乘除法的意义及各部分间的关系(学习内容)
人教版数学四年级下册1.2《乘除法的意义和各部分间的关系》说课稿

人教版数学四年级下册1.2《乘除法的意义和各部分间的关系》说课稿一. 教材分析《乘除法的意义和各部分间的关系》是人教版数学四年级下册第一单元第二节课的内容。
本节课的主要内容有:理解乘法的意义,掌握乘法各部分间的关系;理解除法的意义,掌握除法各部分间的关系。
通过本节课的学习,学生能够进一步巩固加法和减法的知识,为后续的乘除法运算打下基础。
二. 学情分析四年级的学生已经掌握了加法和减法的基本运算,对数学运算有一定的认识。
但是,对于乘除法的意义和各部分间的关系,学生可能还比较陌生。
因此,在教学过程中,需要注重引导学生理解乘除法的意义,掌握各部分间的关系。
三. 说教学目标1.知识与技能:理解乘法的意义,掌握乘法各部分间的关系;理解除法的意义,掌握除法各部分间的关系。
2.过程与方法:通过实例演示和小组讨论,培养学生观察、思考、交流的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 说教学重难点1.重点:理解乘法的意义,掌握乘法各部分间的关系;理解除法的意义,掌握除法各部分间的关系。
2.难点:乘法各部分间的关系和除法各部分间的关系的运用。
五. 说教学方法与手段1.教学方法:采用实例演示、小组讨论、教师讲解相结合的方法。
2.教学手段:利用多媒体课件、实物模型、卡片等辅助教学。
六. 说教学过程1.导入:通过一个实例,让学生观察和思考,引出乘除法的概念。
2.讲解:讲解乘法的意义和各部分间的关系,让学生通过实例理解乘法。
3.小组讨论:让学生分组讨论,总结乘法各部分间的关系。
4.讲解:讲解除法的意义和各部分间的关系,让学生通过实例理解除法。
5.小组讨论:让学生分组讨论,总结除法各部分间的关系。
6.练习:布置一些练习题,让学生巩固乘除法的理解和运用。
7.总结:对本节课的内容进行总结,强调乘除法的意义和各部分间的关系。
七. 说板书设计板书设计如下:意义:———–各部分间的关系:———–意义:———–各部分间的关系:———–八. 说教学评价通过课堂表现、练习题和小组讨论,评价学生对乘除法的理解和运用。
乘除法的意义和各部分间的关系教案

乘除法的意义和各部分间的关系教案乘除法是数学中基础的运算法则,用来表示两个或多个数的乘积和商。
乘除法具有重要的实际应用意义,可以用来解决现实生活中的问题。
在乘除法中,各个部分之间存在密切的关系,下面是一个关于乘除法意义和各部分间关系的教案。
教案主题:乘除法的意义和各部分间的关系一、教学目标:1.了解乘除法的基本概念和运算法则;2.了解乘除法的实际应用意义;3.能够应用乘除法解决实际问题;4.掌握乘除法各部分之间的关系。
二、教学内容:1.乘法的意义和运算法则;2.除法的意义和运算法则;3.乘除法的实际应用;4.乘除法各部分间的关系。
三、教学过程:1.导入(5分钟)通过一个实际问题导入乘除法的意义,如:小明有3个苹果,每个苹果重100克,那么三个苹果的总重量是多少?2.乘法的意义和运算法则(20分钟)a.通过一个具体的例子,如:小明每天走路上学需要30分钟,他一周上学几天,总共花费多小时?引出乘法的概念。
b.介绍乘法的运算法则,如交换律、结合律、分配律等,并通过具体的算式进行演示和练习。
3.除法的意义和运算法则(20分钟)a.通过一个具体的例子,如:小明一共有60元,他每天花费10元,那么他能花费几天的时间?引出除法的概念。
b.介绍除法的运算法则,如求商、求余数等,并通过具体的算式进行演示和练习。
4.乘除法的实际应用(20分钟)a.通过一些实际问题,如购物结账、计算面积和体积等,让学生应用乘除法进行计算。
b.组织学生进行小组讨论,提供一些实际问题让学生自己设计乘除法的应用。
5.乘除法各部分间的关系(20分钟)a.引导学生讨论乘除法中各部分之间的关系,如乘法中的因数和积的关系,除法中的被除数、除数和商的关系。
b.进行一些练习,让学生巩固各部分间的关系。
6.总结和评价(10分钟)对乘除法的意义和各部分间的关系进行总结,再次强调乘除法的实际应用。
