故本题选A.【点评】本题主要考查了相似三角形的性质,找准相似三角形的对应边是解题的关键.6.(2008•安徽)如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于( )A.B.C.D.【考点】勾股定理;等腰三角形的性质.【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN==.故选:C.【点评】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.7.(2012秋•杞县校级期末)如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC 相似,则AE等于( )A.B.10C.或10D.以上答案都不对【考点】相似三角形的性质.【分析】△ADE与△ABC相似,则存在两种情况,即△AED∽△ACB,也可能是△AED∽△ABC,应分类讨论,求解.【解答】解:如图(1)当∠AED=∠C时,即DE∥BC则AE=AC=10(2)当∠AED=∠B时,△AED∽△ABC∴,即AE=综合(1),(2),故选C.【点评】会利用相似三角形求解一些简单的计算问题.8.(2009•新疆)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A.B.C.D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.9.(2006•大兴安岭)如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的C′处,并且C′D∥BC,则CD的长是( )A.B.C.D.【考点】翻折变换(折叠问题).【分析】先判定四边形C′DCE是菱形,再根据菱形的性质计算.【解答】解:设CD=x,根据C′D∥BC,且有C′D=EC,可得四边形C′DCE是菱形;即Rt△ABC中,AC==10,,EB=x;故可得BC=x+x=8;解得x=.故选A.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.二.填空题(共11小题)10.a=4,b=9,则a、b的比例中项是 ±6 .【考点】比例线段.【分析】根据比例中项的概念,设a、b的比例中项是c,则c2=ab,再利用比例的基本性质计算得到c的值.【解答】解;设a、b的比例中项是c,则c2=ab∵a=4,b=9,∴c2=ab=36,解得:c=±6;故填: 6或6.【点评】此题考查了比例中项,关键是理解比例中项的概念,当比例式中的两个内项相同时,即叫比例中项.11.在△ABC中,∠ACB=90°,CD⊥AB于点D,则下列说法正确的有 ①③④ (填序号).①AC•BC=AB•CD;②AC2=AD•DB;③BC2=BD•BA;④CD2=AD•DB.【考点】相似三角形的判定与性质.【分析】由在△ABC中,∠ACB=90°,CD⊥AB,易证得∠BDC=∠BCA=∠CDA=90°,又由∠A=∠A,∠B=∠B,根据有两角对应相等的三角形相似,即可证得△ACD∽△ABC,△BDC∽△BCA,则可得△ACD∽△CBD,根据相似三角形的对应边成比例,即可求得答案.【解答】解:∵在△ABC中,∠ACB=90°,CD⊥AB,∴AC•BC=AB•CD,即∴AC•BC=AB•CD,故①正确;∵△ABC中,∠ACB=90°,CD⊥AB于点D,∴BC2=BD•BA,故③正确;∴△ACD∽△CBD,∴,∴AC2=AD•AB,CD2=AD•DB,故②错误,④正确.故答案为:①③④.【点评】此题考查了相似三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用,注意对应线段的对应关系与比例变形.12.(2011春•武侯区校级期末)如图,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,则AD= 6.4 .【考点】相似三角形的判定与性质;勾股定理.【分析】由于AC⊥BC,CD⊥AB,可得一组对应角相等,再加上一对公共角,可证△ACD∽△ABC,利用比例线段可求AD.(可先利用勾股定理求出AB)【解答】解:∵AC⊥BC,CD⊥AB,∴∠ACB=90°,∠ADC=90°,∠A=∠A,∴△ADC∽△ACB,∴=,又∵在Rt△ABC中,AB===10,∴=,AD=6.4.【点评】解答此题不仅用到相似三角形的性质,还要结合勾股定理求出相应的边长,方可进行计算.13.如图,DE∥AC,BE:EC=2:1,AC=12,则DE= 8 .【考点】相似三角形的判定与性质;平行线的性质.【分析】根据DE∥AC,证得△BED∽△BCA,再由相似三角形对应线段成比例可得出答案.【解答】解:由DE∥AC可得△BED∽△BCA,∴==,又AC=12,可得DE=8.故填8.【点评】本题考查平行线的知识,注意相似三角形对应线段成比例的性质.14.如图,平行四边形ABCD中,E是BD上一点,AE的延长线与BC的延长线交于F,与CD交于G,若AE=4,EG=3,则EF= .