主成分分析、因子分析步骤

合集下载

主成分、因子分析步骤

主成分、因子分析步骤

主成分分析、因子分析步骤因子分析1 【分析】→【降维】→【因子分析】(1)描述性统计量(Descriptives)对话框设置KMO和Bartlett的球形度检验(检验多变量正态性和原始变量是否适合作因子分析)。

(2)因子抽取(Extraction)对话框设置方法:默认主成分法。

主成分分析一定要选主成分法分析:主成分分析:相关性矩阵。

输出:为旋转的因子图抽取:默认选1.最大收敛性迭代次数:默认25.(3)因子旋转(Rotation)对话框设置因子旋转的方法,常选择“最大方差法”。

“输出”框中的“旋转解”。

(4)因子得分(Scores)对话框设置“保存为变量”,则可将新建立的因子得分储存至数据文件中,并产生新的变量名称。

(5)选项(Options)对话框设置2 结果分析(1)KMO及Bartlett’s检验KMO 和Bartlett 的检验取样足够度的Kaiser-Meyer-Olkin 度量。

.515Bartlett 的球形度检验近似卡方df6Sig..706当KMO值愈大时,表示变量间的共同因子愈多,愈适合作因子分析。

根据Kaiser的观点,当KMO>(很棒)、KMO>(很好)、KMO>(中等)、KMO>(普通)、KMO>(粗劣)、KMO<(不能接受)。

(2)公因子方差公因子方差起始撷取卫生.855饭量.846等待时间.819味道.919亲切.608撷取方法:主体元件分析。

Communalities(称共同度)表示公因子对各个变量能说明的程度,每个变量的初始公因子方差都为1,共同度越大,公因子对该变量说明的程度越大,也就是该变量对公因子的依赖程度越大。

共同度低说明在因子中的重要度低。

一般的基准是<就可以认为是比较低,这时变量在分析中去掉比较好。

(3)解释的总方差第二列统计的值是各因子的特征值,即各因子能解释的方差,一般的,特征值在1以上就是重要的因子;第三列%是各因子的特征值与所有因子的特征值总和的比,也称因子贡献率;第四列是因子累计贡献率。

因子分析步骤

因子分析步骤

因子分析步骤因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。

因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。

因子分析通常包括以下四个基本步骤。

1. 确定原有变量是否适合进行因子分析因子分析的目的,是从原有众多的变量中综合出少量具有代表意义的因子变量,这必定有一个潜在的前提要求,即原有变量之间应具有较强的相关关系。

不难理解,如果原有变量之间不存在较强的相关关系,那么根本无法从中综合出能够反映某些变量共同特性的几个较少的公因子变量来。

因此,一般在因子分析时,需要对原有变量进行相关分析。

最简单的方法是计算变量之间的相关系数矩阵并进行统计检验。

如果相关系数矩阵中的大部分相关系数都小于0.3且末通过统计检验,那么,这些变量就不适合作因子分析。

2. 确定因子变量构造因子变量是因子分析的关键步骤之一。

因子分析中有多种确定因子变量的方法,根据所依据的准则不同,一般可以分为两类:一类是基于主成分分析模型的主成分分析法,另一类是基于前面介绍的公因子模型的公因子分析法,包括主轴因子法、极大似然法、最小二乘法、alpha法等。

3. 因子变量的命名解释因子变量的命名解释是因子分析的另一个核心问题。

对上面计算得到的因子载荷u ij 进行观察,一般会发现这样的现象:u ij 的绝对值可能在某一行的许多列上都有较大的取值,或u ij 的绝对值可能在某一列的许多行上都有较大的取值。

这表明:某个观测变量x i 可能同时与几个因子变量都有比较大的相关关系。

也就是说,某个观测变量x i 的信息需要由若干个因子变量来共同解释;同时,虽然一个因子变量可能能够解释许多变量的信息,但它却只能解释某个变量的一少部分信息,不是任何一个变量的典型代表。