四、教学资源1.教科书;2.多媒体设备;3.白板和白板笔;4.习题集和练习册。
乘除法的意义和各部分之间的关系

乘除法的意义和各部分之间的关系乘除法的意义和各部分之间的关系序言:乘除法是数学中最基本且常用的运算之一,它们在我们日常生活中的应用广泛,不仅用于解决实际问题,还有助于培养我们的逻辑思维和计算能力。
在本文中,我将深入探讨乘除法的意义以及乘法和除法之间的关系,希望通过这篇文章,您能够对这两个数学运算有更深刻的理解。
第一部分:乘法的意义和作用1)为什么需要乘法?乘法是一种重要的数学运算,它广泛应用于各个领域。
在日常生活中,乘法用于计算物品的总数、计算物体的面积和体积等。
在商业领域,乘法用于计算商品的价格和数量、计算收入和支出之间的关系等。
在科学和工程领域,乘法用于计算速度、力和能量等。
乘法在解决实际问题和计算过程中起着不可或缺的作用。
2)乘法的性质和规律乘法具有一些特殊的性质和规律,这些规律帮助我们简化计算过程,提高计算的效率。
交换律表明乘法的顺序不影响最终的结果,结合律表明乘法的顺序可以随意变换。
乘法还满足分配律,即一个数与两个数的和的乘积等于分别与两个数分别相乘后的和。
这些性质和规律为我们计算提供了便利,同时也体现了乘法在数学中的重要意义。
3)乘法与其他数学概念的关系乘法与其他数学概念之间存在紧密的联系。
乘法与加法之间有着密切的关系,乘法是加法的一种扩展,通过反复地加自身来实现乘法。
在代数学中,乘法与指数运算、根号运算等也有着密切的关系。
乘法还与比例、百分数、几何图形等概念有关。
对乘法的深入理解有助于我们更好地掌握其他数学概念,并在数学问题中灵活应用。
第二部分:除法的意义和作用1)为什么需要除法?除法是乘法的逆运算,它用于解决分配问题和计算比例。
在日常生活中,我们经常会遇到需要平均分配、分享和分割的情况,这时候就需要用到除法。
除法还可以帮助我们计算比例和比率,帮助我们理解事物之间的关系和比较大小。
除法在实际生活中有着广泛的应用。
2)除法的性质和规律除法也具有一些特殊的性质和规律。
除法有唯一性和结合律。
乘除法的意义各部分之间的关系听课笔记

乘除法的意义各部分之间的关系听课笔记乘除法是数学中最基本的运算法则之一,它们的意义和关系可以从多个角度进行理解和解释。
下面是一份关于乘除法的听课笔记,探讨乘除法的意义以及各部分之间的关系。
一、乘法的意义和方法:乘法是表示一个数与另一个数的倍数关系的运算法则。
它反映了数量的增加或减少。
乘法可以通过重复相加或重复移位方法进行计算。
1.乘法的定义:乘法的定义是将两个数相乘得到一个新的数。
乘法的结果称为积,被乘数和乘数称为因数。
乘法符号“×”用来表示乘法。
2.乘法的性质:(1)乘法的交换律:a×b=b×a,乘法的顺序可以交换。
(2)乘法的结合律:(a×b)×c=a×(b×c),乘法运算可以按任意顺序进行。
(3)乘法的分配律:a×(b+c)=a×b+a×c,乘法可以分配到加法或减法上。
二、除法的意义和方法:除法是一种分配或平均数的运算法则,用来确定一些数可以被另一个数等分多少次。
除法可以通过长除法和短除法等方法进行计算。
1.除法的定义:除法是一种运算方法,用来确定一些数可以被另一个数等分多少次。
除法的结果称为商,被除数、除数和商之间的关系满足以下公式:被除数=商×除数+余数。
2.除法的性质:(1)除法的唯一性:对于任意一个被除数和除数(除数不为零),都存在唯一的商和余数。
(2)除法的相对性:a÷b=c意味着a=b×c,即除法可以通过乘法进行验证。
三、乘法和除法的关系:乘法和除法是数学中的基本运算法则,它们之间有密切的关系。
乘法和除法的关系可以从以下几个方面进行理解:1.乘法和除法的逆运算关系:乘法和除法是逆运算关系。
即,符合以下规律:a×b÷b=a和a÷b×b=a。
2.乘法和除法的交换关系:乘法和除法具有一定的交换关系。
乘法的交换律是指乘法的顺序可以交换。
乘除法的意义及各部分间的关系

乘除法的意义及各部分间的关系乘除法是数学中非常基础的运算法则,它们的意义和各部分之间的关系对于数学的理解和运用起着重要作用。