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由平行四边形的定义得出AB∥CD,再根据平行线的性质得到∠ABE=∠FDE,∠EAB=∠EFD,然后根据两角对应相等的两三角形相似即可证明△ABE∽△FDE;根据相似三角形对应边成比例得出①,再证明△BEG ∽△DEA,得出②,等量代换得到,于是得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠FDE,∠EAB=∠EFD,∴△ABE∽△FDE,∴①,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠GBE=∠ADE,∠G=∠DEA,∴△BEG∽△DEA,∴②,由①②可得,,∵AE=4,EG=3,∴EF=.故答案为:.【点评】此题考查了相似三角形的判定和性质以及平行四边形的性质.此题难度适中,注意掌握数形结合思想的应用.15.(2012•通州区校级模拟)如图,在平行四边形ABCD中,M、N为AB的三等分点,DM、DN分别交AC于P、Q两点,则AP:PQ:QC= 5:3:12 .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据题意,可得出△AMP∽△CDP和△ANQ∽△CDQ,可分别得到AP、PQ、QC的关系式,进而求出AP、PQ、QC的比值.【解答】解:由已知得:△AMP∽△CDP,∴AM:CD=AP:PC=AP:(PQ+QC)=,即:3AP=PQ+QC,①△ANQ∽△CDQ,∴AN:CD=AQ:QC=(AP+PQ):QC=,即2QC=3(AP+PQ),②解①、②得:AQ=AC,PQ=AQ AP=AC,QC=AC AQ=AC,∴AP:PQ:QC=5:3:12.【点评】主要考查了三角形相似的性质和平行四边形的性质,要熟练掌握灵活运用.16.(2014秋•肥西县期末)如图,若∠B=∠DAC,则△ABC∽ △DAC ,对应边的比例式是 == .【考点】相似三角形的性质.【分析】根据两角对应相等的两个三角形相似可解,再根据相似三角形的性质写出对应边的比例式.【解答】解:在△ABC和△DAC中,∵∠C=∠C,∠B=∠DAC;∴△ABC∽△DAC;∴==【点评】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似.17.(2012•牡丹江模拟)如图,将①∠BAD=∠C;②∠ADB=∠CAB;③AB2=BD•BC;④;⑤;⑥中的一个作为条件,另一个作为结论,组成一个真命题,则条件是 ① ,结论是 ③或④ .(注:填序号)【考点】命题与定理.【分析】根据相似三角形的判定和性质进行分析.【解答】解:因为若∠BAD=∠C,则△ABC∽△DBA,故=,=,条件是①,结论是③或④.【点评】解答此题的关键是要熟知真命题与假命题的概念.真命题:判断正确的命题叫真命题;假命题:判断错误的命题叫假命题.18.(2014春•江都市期末)已知:AM:MD=4:1,BD:DC=2:3,则AE:EC= 8:5 .【考点】平行线分线段成比例.【分析】过点D作DF∥BE,再根据平行线分线段成比例,而为公共线段,作为中间联系,整理即可得出结论.【解答】解:过点D作DF∥BE交AC于F,∵DF∥BE,∴△AME∽△ADF,∴AM:MD=AE:EF=4:1=8:2∵DF∥BE,∴△CDF∽△CBE,∴BD:DC=EF:FC=2:3∴AE:EC=AE:(EF+FC)=8:(2+3)∴AE:EC=8:5.【点评】本题主要考查平行线分线段成比例定理的应用,作出辅助线,利用中间量EF即可得出结论.19.(2012秋•桐城市校级月考)如图,将三个全等的正方形拼成一个矩形ADHE,则:∠ABE+∠ACE+∠ADE等于 90 度.【考点】相似三角形的判定与性质;正方形的性质.【分析】设正方形的边长为1,根据正方形的性质得到∠ABE=45°,BE=,再利用勾股定理计算出CE=,则BE:BD=BC:BE=:2,加上公共角,于是可判断△CBE∽△EBD,则∠BDE=∠BEC,再利用三角形外角性质得∠ABE=∠BEC+∠BCE=45°,然后计算∠ABE+∠ACE+∠ADE.【解答】解:设正方形的边长为1,∵四边形AEFB为正方形,∴∠ABE=45°,BE=,在Rt△AEC中,AC=2∴CE==,∴BE:BD=:2,BC:BE=1:=:2,∴BE:BD=BC:BE,而∠CBE=∠EBD,∴△CBE∽△EBD,∴∠BDE=∠BEC,∵∠ABE=∠BEC+∠BCE=45°,∴∠ABE+∠ACE+∠ADE=45°+45°=90°.故答案为90.【点评】本题考查了相似三角形得判定与性质:如果两个三角形的两条对应边的比相等,且它们所夹的角也相等,那么这两个三角形相似;相似三角形对应角相等,对应边的比相等.也考查了勾股定理以及正方形的性质.20.(2011•连云港一模)一张等腰三角形纸片,底边长为15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第 6 张.【考点】相似三角形的判定与性质;等腰三角形的性质;正方形的性质.【分析】设第x张为正方形,如图,△ADE∽△ABC,则=,从而计算出x的值即可.【解答】解:如图,设第x张为正方形,则DE=3,AM=22.5 3x,∵△ADE∽△ABC,∴=,即=,解得x=6.故答案为:6.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质以及正方形的性质,注:相似三角形的对应边之比等于对应边上的高之比.三.解答题(共10小题)21.如图,D,E分别是AC,AB上的点,.已知△ABC的面积为60cm2,求四边形BCDE的面积.