这样的情况必然使得某个因子变量的实际含义模糊不清。

而实际分析工作中,人们却希望对因子变量的含义有比较清楚的认识。

因此,希望通过某种手段便每个变量在尽可能少的因子上又有比较高的载荷,即:在理想状态下,让某个变量在某个因子上的载荷趋于1,而在其他因子上的载荷趋于0。

因子分析、主成分分析

因子分析、主成分分析

通过主成分分析,可以研究多个变量之间的相关性,揭示变量
之间的内在联系。
多元回归分析
03
在多元回归分析中,主成分分析可以用来消除变量间的多重共
线性,提高回归分析的准确性和稳定性。
金融数据分析
风险评估
在金融数据分析中,主成分分析可以用来评估投资组合的风险, 通过提取主要因子来反映市场的整体波动。
市场趋势分析
主成分分析案例:金融数据分析
总结词
主成分分析用于金融数据分析中,能够 降低数据维度并揭示主要经济趋势。
VS
详细描述
在金融领域,主成分分析被广泛应用于股 票、债券等资产组合的风险评估和优化。 通过对大量金融数据进行主成分分析,可 以提取出几个关键主成分,这些主成分代 表了市场的主要经济趋势。投资者可以利 用这些信息进行资产配置和风险管理。
特征提取
主成分分析能够提取出数据中的 主要特征,突出数据中的主要变 化方向,有助于揭示数据的内在 规律。
数据可视化
降低数据维度后,数据的可视化 变得更加容易,有助于直观地理 解和分析数据。
多元统计
多元数据描述
01
主成分分析可以用来描述多元数据的总体特征,提供对多元数
据分布的整体理解。
多元相关分析
02
目的
通过找出影响观测变量的潜在结构, 更好地理解数据的意义,简化复杂数 据的分析,并解决诸如多重共线性等 问题。
因子分析的原理
1 2 3
基于相关性
因子分析基于观测变量之间的相关性,通过找出 这些相关性背后的公因子来解释变量之间的依赖 关系。
降维
通过提取公因子,将多个观测变量的复杂关系简 化为少数几个潜在因子的线性组合,实现数据的 降维。

因子分析和主成分分析的方法步骤

因子分析和主成分分析的方法步骤

因子分析和主成分分析的方法步骤
一、主成分分析
步骤(详细步骤见算法大全低二十九章:多元分析)
1)对原始数据进行标准化处理
2)计算相关系数矩阵R
3)计算特征值和特征向量
(要对特征向量进行正则化,即特征向量值/sqrt(对应的特征值),这一步需要自己计算)
4)根据累计贡献率得到主成分P,计算综合评价值
5)②计算综合得分
二、因子分析
步骤(详细步骤见算法大全低二十九章:多元分析)
1.选择分析的变量
2.计算所选原始变量的相关系数矩阵
3.提出公共因子
4.因子旋转
5.计算因子得分
用SPSS解决步骤:
注:以上为主成分分析和因子分析对应的操作步骤,对得到的结果进行相应的分析可以参考《SPSS 统计分析高级教程》中的主成分分析和因子分析。

主成分分析 因子分析

主成分分析 因子分析

主成分分析 因子分析主成分分析和因子分析是很重要的统计分析方法。

两者都是用于对一组同质或异质的变量进行数据探索研究的技术,它们都可以提供有价值的结论,增强数据有意义的理解。

1. 主成分分析主成分分析(Principal Component Analysis,简称PCA)是从一大组变量中提取具有代表性的正交变量,组成一个新的变量集合。

PCA通过减少变量数量,减少多变量间相关性带来的重复性,从而提升数据分析的准确性和有效性。

注意减少变量数量不是减少观测样本数量,而是把原先高维度的变量合并成一组较低维度的变量。

PCA算法的基本思想是:它分析原始数据集中的变异,并从中提取主要的变量,然后将这些变量的组合(叫做主成分)用推断法来重新构建原来的数据集,最后能够说明原始变量的结构,对被研究的变量结构有系统的解释。