下面将详细讨论乘除法的意义以及各个部分之间的关系。
首先,乘法的意义在于表示将两个或多个数相乘的运算。
它广泛应用于各个领域,如商业、科学、工程等。
乘法可以用来表示重复的加法,提供了一种更简洁和高效的计算方式。
例如,我们可以用乘法来计算3个苹果的价格是多少,即每个苹果的价格乘以3、同时,乘法还可以表示数的扩大或缩小的变化。
例如,将一个数乘以10表示将其变为原来的10倍,而将一个数乘以0.1表示将其变为原来的十分之一除法的意义在于表示将一个数分成若干相等部分的运算。
它常用于解决分配问题,如平均分配、分时利用等。
除法还可以用来表示比例和比率关系,比如计算百分比和利息。
除法是乘法的逆运算,通过除法可以求得乘法的倒数。
例如,如果我们知道4乘以x等于12,那么我们可以通过除法计算出x等于多少,即12除以4等于3乘法和除法之间存在着密切的关系和互补的作用。
乘法是一种累积的运算,可以用来表示相同因子的连续增加。
而除法则是一种分配的运算,可以用来平均地分配总量。
乘法和除法共同构成了乘除法的基本原则,即乘法和除法互为逆运算。
对于任意两个数的乘除运算,可以通过相应的除乘运算将结果还原。
例如,对于两个数a和b,有a乘以b等于c,那么c除以a等于b。
这种逆运算的存在保证了乘除法的完备性和可逆性。
此外,乘法和除法还有一些重要的性质和规律。
首先,乘法满足交换律和结合律,即两个数的乘积和次序无关,而对于多个数的连续乘法,可以任意改变括号的位置。
例如,a乘以b等于b乘以a,以及(a乘以b)乘以c等于a乘以(b乘以c)。
同时,乘法还满足分配律,即一个数乘以两个数之和等于该数分别乘以这两个数再求和。
例如,a乘以(b加上c)等于a乘以b加上a乘以c。
除法则没有满足交换律和结合律,但是满足除法分配律,即一个数除以两个数之差等于该数分别除以这两个数再求差。
乘除法的意义及各部分间的关系

乘除法的意义及各部分间的关系乘除法是数学中最基本且最重要的运算方式之一、它们可以用于解决各种实际问题以及在数学推理和证明中起到重要的作用。
本文将会探讨乘除法的意义以及各部分之间的关系。
乘法是将两个或多个数相乘的运算,而除法则是将一个数分成若干等分的运算。
乘法和除法可以看作是加法和减法的扩展,它们在解决实际问题时比加减法更有力量。
乘法的意义在于求两个或多个数的总和。
它可以表示物体的数量、两点之间的距离、两边的面积等等。
例如,有6个苹果,每个苹果的价格是3元,那么6乘以3等于18,表示购买这些苹果所需的费用。
在几何中,乘法可以用于计算矩形的面积。
如果一个矩形的长是4米,宽是5米,那么4乘以5等于20,表示该矩形的面积为20平方米。
除法的意义在于将一个数分成若干等分。
它可以表示物体的平均数量、平均速度、每人的平均财富等等。
例如,一位教师要将20个苹果平均分给5个学生,那么20除以5等于4,表示每个学生可以得到4个苹果。
在物理中,除法可以用于计算速度。
如果一辆汽车行驶了240公里,用时4小时,那么240除以4等于60,表示该车的平均速度是60公里/小时。
乘法和除法之间有着密切的关系。
乘法可以看作是两个数相乘的运算,而除法则是将一个数除以另一个数的运算。
它们是互逆的运算。
例如,如果4乘以5等于20,那么20除以4等于5、乘除法也满足一些重要的性质,如交换律、结合律和分配律。
交换律表示两个数相乘或相除的结果不受顺序的影响,例如3乘以4等于4乘以3、结合律表示在连续进行多次乘除法时,可以任意改变计算的顺序,例如(2乘以3)乘以4等于2乘以(3乘以4)。
分配律表示乘法对于加法的分配关系,例如2乘以(3加4)等于2乘以3加2乘以4除法还有一个重要的概念,即商和余数。
商是将一个数除以另一个数的结果,表示被除数中包含了多少个除数。
余数是除法运算中被除数除以除数后的剩余部分。
例如,10除以3的商是3,余数是1,表示10中有3个3,剩余1个。
《乘、除法的意义和各部分间的关系》教案

《乘、除法的意义和各部分间的关系》教案
1.提问:你能说说乘、除法中各部分之间有什么关系吗?