【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定证△ADE∽△ABC,根据相似三角形的性质求出△ADE的面积,相减即可求出答案.【解答】解:∵,∠A=∠A,∴△ADE∽△ABC,∴=,∵△ABC的面积为60cm2,∴△ADE的面积是×60cm2=cm2,∴四边形BCDE的面积是60cm2 cm2=cm2,答:四边形BCDE的面积是cm2.【点评】本题主要考查对相似三角形的性质和判定的理解和掌握,能熟练地运用性质进行推理是解此题的关键.22.(2015春•苏州校级期末)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF 离地面的高度AC=1.5m,CD=8m,求树高AB.【考点】相似三角形的应用.【分析】先判定△DEF和△DBC相似,然后根据相似三角形对应边成比例列式求出BC 的长,再加上AC 即可得解.【解答】解:在△DEF 和△DBC 中,,∴△DEF ∽△DBC ,∴=,即=,解得BC=4,∵AC=1.5m ,∴AB=AC+BC=1.5+4=5.5m ,即树高5.5m .【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质,比较简单,判定出△DEF 和△DBC 相似是解题的关键.23.(2015秋•北京校级期中)已知:平行四边形ABCD ,E 是BA 延长线上一点,CE 与AD 、BD 交于G 、F .求证:CF 2=GF•EF .【考点】平行线分线段成比例;平行四边形的性质.【分析】根据平行四边形的性质得AD ∥BC ,AB ∥CD ,再根据平行线分线段成比例定理得=,=,利用等量代换得到=,然后根据比例的性质即可得到结论.【解答】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,∴=,=,∴=,即CF 2=GF•EF .【点评】本题考查了平行线分线段成比例定理:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.也考查了平行四边形的性质.24.平行四边形ABCD中,AB=28,E、F是对角线AC上的两点,且AE=EF=FC,DE交AB于点M,MF交CD于点N.求AM、CN的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据已知条件,先证明△AEM∽△CED,然后利用相似三角形的对应边成比例这一性质求得AM=AB;再来证明△AFM∽△CFN,依据相似三角形的性质求的CN的长度.【解答】解:在△AEM和△CED中,∠CAB=∠DCA(内错角相等),∠AEM=∠CED,∴△AEM∽△CED,∴,∵AE=EF=FC,∴=,∴AM=CD;∵AB=CD,∴AM=AB=14,①;在△AFM和△CFN中,∠FAM=∠FCN(内错角相等),∠AFM=∠CFN(对顶角相等),∴△AFM∽△CFN,∴=2,∴CN=AM②;∵AB=28 ③由①②③解得,CN=7.【点评】本题主要考查了相似三角形的判定定理:两个三角形中,两个对应角相等,则这两个三角形相似,以及相似三角形的性质:对应边成比例.25.(2006•长沙)如图,A,B,D,E四点在⊙O上,AE,BD的延长线相交于点C,直径AE为8,OC=12,∠EDC=∠BAO.(1)求证:;(2)计算CD•CB的值,并指出CB的取值范围.【考点】切割线定理;相似三角形的判定与性质.【分析】(1)证△CDE∽△CAB,再根据相似三角形的性质得到所求的比例式;(2)根据割线定理即可求得CD•CB的值.根据三角形的三边关系求得BC的取值范围.【解答】(1)证明:∵四边形ABDE内接于⊙O,∴∠EDC=∠BAO,∠C=∠C,∴△CDE∽△CAB,∴;(2)解:∵直径AE=8,OC=12,∴AC=12+4=16,CE=12 4=8.又∵=,∴CD•CB=AC•CE=16×8=128.连接OB,在△OBC中,OB=AE=4,OC=12,∴故BC的范围是:8≤BC<16.【点评】本题主要考查圆、相似三角形等初中几何的重点知识,考查学生的几何论证能力,属于中等难度题.26.(2009•潍坊)已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.(1)求的值;(2)若AB=a,FB=EC,求AC的长.【考点】三角形中位线定理;平行线分线段成比例;相似三角形的判定与性质.【分析】(1)过点F作FM∥AC,交BC于点M.根据平行线分线段成比例定理分别找到AE,CE与FM之间的关系,得到它们的比值;(2)结合(1)中的线段之间的关系,进行求解.【解答】解:(1)过点F作FM∥AC,交BC于点M,∵F为AB的中点,∴M为BC的中点,FM=AC.∵FM∥AC,∴∠CED=∠MFD,∠ECD=∠FMD.∴△FMD∽△ECD.∴.∴EC=FM=×AC=AC.∴.(2)∵AB=a,∴FB=AB=a.∵FB=EC,∴EC=a.∵EC=AC,∴AC=3EC=a.【点评】此类题要注意作平行线,能够根据平行线分线段成比例定理和相似三角形对应边成比例即可求得线段的比.27.如图△ABC中,边BC=60,高AD=40,EFGH是内接矩形,HG交AD于P,设HE=x,(1)求矩形EFGH的周长y与x的函数关系式;(2)求矩形EFGH的面积S与x的函数关系式.