自由基聚合方法

合集下载

第四章:自由基聚合方法

第四章:自由基聚合方法

→ 2SO4·
B. 水溶性氧化 —还原引发剂
例 过硫酸盐 - 亚硫酸盐
_ 2 S2O8
+ SO3
_ 2

_ 2 SO4
+
SO4· +
_ ·SO3
过氧化氢 - 亚铁盐 H2O2 +Fe2+ → OH + HO· + Fe3+
_
(3)乳化剂
乳化剂在乳液聚合中的作用:
a. 降低体系的表面张力使单体形成细小液滴; b. 形成胶束,增溶单体
产物特点与用途 纺丝液 配制纺丝液 制备聚乙烯醇、 维纶的原料
丙烯腈 氧-还体系 醋酸乙烯酯 丙烯酸酯类 丁二烯 AIBN BPO 配位催化剂 BuLi BF3
涂料、粘合剂
顺丁橡胶 低顺式聚丁二烯
异丁烯
异丁烷
阳离子聚合
粘合剂、密封剂
聚醋酸乙烯酯(PVAc)和聚乙烯醇(PVA)
醋酸乙烯酯,甲醇(乙醇)溶液,BPO;65‐70 ℃,溶剂回 流带走聚合热;利用向溶剂的链转移控制分子 量,单体浓度
9
体积收缩:100%聚合时的体积收缩 1 1 ΔVmax w 0 ( ) dm dp
60oC: dm=0.89g/mL; dp=1.18g/ml, ∆Vmax =27mL,V0 =w/dm =112mL
体积收缩百分数= 27/112 =24%
20oC: dm=0.94g/mL; dp=1.208g/mL,∆Vmax =25.7mL 体积收缩百分数=25.7/102=25.2%
不足 反应热难导出、易局部过热、自动加速严重。 措施 降低反应温度,分段聚合,强化传热
8
3、应用实例 有机玻璃:PMMA