出示学习任务:乘、除法各部分之间有什么关系?请你想一想、写一写。
2.反馈交流:
学生作品1:乘法各部分间的关系。
学生作品2:除法各部分间的关系。
追问:在有余数的除法里,被除数与商、除数和余数之间有什么关系?
引导学生借助具体实例,呈现有余数除法算式,思考如何求被除数,进而概括出关系式:被除数=商×除数+余数。
呈现有余数除法的验算,引导学生观察验算方法,发现有余数除法就是用“商×除数+余数=被除数”来验算的。
结合具体的例子,发现(被除数-余数)÷商=除数。
小结:借助具体的例子和已经学过的知识,弄清楚了有余数除法里各部分间的关系,同时也解决了上节课提出的问题。
三、沟通四则运算间的联系
(一)自主提问
学生提出疑问:加、减、乘、除之间有什么关系?
(二)反馈交流
学生作品1:用表格整理四则运算的意义。
学生作品2:画图整理四则运算的关系。
在表达交流中强化对四则运算意义和关系的理解。
小结:通过前面的讨论发现,加、减、乘、除四则运算间存在着紧密的联系,下面做几个练习。
乘除法的意义和各部分间的关系

乘除法的意义和各部分间的关系乘除法是数学中最基本的运算方法之一,它们在解决实际问题时有着重要的意义,并且彼此之间存在密切的关系。
乘法是指将两个或多个数字相乘,得到它们的积。
乘法的操作符为“×”,例如2×3=6、乘法有着以下的意义和应用:1.计数:乘法可以用来表示相同数量的物品的总数。
例如,如果一盒中有3行,每行有4个苹果,那么盒中的总苹果数量等于3×4=122.面积和体积:乘法可以用来计算矩形、正方形和立方体等的面积和体积。
例如,如果一个正方形的边长是3米,那么它的面积等于3×3=9平方米。
3.比率和百分比:乘法可以用来计算比率和百分比。
例如,如果一个商品的原价是100元,打了8折,那么它的折后价等于100×0.8=80元。
乘法的两个部分分别是乘数和被乘数,它们的关系如下:1.乘数:乘数是指要重复的次数或要增加的倍数。
它决定了乘法操作的重复次数或倍数大小。
2.被乘数:被乘数是指要重复的对象或要增加的增量。
它决定了乘法操作的重复对象或增量大小。
乘数和被乘数的关系可以用以下公式表示:积=乘数×被乘数。
例如,在2×3=6的乘法运算中,2是乘数,3是被乘数,6是积。
除法是指将一个数分成若干份,每份的大小相等。
除法的操作符为“÷”,例如6÷3=2、除法有着以下的意义和应用:1.平均分配和分享:除法可以用来平均分配物品和资源,或者分享利润和奖励。
例如,如果有12个苹果要平均分给4个朋友,那么每个朋友获得的苹果数等于12÷4=3个。
2.比率和比例:除法可以用来计算比率和比例。
例如,如果一个油漆桶可以涂料100平方米的墙面,那么涂料的用量等于墙面的面积除以油漆桶能涂料的面积,即面积÷面积。
3.求解未知数:除法可以用来求解未知数。
例如,如果有12个苹果要分给若干个学生,每个学生可以分得3个,那么学生的人数等于苹果的总数除以每个学生分得的苹果数,即总数÷每份数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学内容乘、除法的意义和各部分间的关系(教材第5页~第8页)
教学目标知识与技能:结合具体情境通过对算式变换的比较,理解和掌握乘、除法的意义和各部分之间的关系。
过程与方法:在探索乘、除法各部分之间的关系的过程中,发展抽象、概况的能力,进一步感悟运算本质。
情感、态度与价值观:在用抽象文字表示乘、除法各部分间的关系的过程中,感受数学的内在逻辑性,体会数学的价值。
教学重点理解和掌握加减法各部分之间的关系。
教学难点表示加、减法各部分间的关系。
教学准备多媒体课件
课时安排 1
课时目标
教学过程
(一)创设情境,提出问题。
1.师:同学们,看到屏幕里的图片,有什么感觉?(出示各种美丽的花朵)
预设:
生:非常漂亮,感觉很香……
2.师:是的,花不但是植物繁殖的重要部分,而且还有着很多美好的寓意。
荷花代表着纯洁,牡丹则代表着高贵。
今天这节课我们要用数学的眼光来欣赏花,看看大家能发现什么数学信息。
(出示主题图)
3.师:你能根据图中的信息提出什么数学问题吗?