【考点】相似三角形的判定与性质;矩形的性质.【分析】(1)根据矩形的性质得到HG∥BC,PD=x,AP=AD x=40 x,再三角形三角形相似的判定得到△AHG∽△ABC,利用相似比可表示出HG=(40 x),然后根据矩形的周长确定y与x的关系;(2)根据矩形的面积公式求解.【解答】解:(1)∵AD⊥BC,四边形EFGH是矩形,∴HG∥BC,PD=x,AP=AD x=40 x,∴△AHG∽△ABC,∴=,即=∴HG=(40 x),∴y=2HE+2HG=2x+2×(40 x)=2x+120 3x=120 x(0<x<40);(2)S=HE•HG=x•(40 x)= x2+60x(0<x<40).【点评】本题考查了相似三角形的判定与性质:平行于三角形一边的直线与其他两边所截得的三角形与原三角形相似;相似三角形对应角相等,对应边的比相等.也考查了矩形得性质.28.(2004•丽水)如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么(1)设△POQ的面积为y,求y关于t的函数解析式;(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;(3)当t为何值时,△POQ与△AOB相似.【考点】二次函数综合题.【分析】(1)根据P、Q的速度,用时间t表示出OQ和OP的长,即可通过三角形的面积公式得出y,t的函数关系式;(2)先根据(1)的函数式求出y最大时,x的值,即可得出OQ和OP的长,然后求出C点的坐标和直线AB的解析式,将C点坐标代入直线AB的解析式中即可判断出C是否在AB上;(3)本题要分△OPQ∽△OAB和△OPQ∽△OBA两种情况进行求解,可根据各自得出的对应成比例相等求出t的值.【解答】解:(1)∵OA=12,OB=6,由题意,得BQ=1×t=t,OP=1×t=t.∴OQ=6 t.∴y=×OP×OQ=×t(6 t)= t2+3t(0≤t≤6);(2)∵y= t2+3t,∴当y有最大值时,t=3∴OQ=3,OP=3,即△POQ是等腰直角三角形.把△POQ沿直线PQ翻折后,可得四边形OPCQ是正方形.∴点C的坐标为(3,3).∵A(12,0),B(0,6),∴直线AB的解析式为y= x+6当x=3时,y=≠3,∴点C不落在直线AB上;(3)①若△POQ∽△AOB时,,即,12 2t=t,∴t=4.②若△POQ∽△BOA时,,即,6 t=2t,∴t=2.∵0≤t≤6,∴t=4和t=2均符合题意,∴当t=4或t=2时,△POQ与△AOB相似.【点评】本题主要考查了直角三角形的性质、图形的翻折变换、相似三角形的判定和性质等知识点.要注意(3)题要根据不同的相似三角形分类进行讨论. 29.(2007秋•安岳县期末)如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?【考点】相似三角形的判定.【分析】此题要根据相似三角形的性质设出未知数,即经过x秒后,两三角形相似,然后根据速度公式求出他们移动的长度,再根据相似三角形的性质列出分式方程求解.【解答】解:设经过x秒后,两三角形相似,则CQ=(8 2x)cm,CP=xcm,(1分)∵∠C=∠C=90°,∴当或时,两三角形相似.(3分)(1)当时,,∴x=;(4分)(2)当时,,∴x=.(5分)所以,经过秒或秒后,两三角形相似.(6分)【点评】本题综合考查了路程问题,相似三角形的性质及一元一次方程的解法.30.如图,已知A、B两点的坐标分别为(40,0),(0,30),动点P从点A 开始在线段AO上以每秒2个长度单位的速度向原点O运动,动直线EF从x 轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x轴),并且分别与y 轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)当t为何值时,△EOP与△BOA相似.【考点】相似形综合题.【分析】(1)先根据A、B两点的坐标分别为(40,0),(0,30)得出OA及OB的长,再由EF∥x轴得出EF是△BOA的中位线,再根据三角形的面积公式即可得出结论;(2)用t表示出OE及OP的长,再分△EOP∽△BOA与△EOP∽△AOB两种情况进行讨论.【解答】解:(1)∵A、B两点的坐标分别为(40,0),(0,30),∴OA=40,OB=30.∵动直线EF从x轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x 轴),∴t=15时,BE=30 15=15,∵EF∥x轴,∴EF是△BOA的中位线,∴EF=OA=20,∴S△PEF=EF•OE=×20×15=150;(2)∵动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动,动直线EF从x轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x轴),∴OE=t,OP=40 2t,∴当△EOP∽△BOA时,=,即=,解得t=12(秒);当△EOP∽△AOB时,=,即=.解得t=(秒).综上所述,当t=12秒或t=秒时,△EOP与△BOA相似.【点评】本题考查的是相似形综合题,涉及到三角形中位线定理、三角形的面积公式及相似三角形的判定与性质等知识,在解答(2)时要注意进行分类讨论.。