自由基聚合的四种方法

自由基聚合的四种方法

自由基聚合的四种方法自由基聚合是一种重要的化学反应,它可以用于合成各种高分子材料。

这种反应的基本原理是将单体分子中的双键开裂,形成自由基,再将自由基与其他单体分子结合,形成高分子链。

这种反应可以通过多种方法实现。

本文将介绍自由基聚合的四种方法,包括自由基引发聚合、自由基链转移聚合、自由基共聚合和自由基接枝聚合。

一、自由基引发聚合自由基引发聚合是最常见的自由基聚合方法。

这种方法需要将引发剂加入到单体中,引发剂可以是过氧化物、硫代硫酸酯等。

在引发剂的作用下,单体分子中的双键开裂,形成自由基。

这些自由基与其他单体分子结合,形成高分子链。

自由基引发聚合是一种高效的方法,可以通过调节引发剂的种类和用量来控制聚合反应的速率和分子量分布。

但是,这种方法容易产生副反应,如引发剂自身的分解和自由基的重组,这些副反应会影响聚合反应的效果。

二、自由基链转移聚合自由基链转移聚合是一种可以控制分子量分布的自由基聚合方法。

这种方法需要将链转移剂加入到单体中,链转移剂可以是醇、硫醇等。

在链转移剂的作用下,自由基聚合链上的氢原子被转移,形成新的自由基,这些自由基与单体结合,形成新的高分子链。

由于链转移剂的作用,聚合反应过程中产生的高分子链会变短,从而控制聚合反应的分子量分布。

自由基链转移聚合是一种可控性较好的聚合方法,可以得到具有狭窄分子量分布的高分子材料。

但是,链转移剂的种类和用量需要进行精确的控制,否则会影响聚合反应的效果。

三、自由基共聚合自由基共聚合是一种将两种或多种单体分子同时参与聚合反应的方法。

这种方法可以得到具有复合性能的高分子材料,如耐热性、耐化学性等。

在共聚反应中,不同单体分子之间的反应速率和选择性不同,需要通过调节反应条件来控制不同单体分子的参与程度,从而得到理想的高分子材料。

自由基共聚合是一种多样性较好的聚合方法,可以得到具有多种性质的高分子材料。

但是,不同单体分子之间的反应速率和选择性需要进行精确的控制,否则会影响聚合反应的效果。

自由基聚合方法

自由基聚合方法
解决办法
预聚 在反应釜中进行,转化率达10~40%,放出一部 分聚合热,有一定粘度 后聚 在模板中聚合,逐步升温,使聚合完全
.
本体聚合根据聚合产物是否溶于单体可分为 两类: (i)均相聚合:聚合产物可溶于单体,如苯乙 烯、MMA等; (ii)非均相聚合(沉淀聚合): 聚合产物不溶于单体,如乙烯、聚氯乙烯等,在 聚合过程中聚合产物不断从聚合体系中析出,产 品多为白色不透明颗粒。在沉淀聚合中,由于聚 合产物不断析出,体系粘度不会明显增加。
N高达1014 个/ cm3,[M·]可达10-7 mol / L,比典型自 由基聚合高一个数量级
乳胶粒中单体浓度高达5 mol / L,故乳液聚合速率较快
(2)聚合度
设:体系中总引发速率为ρ(生成的自由基个数/ ml • s)
对一个乳胶粒,引发速率为 ri ,增长速率为 rp
则,初级自由基进入一个聚合物粒子的速率为
单体
单体和乳化
液滴
剂在聚合前
的三种状态
极少量单体和少量乳化剂以分子分散状态溶解在水中 大部分乳化剂形成胶束,约 4 ~5 n m,1017-18个/ cm3 大部分单体分散成液滴,约 1000 n m ,1010-12个/ cm3
.
聚合场所:
水相不是聚合的主要场所;
单体液滴也不是聚合场所;
聚合场所在胶束内 胶束比表面积大,内部单体浓度很高,提供了自由 基进入引发聚合的条件
.
乳液聚合恒速期的聚合速率表达式为
Rp
103Nnkp[M] NA
当 乳胶粒中的自由基的解吸与吸收自由基的速率 相比可忽略不计
粒子尺寸太小不能容纳一个以上自由基时,
则 n 0.5
苯乙烯在很多情况下都符合这种情况

高分子化学复习简答题(五)--聚合方法(精)

高分子化学复习简答题(五)--聚合方法(精)

高分子化学复习简答题(五)---聚合方法学校名称:江阴职业技术学院院系名称:化学纺织工程系时间:2017年3月10日1、比较自由基聚合的四种聚合方法。

实施方法本体聚合溶液聚合悬浮聚合乳液聚合配方主要成分单体、引发剂单体引发剂、溶剂单体、引发剂、分散剂、水单体、引发剂、乳化剂、水聚合场所单体内溶剂内液滴(单体)内胶束内聚合机理自由基聚合一般机理,聚合速度上升聚合度下降容易向溶剂转移,聚合速率和聚合度都较低类似本体聚合能同时提高聚合速率和聚合度生产特征设备简单,易制备板材和型材,一般间歇法生产,热不容易导出传热容易,可连续生产。

产物为溶液状。

传热容易。

间歇法生产,后续工艺复杂传热容易。

可连续生产。

产物为乳液状,制备成固体后续工艺复杂产物特性聚合物纯净。

分子量分布较宽。

分子量较小,分布较宽。

聚合物溶液可直接使用较纯净,留有少量分散剂留有乳化剂和其他助剂,纯净度较差2、悬浮聚合的配方至少有哪几个组分?单靠搅拌能不能得到聚合物颗粒?加入悬浮稳定剂的目的和作用是什么?常用的悬浮稳定剂有哪几种?影响聚合产物粒径大小因素有哪些?悬浮聚合的主要缺点是什么?答:①悬浮聚合的配方一般至少有四个组分,即单体,引发剂,水和悬浮稳定剂。

②搅拌的剪切力可使油状单体在水中分散成小液滴。

当液滴分散到一定程度后,剧烈搅拌反而有利于细小液滴的并和(成大液滴),特别是当聚合反应发生后,由于液滴中含有一定量的聚合物,此时搅拌增大了这些液滴的碰撞粘结概率,最后导致聚合物结块,所以单靠搅拌不能得到稳定的悬浮体系,因而体系中必须③加入悬浮剂,以降低表面张力,使分散的小液滴表面形成一层保护膜,防止彼此并和和相互粘结,从而使聚合在稳定的悬浮体系中的液滴中进行。