2. 因子分析因子分析(Factor Analysis,简称FA)是一种用来探索相关变量之间潜在关系的统计分析方法。

这一方法注重的是把一系列的变量映射到一个尽可能少的多个隐变量的过程。

其中,这些隐变量就是“因子”,它们是原来变量的代表性变量,且变量之间有因果或相关的结构关系。

FA的基本思想是,将一组变量之间的复杂的相关关系映射到一组基本关系,即因子上。

然后,当每个变量映射到一个或几个因子上后,只需要解释因子就能够完全解释自变量变化的原因。

常用的因子模型有因子旋转、因子分层、因子波动等。

相比较,主成分分析和因子分析都有各自的专业领域,它们都有不同的数据需求和分析方法,在不同的数据处理中也表现出各自的优势和劣势。

主成分分析处理比较复杂的数据,可以根据原始变量的关系构建视图,但不涉及因果关系的推断;而因子分析可以推导出被研究的变量之间的关系,进而探索或验证其原因。

卫生统计学:主成分分析与因子分析

卫生统计学:主成分分析与因子分析
〔factor loading〕矩阵
通常先对x作标准化处理,使其均值为 零,方差为1.这样就有
x i a i1 f1 a i2 f2 a im fm e i
假定〔1〕fi的均数为 i22 0,方差为1; 〔2〕ei的均数为0,方差为δi; 〔3〕 fi与ei相互独立.
那么称x为具有m个公共因子的因子模型
〔2〕δi称为特殊方差〔specific variance〕,是不能由公共因子解 释的局部
▪ 因子载荷〔负荷〕aij是随机变量xi与 公共因子fj的相关系数。
▪设
p
g
2 j
a
2 ij
i1
j 1, 2 ,..., m
▪ 称gj2为公共因子fj对x的“奉献〞, 是衡量公共因子fj重要性的一个指标。
根本思想:使公共因子的相对负荷 〔lij/hi2〕的方差之和最大,且保持 原公共因子的正交性和公共方差总和 不变。
可使每个因子上的具有最大载荷的变量 数最小,因此可以简化对因子的解释。
〔2〕斜交旋转〔oblique rotation〕
因子斜交旋转后,各因子负荷发生 了较大变化,出现了两极分化。各 因子间不再相互独立,而彼此相关。 各因子对各变量的奉献的总和也发 生了改变。
ai2j
g
2 j
i1
▪ 极大似然法〔maximum likelihood factor〕
▪ 假定原变量服从正态分布, 公共因子和特殊因子也服从正态分 布,构造因子负荷和特殊方差的似 然函数,求其极大,得 factor〕
▪ 设原变量的相关矩阵为 R=(rij),其逆矩阵为R-1=(rij)。 各变量特征方差的初始值取为逆 相关矩阵对角线元素的倒数, δi’=1/rii。那么共同度的初始值 为(hi’) 。

数据分析中的因子分析和主成分分析

数据分析中的因子分析和主成分分析

数据分析中的因子分析和主成分分析在数据分析领域,因子分析和主成分分析是两种常用的多变量分析方法。

它们可以用来处理大量的数据,找出数据的内在规律,并将数据简化为更少的变量。

本文将介绍因子分析和主成分分析的定义、应用以及它们在数据分析中的区别和联系。

一、因子分析因子分析是一种用于研究多个变量之间的潜在因素结构及其影响的统计方法。

它通过将多个观测变量转化为少数几个无关的因子,来解释变量之间的相关性。

因子分析的基本思想是将多个相关观测变量归因于少数几个潜在因子,这些潜在因子不能被观测到,但可以通过观测变量的变化来间接地推断出来。

因子分析通常包括两个主要步骤:提取因子和旋转因子。

提取因子是指确定能够解释原始变量方差的主要共性因子,常用的方法有主成分分析法和最大似然估计法。

旋转因子是为了减少因子之间的相关性,使得因子更易于解释。

常用的旋转方法有正交旋转和斜交旋转。

因子分析的应用非常广泛,可以用于市场研究、社会科学调查、心理学、金融等领域。

例如,在市场研究中,因子分析可以用来确定消费者购买行为背后的潜在因素,从而更好地理解市场需求。

二、主成分分析主成分分析是一种通过线性变换将原始变量转化为一组线性无关的主成分的统计方法。

主成分是原始变量的线性组合,具有较大的方差,能够尽可能多地解释原始数据。

主成分分析的主要思想是将原始变量投影到一个新的坐标系中,使得新坐标系上的第一主成分具有最大方差,第二主成分具有次最大方差,以此类推。

通过选择解释原始数据方差较多的前几个主成分,我们可以实现数据的降维和主要信息提取。

主成分分析在数据降维、特征提取和数据可视化等领域有广泛的应用。

例如,在图像处理中,主成分分析可以用来压缩图像数据、提取重要特征,并且可以在保留图像主要信息的同时减少存储空间的需求。

三、因子分析和主成分分析的区别和联系因子分析和主成分分析在某些方面有相似之处,但也存在明显的区别。

首先,因子分析是用于研究多个观测变量之间的潜在因素结构,而主成分分析是通过线性变换将原始变量转化为一组线性无关的主成分。

主成分分析和因子分析(朱艳科)

主成分分析和因子分析(朱艳科)

主成分分析和因子分析法一、主成分分析概论主成分分析的工作对象是样本点×定量变量类型的数据表。

它的工作目标,就是要对这种多变量的平面数据表进行最佳综合简化。

也就是说,要在力保数据信息丢失最少的原则下,对高维变量空间进行降维处理。

很显然,识辨系统在一个低维空间要比一个高维空间容易得多。

英国统计学家斯格特(M.Scott )在1961年对157个英国城镇发展水平进行调查时,原始测量的变量有57个。

而通过主成分分析发现,只需5个新的综合变量(它们是原变量的线性组合),就可以95%的精度表示原数据的变异情况,这样,对问题的研究一下子从57维降到5维。

可以想象,在5维空间中对系统进行任何分析,都比在57维中更加快捷、有效。

另一项十分著名的工作是美国的统计学家斯通(Stone)在1947年关于国民经济的研究。

他曾利用美国1929~1938年各年的数据,得到了17个反映国民收入与支出的变量要素,例如雇主补贴、消费资料和生产资料、纯公共支出、净增库存、股息、利息和外贸平衡等等。