圆与相似三角形综合题解题技巧

圆与相似三角形综合题解题技巧

圆与相似三角形综合题解题技巧
圆与相似三角形的综合题是高中数学中的重点难点之一。

一般来说,这类题目需要我们掌握以下的解题技巧:
一、圆相关定理
1.圆的性质:圆周上任意两点距离相等,圆心到圆周上任意一点的距离相等。

2.圆心角定理:圆周上两点的连线所对的圆心角是不变量。

3.圆的切线定理:切线与半径垂直,切点在圆心角的平分线上。

二、相似三角形相关定理
1.角度相等定理:若两个角分别相等,则两个三角形相似。

2.比例定理:若两个角分别相等,则两个三角形对应边的长度成比例。

3.三角形内角和定理:一个三角形内角的度数和是180度。

基于以上的定理,我们可以通过以下步骤解决圆与相似三角形的综合题:
1.根据圆心角定理,求出圆心角。

2.根据角度相等定理或比例定理,确定相似三角形的相似比例。

3.利用三角形内角和定理,求出三角形另一个角的度数。

4.根据三角形内角和定理和已知角度,求出第三个角的度数。

5.利用已知角度和比例定理,求出相似三角形的边长。

6.应用圆的切线定理、圆心角定理或其他定理,求出需要求解的量。

需要注意的是,在解题过程中,我们需要注意角度单位是否一致,如角度一般用度数表示,而弧度制需要换算。

同时,我们还需要注意图形的几何位置关系,如切线与圆周、圆心角的平分线等。

综上所述,圆与相似三角形的综合题需要我们掌握相关的定理和解题技巧,同时需要注意单位和几何位置关系。

数学《圆与相似三角形、三角函数综合题》专题训练(含答案)

数学《圆与相似三角形、三角函数综合题》专题训练(含答案)