如果只加悬浮剂,而不进行搅拌,则单体就不会自动分散成小液滴;同样不能形成稳定的悬浮体系。

④可作悬浮剂的物质有:水溶性聚合物如聚乙烯醇,明胶和苯乙烯-马来酸酐共聚物等;水不溶性无机物如磷酸钙,碳酸镁,碳酸钡和硫酸钡等。

高分子物理化学-自由基聚合的方法

高分子物理化学-自由基聚合的方法
10
第四章 聚合方法
例四. 乙烯高压连续气相本体聚合 例四 聚合条件:压力150~200MPa, 温度 温度180~200℃ ,微量氧 聚合条件:压力 ~ ~ ℃ 作引发剂。 (10-6~ 10-4mol/L )作引发剂。 聚合工艺:连续法,管式反应器,长达千米。 聚合工艺:连续法,管式反应器,长达千米。停留时间几 分钟,单程转化率15%~30%。 分钟,单程转化率 ~ 。 易发生分子内转移和分子间转移,前者形成短支链, 易发生分子内转移和分子间转移,前者形成短支链,后者 长支链。平均每个分子含有50个短支链和一个长支链 个短支链和一个长支链。 长支链。平均每个分子含有 个短支链和一个长支链。 由于高压聚乙烯支链较多,结晶度较低, 由于高压聚乙烯支链较多,结晶度较低,仅55%~65%, ~ , Tm为105~110 ℃,密度:0.91~0.93。故称“低密度聚乙烯。” 密度: ~ ~ 。故称“低密度聚乙烯。 熔体流动性好,适于制备薄膜。 熔体流动性好,适于制备薄膜。
6
第四章 聚合方法
例一. 例一 聚甲基丙烯酸甲酯板材的制备 单体, 将MMA单体 引发剂 单体 引发剂BPO或AIBN, 增塑剂和脱模剂置于 或 普通搅拌釜内, 转化率, 普通搅拌釜内 90~95℃下反应至 ℃下反应至10~20%转化率 成为粘稠的 转化率 液体。停止反应。将预聚物灌入无机玻璃平板模具中, 液体。停止反应。将预聚物灌入无机玻璃平板模具中,移入 热空气浴或热水浴中,升温至45~50℃,反应数天,使转化 热空气浴或热水浴中,升温至 ℃ 反应数天, 率达到90%左右。然后在 左右。 率达到 左右 然后在100~120℃高温下处理一至两天, ~ ℃高温下处理一至两天, 使残余单体充分聚合。 使残余单体充分聚合。 PMMA为非晶体聚合物,Tg=105 ℃,机械性能、耐光耐 为非晶体聚合物, 机械性能、 为非晶体聚合物 以上, 候性均十分优异,透光性达90%以上,俗称“有机玻璃”。 候性均十分优异,透光性达 以上 俗称“有机玻璃” 广 泛用作航空玻璃、光导纤维、标牌、指示灯罩、仪表牌、 泛用作航空玻璃、光导纤维、标牌、指示灯罩、仪表牌、牙 托粉等。 托粉等。

自由基溶液聚合原理及生产工艺

自由基溶液聚合原理及生产工艺
详细描述
为了降低生产成本和提高生产效率,研究者们不断对聚合工艺进行优化和改进。这些优化和改进包括 改进反应条件、提高反应转化率、降低能耗和减少废弃物排放等。这些措施能够有效地降低生产成本 和提高生产效率,同时也有助于保护环境。
高性能聚合物材料的研发
总结词
高性能聚合物材料的研发是自由基溶液聚合技术的重要应用方向,它们在航空航天、电子信息、生物医疗等领域 具有广泛的应用前景。
加工性能
由于具有良好的溶解性和流动性,自 由基溶液聚合的聚合物适合于采用注 塑、挤出、吹塑等加工工艺,便于生 产各种形状和尺寸的制品。
04 自由基溶液聚合技术发展 与展望
新催化剂与引发剂的开发
总结词
新催化剂与引发剂的开发是自由基溶液聚合技术发展的关键,它们能够提高聚合 效率和聚合物性能。
详细描述
详细描述
随着科技的不断进步,高性能聚合物材料的研发越来越受到关注。这些高性能聚合物材料具有优异的力学性能、 电性能、热性能和化学性能等,在航空航天、电子信息、生物医疗等领域具有广泛的应用前景。通过自由基溶液 聚合技术的不断发展,相信高性能聚合物材料的研发将取得更多的突破和进展。
05 自由基溶液聚合生产安全 与环保
自由基溶液聚合原理及生产工艺
contents
目录
• 自由基溶液聚合原理 • 自由基溶液聚合生产工艺 • 自由基溶液聚合产品性能与应用 • 自由基溶液聚合技术发展与展望 • 自由基溶液聚合生产安全与环保
01 自由基溶液聚合原理
自由基聚合定义
自由基聚合是一种常见的聚合反应类型,它通过引发剂引发 单体分子形成自由基,然后这些自由基与单体分子发生连锁 聚合反应,生成高分子聚合物。
后处理工艺的选择和操作对聚合物质 量和产率具有重要影响,需根据具体 情况进行优化和控制。