预设:
生:每个花瓶里插3枝花,4个花瓶一共插多少枝花?
【设计意图】学生学习的过程应该是开放的、是富有美感和艺术感的。
在课的开始,通过对花的欣赏引导学生自主提出数学问题,在激发学生研究兴趣的同时,引出研究问题。
(二)自主探究,乘、除法定义。
1.师:同学们提出的问题能够解决吗?请每个同学自己动手试一试。
2.学生独立解题
3.汇报交流,展示解题过程:
预设:
生1:3+3+3+3=12
生2:3×4=12
4.师:大家都是怎么想的?
预设:
生1:每个花瓶中有3枝花,四个花瓶一共就是4个3相加。
生2:4个3,也可以用乘法表示,就是3×4。
5.师:看来4个3相加也可以表示为3×4。
你认为哪种表示方式更简便呢?为什么?
预设:乘法,因为加数个数多时可以用一个数表示个数。
6.你还能提出什么用乘法计算的问题吗?
(学生提出数学问题)
7.师:用你自己的话说一说什么是乘法?
预设:
生:求几个相同加数和的简便运算叫乘法。
(板书:乘法定义)
8.师:你知道乘法算式中这些数都叫什么名字吗?
介绍乘法算式各部分名称(因数×因数=积)
9.师:在上节课我们学习加、减法时发现一个加法算式可以改写出两个减法算式。
今天你能结合情景和这个乘法算式也改写出用其他运算方法计算的问题吗?小组讨论一下。
9.学生讨论并列式。
(2)12÷3=4
(3)12÷4=3
10.师:谁来说一说,你是怎样想的?这两个除法算式代表什么含义?
预设:
生1:有12枝花,每3枝插一瓶,可以插几瓶?
12÷3=4
生2:有12枝花,平均插到4个花瓶里,每个花瓶插几枝?
12÷4=3
11.师:为什么用除法计算呢?
预设:
生:因为知道了两个因数的积,求另一个因数。
12.师:你能提出一个用除法解决的实际问题吗?
13.师:想一想什么是加法,什么是减法?然后,请你试着用自己的话说一说什么是除法?
预设:
生:已知两个因数的积与其中一个因数,求另一个因数的运算叫除法。
(板书:除法定义)
14.师:你知道除法算式中这些数又叫什么名字吗?
介绍除法算式各部分名称(被除数÷除数=商)
(三)小组交流,明确关系
1.师:观察黑板上的算式,再想一想我们是如何研究加、减法的,你有什么发现?
2.师:我们能根据一个加法算式很快地写出两个减法算式,又能根据一个乘法算式很快写出两个除法算式,现在你有什么想研究的?
预设:
生:乘、除法各部分到底有怎样的关系?
3.师:同学们非常善于思考,看来我们这节课除了要知道什么是乘、除法,也需要研究它们之间的关系。
下面我们就来研究一下。
(板书课题:乘、除法各部分之间的关系)
4.师:根据黑板上的三个算式和上节课的学习经验(课件出示加、减法各部分关系),你能发现乘、除法各部分之间有怎样的关系吗?
5.小组讨论并组内交流
6.整理总结:
(1)乘法各部分间的关系:
积=因数×因数
因数=积÷另一个因数
(2)除法各部分间的关系:
商=被除数÷除数
除数=被除数÷商
被除数=商×除数
7.师:请同学们结合刚才的算式,验证大家总结的发现。
8.师:请观察我们总结的结论,看看你又有什么新的发现?小组交流一下。
预设:
生1:乘法是除法的相反运算、
除法是乘法的相反运算。
生2:除法是乘法的逆运算。
9.学以致用:数学书P6做一做
根据36×14=504,不计算直接写出后面算式的结果。
504÷14=(),504÷36=()
10.抽象概括,总结升华。
我们通过这三个算式的联系,初步了解了乘、除法各部分之间的关系,而且验证了乘、除法之间的关系。
(1)乘法各部分间的关系:
积=因数×因数
因数=积÷另一个因数
(2)除法各部分间的关系:
商=被除数÷除数
除数=被除数÷商
被除数=商×除数
希望大家能灵活运用加减法各部分之间的关系来解决问题。
11.师:关于乘、除法的知识研究到这里,你还有什么疑问或还想深入研究的吗?
预设:
生:在有余数的除法里,被除数与商、除数和余数之间有什么关系呢?
12.师:关于这个问题大家是怎么想的呢?具体的内容我们下节课就要研。