2020-2021学年中考数学培优训练讲义(七)《圆与相似三角形、三角函数综合题》专题训练班级姓名座号成绩1.如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接PF.若tan∠FBC=,DF=,则PF的长为.2.如图AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且=,CE的延长线交DB的延长线于F,AF交⊙O于点H,当OB=2时,则BH的长为.(第1题图)(第2题图)(第3题图)3.如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC、PB,若cos∠PAB=,BC=1,则PO的长.4.已知:在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,交BC于点E.(1)如下左图,过点D作弦DF⊥AB垂足为H,连接EF交AB于G,求证:EF∥AC;(2)如下右图,在(1)的条件下,过点G作GN⊥BC垂足为N,若OG=3,EN=4,求线段DH的长.5.如图,AB是⊙O的直径,弦CD⊥AB于H,G为⊙O上一点,连接AG交CD于K,在CD的延长线上取一点E,使EG=EK,EG的延长线交AB的延长线于F.(1)求证:EF是⊙O的切线;(2)连接DG,若AC∥EF时.①求证:KG2=KD•KE;②若cos C=,AK=,求BF的长.作业思考:1. 如图,四边形ABCD内接于⊙O,且对角线AC⊥BD,垂足为点E,过点C作CF⊥AB于点F,交BD于点G.(1)如图①,连接EF,若EF平分∠AFG,求证:AE=GE;(2)如图②,连接CO并延长交AB于点H,若CH为∠ACF的平分线,AD=3,且tan∠FBG=,求线段AH长.参考答案:1.如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接EF.(1)求证:PF平分∠BFD.(2)若tan∠FBC=,DF=,求EF的长.【分析】(1)根据切线的性质得到OE⊥AD,由四边形ABCD的正方形,得到CD⊥AD,推出OE∥CD,根据平行线的性质得到∠EFD=∠OEF,由等腰三角形的性质得到∠OEF=∠OFE,根据角平分线的定义即可得到结论;(2)连接PF,由BF是⊙O的直径,得到∠BPF=90°,推出四边形BCFP是矩形,根据tan∠FBC =,设CF=3x,BC=4x,于是得到3x+=4x,x=,求得AD=BC=4,推出DF∥OE ∥AB于是得到DE:AE=OF:OB=1:1即可得到结论.【解答】解:(1)连接OE,BF,PF,∵∠C=90°,∴BF是⊙O的直径,∵⊙O与AD相切于点E,∴OE⊥AD,∵四边形ABCD的正方形,∴CD⊥AD,∴OE∥CD,∴∠EFD=∠OEF,∵OE=OF,∴∠OEF=∠OFE,∴∠OFE=∠EFD,∴EF平分∠BFD;(2)连接PF,∵BF是⊙O的直径,∴∠BPF=90°,∴四边形BCFP是矩形,∴PF=BC,∵tan∠FBC=,设CF=3x,BC=4x,∴3x+=4x,x=,∴AD=BC=4,∵点E是切点,∴OE⊥AD∴DF∥OE∥AB∴DE:AE=OF:OB=1:1∴DE=AD=2,∴EF==10.【点评】本题考查了切线的性质,正方形的性质,圆周角定理,等腰三角形的性质,平行线的性质,切割线定理,正确的作出辅助线是解题的关键.2.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【解答】证明:(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;解:(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点评】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.3.如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)求证:E为△PAB的内心;(3)若cos∠PAB=,BC=1,求PO的长.【分析】(1)连接OB,根据圆周角定理得到∠ABC=90°,证明△AOP≌△BOP,得到∠OBP=∠OAP,根据切线的判定定理证明;(2)连接AE,根据切线的性质定理得到∠PAE+∠OAE=90°,证明EA平分∠PAD,根据三角形的内心的概念证明即可;(3)根据余弦的定义求出OA,证明△PAO∽△ABC,根据相似三角形的性质列出比例式,计算即可.【解答】(1)证明:连接OB,∵AC为⊙O的直径,∴∠ABC=90°,∵AB⊥PO,∴PO∥BC∴∠AOP=∠C,∠POB=∠OBC,OB=OC,∴∠OBC=∠C,∴∠AOP=∠POB,在△AOP和△BOP中,,∴△AOP≌△BOP(SAS),∴∠OBP=∠OAP,∵PA为⊙O的切线,∴∠OAP=90°,∴∠OBP=90°,∴PB是⊙O的切线;(2)证明:连接AE,∵PA为⊙O的切线,∴∠PAE+∠OAE=90°,∵AD⊥ED,∴∠EAD+∠AED=90°,∵OE=OA,∴∠OAE=∠AED,∴∠PAE=∠DAE,即EA平分∠PAD,∵PA、PB为⊙O的切线,∴PD平分∠APB∴E为△PAB的内心;(3)解:∵∠PAB+∠BAC=90°,∠C+∠BAC=90°,∴∠PAB=∠C,∴cos∠C=cos∠PAB=,在Rt△ABC中,cos∠C===,∴AC=,AO=,∵△PAO∽△ABC,∴,∴PO===5.【点评】本题考查的是三角形的内切圆和内心、相似三角形的判定和性质、切线的判定,掌握切线的判定定理、相似三角形的判定定理和性质定理是解题的关键.4.已知:在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,交BC于点E.(1)如图1,求证:AD=CD;(2)如图2,过点D作弦DF⊥AB垂足为H,连接EF交AB于G,求证:EF∥AC;(3)如图3,在(2)的条件下,过点G作GN⊥BC垂足为N,若OG=3,EN=4,求线段DH的长.