第三章自由基聚合工艺

第三章自由基聚合工艺
第3章 自由基聚合生产工艺
3.1 自由基聚合工艺基础 3.2 本体聚合生产工艺 3.3 悬浮聚合生产工艺 3.4 溶液聚合生产工艺 3.5 乳液聚合生产工艺
3.1 自由基聚合工艺基础
◆自由基聚合反应是当前高分子合成工业中应用最广泛 的化学反应之一
◆自由基聚合反应适用单体:乙烯基单体、二烯烃类单 体
影响聚合物平均分子量的主要因素:反应温度、引发 剂浓度和单体浓度、链转移剂的种类和用量
(1)聚合反应温度升高,所得聚合物的平均分子量降低 (2)引发剂用量对聚合物平均分子量发生显著的影响。
(动力学链长V=K[M]/[I]0.5
(3)链转移反应导致所得聚合物的分子量显著降低,对 获得高分子量聚合物不利,但可用来控制产品的平均 分子量,甚至还可用来控制产品的分子量。
混炼后用于成型 注塑成型用 假牙齿、牙托等
聚合物溶液 直接用于纺丝或溶解后
或颗粒
纺丝
聚合物溶液 直接用来转化为聚乙烯 醇
表2 四种聚合方法的工艺特点
聚合方法
聚合 主要操作方式 过程 反应温度控制
单体转换率 分离 工序复杂程度 回收 及后 动力消耗 处理 过程 产品纯度
废水废气
本体聚 乳液聚合 合
连续 连续
7.氯乙烯自由聚合时,聚合速率用 引发剂用量 调 节,而聚合物的相对分子质量用 聚合温度 控制。
第3章 自由基聚合生产工艺
3.1 自由基聚合工艺基础 3.2 本体聚合生产工艺 3.3 悬浮聚合生产工艺 3.4 溶液聚合生产工艺 3.5 乳液聚合生产工艺
3.2 本体聚合生产工艺
本体聚合:单体中加有少量引发剂或不加引发剂依赖热 引发,而无其他反应介质存在的聚合实施方法。
① 过氧化物类
通式:R-O-O-H 或 R-O-O-R (R可为烷基、芳基、酰基、碳酸酯基、磺酰基等)