在进行主成分分析后,竟以97.4%的精度,用三个新变量就取代了原17个变量。

根据经济学知识,斯通给这三个新变量要别命名为总收入1F 、总收入变化率2F 和经济发展或衰退的趋势3F (是时间t 的线性项)。

更有意思的是,这三个变量其实都是可以直接测量的。

二、主成分分析的基本思想与理论1、主成分分析的基本思想在对某一事物进行实证研究中,为了更全面、准确地反映出事物的特征及其发展规律,人们往往要考虑与其有关系的多个指标,这些指标在多元统计中也称为变量。

这样就产生了如下问题:一方面人们为了避免遗漏重要的信息而考虑尽可能多的指标,而另一方面随着考虑指标的增多增加了问题的复杂性,同时也由于各指标均是对同一事物的反映,不可避免地造成信息的大量重叠,这种信息有时甚至会抹杀事物的真正特征与内在规律。

基于上述问题,人们就希望在定量研究中涉及的变量较少,而得到的信息量又较多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主成分分析、因子分析步骤
最大收敛性迭代次数:默认25.
(3)因子旋转(Rotation)对话框设置
因子旋转的方法,常选择“最大方差法”。

“输出”框中的“旋
转解”。

(4)因子得分(Scores)对话框设置
“保存为变量”,则可将新建立的因子得分储存至数据文件中,
并产生新的变量名称。

(5)选项(Options)对话框设置
2结果分析
(1)KMO及Bartlett’s检验
(很

Communalities(称共同度)表示公因子对各个变量能说明的程度,每个变量的初始公因子方差都为1,共同度越大,公因子对该变量说明的程度越大,也就是该变量对公因子的依赖程度越大。

共同度低说明在因子中的重要度低。

一般的基准是<0.4就可以认为
是比较低,这时变量在分析中去掉比较好。

(3)解释的总方差
至此已经将5个问项降维到两个因子,在数据文件中可以看到增加了2个变量,fac1_1、fac2_1,即为因子得分。

(4)成分矩阵与旋转成分矩阵
成分矩阵是未旋转前的因子矩阵,从该表中并无法清楚地看出每
个变量到底应归属于哪个因子。

旋转后的因子矩阵,从该表中可清楚地看出每个变量到底应归属于哪个因子。

此表显示旋转后原始的所有变量与新生的2个公因子之间的相关程度。

一般的,因子负荷量的绝对值0.4以上,认为是显着的变量,超过0.5时可以说是非常重要的变量。

如味道与饭量关于因子1的。

=-0.010*X1+0.425*X2-0.038*X3+0.408*X4-0.316*X5
因子2的分数
=0.447*X1-0.036*X2+0.424*X3+0.059*X4-0.371*X5
(6)因子转换矩阵
元件转换矩阵
元件 1 2
1 .723 -.691
2 .691 .723
撷取方法:主体元件分析。

转轴方法:具有Kaiser正规化的最
大变异法。

因子转换矩阵是主成分形式的系数。

(7)因子得分协方差矩阵

【得分】:“保存为变量”
【方法】:“回归”;再选中“显示因子得分系数矩阵”。

2结果分析
(1)相关系数矩阵
相关性矩阵
食品 衣着 燃料 住房 交通和通讯
娱乐教育文化
相关
食品 1.000 .692 .319 .760 .738
.556 衣着 .692 1.000 -.081 .663 .902 .389 燃料 .319 -.081 1.000 -.089 -.061 .267 住房 .760 .663 -.089 1.000 .831 .387 交通和通讯 .738 .902 -.061 .831 1.000 .326 娱乐教育文化
.556
.389
.267
.387
.326
1.000
两两之间的相关系数大小的方阵。

通过相关系数可以看到各个变量之间的相关,进而了解各个变
、KMO <
Communalities
起始 撷取 食品 1.000 .878 衣着 1.000 .825 燃料 1.000 .841 住房 1.000 .810 交通和通讯
1.000
.919
撷取方法:主体元件分析。

Communalities(称共同度)表示公因子对各个变量能说明的程度,每个变量的初始公因子方差都为1,共同度越大,公因子对该变量说明的程度越大,也就是该变量对公因子的依赖程度越大。

共同度低说明在因子中的重要度低。

一般的基准是<0.4就可以认为
的信
(5)成分矩阵(因子载荷矩阵)
元件矩阵a
元件
1 2
食品.902 .255
衣着.880 -.224
燃料.093 .912
住房.878 -.195
交通和通讯.925 -.252
撷取方法:主体元件分析。

a.撷取2个元件。

该矩阵并不是主成分1和主成分2的系数。

主成分系数的求法:各自主成分载荷向量除以主成分方差的算数平方根。

则第1主成分的各个系数是向量(0.925,0.902,0.880,
.30.478,
568
娱(7
【数据】——【排序个案】。

相关文档
最新文档