【分析】(1)如图1中,连接BD,利用等腰三角形的三线合一的性质证明即可.(2)如图2中,连接BD,想办法证明∠ADF=∠DFE即可.(3)连接AE.设OA=OB=r,则AB=BC=2r,BG=3+r,利用平行线分线段成比例定理,构建方程求出r,即可解决问题.【解答】(1)证明:如图1中,连接BD.∵AB是直径,∴∠ADB=90°,∴BD⊥AC,∵BA=BC,∴AD=CD.(2)证明:如图2中,连接BD.∵AB⊥DF,∴=,∴∠ADF=∠ABD,∵∠DFE=∠ABD,∴∠ADF=∠DFE,∴EF∥AC.(3)解:如图3中,连接AE.设OA=OB=r,则AB=BC=2r,BG=3+r,∵EG∥AC,∴=,∵BC=BA,∴BE=BG=3+r,∴BN=3+r﹣4=r﹣1,∵AB是直径,GN⊥BC∴∠AEB=∠GNB=90°,∴GN∥AE,∴=,∴=,解得r=9或﹣1(舍弃),∴BG=12,BN=8,∴NG===4,∴EG===2,∵GN∥AE,∴=,∴=,∴AE=6,∵∠C=∠DAH,∠AEC=∠AHD=90°,∴△AEC∽△DHA,∴==2,∴DH=3.【点评】本题属于圆综合题,考查了垂径定理,解直角三角形,平行线分线段成比例定理,等腰三角形的判定和性质等知识,教育的关键是学会添加常用辅助线,属于中考压轴题.5.如图,AB是⊙O的直径,弦CD⊥AB于H,G为⊙O上一点,连接AG交CD于K,在CD的延长线上取一点E,使EG=EK,EG的延长线交AB的延长线于F.(1)求证:EF是⊙O的切线;(2)连接DG,若AC∥EF时.①求证:△KGD∽△KEG;②若cos C=,AK=,求BF的长.【分析】(1)连接OG,由EG=EK知∠KGE=∠GKE=∠AKH,结合OA=OG知∠OGA=∠OAG,根据CD⊥AB得∠AKH+∠OAG=90°,从而得出∠KGE+∠OGA=90°,据此即可得证;(2)①由AC∥EF知∠E=∠C=∠AGD,结合∠DKG=∠CKE即可证得△KGD∽△KGE;②连接OG,由设CH=4k,AC=5k,可得AH=3k,CK=AC=5k,HK=CK﹣CH=k.利用AH2+HK2=AK2得k=1,即可知CH=4,AC=5,AH=3,再设⊙O半径为R,由OH2+CH2=OC2可求得,根据知,从而得出答案.【解答】解:(1)如图,连接OG.∵EG=EK,∴∠KGE=∠GKE=∠AKH,又OA=OG,∴∠OGA=∠OAG,∵CD⊥AB,∴∠AKH+∠OAG=90°,∴∠KGE+∠OGA=90°,∴EF是⊙O的切线.(2)①∵AC∥EF,∴∠E=∠C,又∠C=∠AGD,∴∠E=∠AGD,又∠DKG=∠GKE,∴△KGD∽△KEG;②连接OG,∵,AK=,设,∴CH=4k,AC=5k,则AH=3k∵KE=GE,AC∥EF,∴CK=AC=5k,∴HK=CK﹣CH=k.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即,解得k=1,∴CH=4,AC=5,则AH=3,设⊙O半径为R,在Rt△OCH中,OC=R,OH=R﹣3k,CH=4k,由勾股定理得:OH2+CH2=OC2,即(R﹣3)2+42=R2,∴,在Rt△OGF中,,∴,∴.【点评】本题是圆的综合问题,解题的关键是掌握等腰三角形的性质、平行线的性质,圆周角定理、相似三角形的判定与性质及切线的判定等知识点.作业思考:1.如图,四边形ABCD内接于⊙O,且对角线AC⊥BD,垂足为点E,过点C作CF⊥AB于点F,交BD于点G.(1)如图①,连接EF,若EF平分∠AFG,求证:AE=GE;(2)如图②,连接CO并延长交AB于点H,若CH为∠ACF的平分线,AD=3,且tan∠FBG=,求线段AH长.【分析】(1)由垂直的定义,角平分线的定义,角的和差证明EF=EI,同角的余角相等得∠AEF=∠GEI,四边形的内角和,邻补角的性质得∠FAE=∠IGE,最后根据角角边证明△AEF≌△GEI,其性质得AE=GE;(2)由圆周角定理,等角的三角函数值相等求出⊙O的半径为,根据平行线的性质,勾股定理,角平分线的性质定理,三角形相似的判定与性质,一元二次方程求出t的值为,最后求线段AH的长为.【解答】证明:(1)过点E作EI⊥EF交CF于点I,如图①所示:∵CF⊥AB,∴∠AFG=90°,又∵EF平分∠AFG,∴∠EFA=∠EFI=45°,又∵EF⊥EI,∴∠FEI=90°,又∵∠EFI+∠EIF=90°,∴∠EIF=45°,∴EF=EI,又∵∠EAF+∠AFG+∠FGE+∠GEA=360°,∠AFG=∠AEG=90°,∴∠EGF+∠FAE=180°,又∵∠EGF+∠EGI=180°,∴∠EGI=∠FAE,又∵∠AEB=∠AEF+∠FEG,∠FEI=∠GEI+∠FEG,∴∠AEF=∠GEI,在△AEF和△GEI中,,∴△AEF≌△GEI(AAS),∴AE=GE;(2)连接DO并延长,交⊙O于点P,连接AP,如图②甲所示:∵∠ABD与∠P是⊙O上弧AD所对的圆周角,∴∠ABD=∠P,又∵DP为⊙O的直径,∴∠PAD=90°,又∵tan∠FBG=,∴tan∠P==,又∵AD=3,∴AP=4,PD=5,∴OD=,过点H作HJ⊥AC于点J,过点O作OK⊥AC于点K,设AJ=3t,CF=x,如图②乙所示,∵HJ⊥AC,BD⊥AC,∴HJ∥BD,∴∠ABD=∠AHJ,又∵tan∠ABD=∴tan∠AHJ=,又∵AJ=3t,∴HJ=4t,在Rt△AHJ中,由勾股定理得:AH===5t,又∵CH是∠ACF的平分线,且HF⊥CF,HJ⊥AC,∴HF=HJ=4t,∴AF=AH+HF=9t,又∵CF=x,∴CJ=x,又∵∠BFG=∠GEC,∠FGB=∠EGC,∴△FBG∽△ECG,∴∠FBG=∠ECG,∴tan∠FCJ===,解得:x=12t,∴CF=CJ=12t,∴AC=15t,∴CK=t,又∵OK∥HJ,∴=,∴OK===t,∴在Rt△OCK中,由勾股定理得:OK2+KC2=OC2,即(t)2+(t)2=()2,解得:t=,或t=﹣(舍去),∴AH=5t=.【点评】本题综合考查了垂线的定义,平行线的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,解直角三角形,一元二次方程等相关知识,重点掌握相似三角形的判定与性质,难点是辅助线构建全等三角形,圆周角和相似三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
C B
A
O M N E H
A B C P E
D H
F O 相似三角形与圆
1.如图,AB 是⊙O直径,E D⊥AB 于D,交⊙O 于G ,EA 交⊙O 于C,CB 交ED 于F ,求证:DG 2=D E•DF
2.如图,弦EF ⊥直径MN 于H ,弦MC 延长线交EF 的反向延长线于A ,求证:M A•M C=MB •MD
3.(2006年黄冈)如图,AB 、AC 分别是⊙O 的直径和弦,点D 为劣弧AC 上一点,弦ED 分别交⊙O 于点E ,交AB 于点H ,交AC 于点F,过点C 的切线交ED 的延长线于点P . (1)若PC =PF ,求证:AB ⊥ED ; (2)点D 在劣弧AC 的什么位置时,才能使AD 2=DE ·DF ,为什么?
4.如图(1),AD 是△ABC 的高,A E是△ABC 的外接圆直径,则有结论:AB · AC =A E· A D成立,请证明.如果把图(1)中的∠AB C变为钝角,其它条件不变,如图(2),则上述结论是否仍然成立?
D C
B
A O E F
5.如图,AD 是△ABC 的角平分线,延长AD 交△ABC 的外接圆O于点E ,过点C、D 、E 三点的⊙O 1与A
C的延长线交于点F,连结E F、DF .
(1)求证:△AEF ∽△F ED ; (2)若AD =8,DE =4,求EF 的长.
6.如图,P C与⊙O 交于B ,点A 在⊙O上,且∠PCA =∠BAP . (1)求证:P A是⊙O的切线. (2)△ABP 和△CAP 相似吗?为什么? (3)若PB :BC =2:3,且PC =20,求P A的长.
7.已知:如图, AD 是⊙O 的弦,OB ⊥AD于点E,交⊙O于点C ,OE =1,BE =8,A E:AB =1:3. (1)求证:AB 是⊙O 的切线;
(2)点F 是ACD 上的一点,当∠AOF =2∠B时,求AF 的长.
8.如图,⊿A BC 内接于⊙O ,且BC 是⊙O 的直径,AD ⊥BC于D ,F 是弧BC 中点,且A F交BC 于E,AB =6,AC =8,求CD ,DE ,及EF的长.
9. 已知:如图,在Rt ABC △中,90ACB ∠=,4AC =
,BC =,以AC 为直径的O 交AB 于点D ,点E 是
BC 的中点,连结OD ,O B、DE 交于点F . (1)求证:DE 是O 的切线; (2)求E F:F D的值.
10.如图,A 是以BC 为直径的O 上一点,AD BC ⊥于点D ,过点B 作O 的切线,与CA 的延长线
相交于点E G ,是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P . (1)求证:BF EF =;
(2)求证:PA 是O 的切线; (3)若FG BF =,且O
的半径长为求BD 和FG 的长度.
B C E
C
4.答:.连接BE ,证△ABE ∽△ADC 图(2)同理可证,结论仍成立; 5.答:.(1)连接EC ,可证∠DFE =∠DCE ,又
∠D CE =∠BAE =∠C AE ,从而△AEF ∽△FED ;(2)EF
=
6.答:.(1)作直径AC ',连接BC ',证∠P AC '=90即可;(2)△ABP ∽△CAP ,理由略;(3)P A=
10.(1)证明:BC ∵是O 的直径,BE 是O 的切线,
EB BC ⊥∴.
又AD BC ⊥∵,AD BE ∴∥.
易证BFC DGC △∽△,FEC GAC △∽△. BF CF EF CF
DG CG AG CG ==
∴,. BF EF
DG AG
=
∴. G ∵是AD 的中点,
DG AG =∴.
BF EF =∴.
(2)证明:连结AO AB ,.
BC ∵是O 的直径,90BAC ∠=∴°.
在Rt BAE △中,由(1),知F 是斜边BE 的中点, AF FB EF ==∴. FBA FAB ∠=∠∴.
又OA OB =∵,ABO BAO ∠=∠∴. BE ∵是O 的切线,90EBO ∠=∴°.
90EBO FBA ABO FAB BAO FAO ∠=∠+∠=∠+∠=∠=∵°, PA ∴是O 的切线.
(3)解:过点F 作FH AD ⊥于点H . BD AD FH AD ⊥⊥∵,, FH BC ∴∥.
由(1),知FBA BAF ∠=∠,BF AF =∴.
由已知,有BF FG =,AF FG =∴,即AFG △是等腰三角形. FH AD ⊥∵,AH GH =∴. DG AG =∵,
2DG HG =∴,即
1
2
HG DG =. 90FH BD BF AD FBD ∠=∵∥,∥,°, ∴四边形BDHF 是矩形,BD FH =.
FH BC ∵∥,易证HFG DCG △∽△. FH FG HG CD CG DG ==∴,即12BD FG HG CD CG DG ===. O ∵
的半径长为
BC =∴
C
1
2
BD BD CD BC BD ===-∴

解得BD =
BD FH ==∴.
12FG HG CG DG ==∵
,1
2FG CG =∴. 3CF FG =∴.
在Rt FBC △中,3CF FG =∵,BF FG =, 由勾股定理,得2
2
2
CF BF BC =+.
222(3)FG FG =+∴.
解得3FG =(负值舍去). 3FG =∴.
[或取CG 的中点H ,连结DH ,则2CG HG =.易证AFC DHC △≌△, FG HG =∴,故2CG FG =,3CF FG =. 由GD FB ∥,易知CDG CBF △∽△,22
33
CD CG FG CB CF FG ===∴
.
2
3=,解得BD =.
又在Rt CFB △中,由勾股定理,得222
(3)FG FG =+,
3FG =∴(舍去负值).]。

相关文档
最新文档