3.2 自由基 聚合方法

3.2 自由基 聚合方法

3
3.2 自 由 基 链 式 聚 合 反 应
2. 溶液聚合 溶液聚合是将单体和引发剂溶于适当溶剂中,在溶液状态下进 行的聚合反应。 生成的聚合物溶于溶剂的叫均相溶液聚合;聚合产物不溶于溶 剂的叫非均相溶液聚合。 优点: (i)聚合热易扩散,聚合反应温度易控制; (ii)体系粘度低,自动加速作用不明显;反应物料易输送; (iii)体系中聚合物浓度低,向高分子的链转移生成支化或交 联产物较少,因而产物分子量易控制,分子量分布较窄;
乳液聚合最常使用的是阴离子型乳化剂,而非离子型乳化 剂一般用做辅助乳化剂与阴离子型乳化剂配合使用以提高 乳液的稳定性。
12
3.2 自 由 基 链 式 聚 降低表面张力,便于单体分散成细小的液滴,即分散 单体; (ii)在单体液滴表面形成保护层,防止凝聚,使乳液稳定; (iii)增溶作用:当乳化剂浓度超过一定值时,就会形成胶 束(micelles),胶束呈球状或棒状,胶束中乳化剂分子的极 性基团朝向水相,亲油基指向油相,能使单体微溶于胶束内。 乳化剂能形成胶束的最低浓度叫临界胶束浓度(简称 CMC),CMC越小,越易形成胶束,乳化能力越强。
1
3.2 自 由 基 链 式 聚 合 反 应
工业上多采用两段聚合工艺:
(i) 预聚合:在较低温度下预聚合,转化率控制在10~30%, 体系粘度较低,散热较容易;
(ii) 后聚合:更换聚合设备,分步提高聚合温度,使单体 转化率>90%。
本体聚合根据聚合产物是否溶于单体可分为两类: (i)均相聚合:聚合产物可溶于单体,如苯乙烯、MMA 等;
5
3.2 自 由 基 链 式 聚 合 反 应
超临界流体:性质介乎液体与气体之间,具有液体的溶解 能力。 超临界CO2做聚合溶剂:无毒、便宜、易从聚合产物中除去 和循环使用。 3. 悬浮聚合 悬浮聚合是通过强力搅拌并在分散剂的作用下,把单体分散 成无数的小液珠悬浮于水中由油溶性引发剂引发而进行的聚 合反应。 在悬浮聚合体系中,单体不溶或微溶于水,引发剂只溶于单 体,水是连续相,单体为分散相,是非均相聚合反应。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 乳液聚合介绍
乳液聚合
4.4 乳液聚合
单体在乳化剂和机械搅拌作用下,在水中分散成乳液 状态进行的聚合反应
基本组分
①单 体: 一般为油溶性单体,在水中溶解度很小 ②水溶性引发剂: 氧化-还原引发体系 (其中的至少一种还原剂是水溶性) ③乳化剂 ④水 其他必要助剂
2. 乳化剂
是一类可使互不相容的油和水转变成难以分层的均匀稳定 的乳液的物质,能降低水的表面张力,属于表面活性剂 分子通常由两部分组成 亲水的极性基团 亲油的非极性基团 如长链脂肪酸钠盐
优点: 优点:
(i)聚合热易扩散,聚合反应温度易控制,聚合 )聚合热易扩散,聚合反应温度易控制, 产物分子量分布窄; 产物分子量分布窄; (ii)聚合产物为固体珠状颗粒,易分离、干燥。 )聚合产物为固体珠状颗粒,易分离、干燥。
缺点: 缺点:
(i)存在自动加速作用; )存在自动加速作用; (ii)必须使用分散剂,且在聚合完成后,很难从聚 )必须使用分散剂,且在聚合完成后, 合产物中除去,会影响聚合产物的性能(如外观、 合产物中除去,会影响聚合产物的性能(如外观、老 化性能等); 化性能等); (iii)聚合产物颗粒会包藏少量单体,不易彻底清楚, )聚合产物颗粒会包藏少量单体,不易彻底清楚, 影响聚合物性能。 影响聚合物性能。
4.2 溶液聚合
溶液聚合
是将单体和引发剂溶于适当溶剂这进行的聚合反应
基本组分
单体 引发剂 溶剂
聚合场所:
在溶液内
优点:
(i)聚合热易扩散,聚合反应温度易控制; )聚合热易扩散,聚合反应温度易控制; (ii)体系粘度低,自动加速作用不明显;反 )体系粘度低,自动加速作用不明显; 应物料易输送; 应物料易输送; (iii)体系中聚合物浓度低,向高分子的链 )体系中聚合物浓度低, 转移生成支化或交联产物较少, 转移生成支化或交联产物较少,因而产物分 子量易控制,分子量分布较窄; 子量易控制,分子量分布较窄; (iv)可以溶液方式直接成品。 )
为了阻止单体液珠在碰撞时不再凝聚, 为了阻止单体液珠在碰撞时不再凝聚,必须加入分 散剂, 散剂,分散剂在单体液珠周围形成一层保护膜或吸 附在单体液珠表面,在单体液珠碰撞时, 附在单体液珠表面,在单体液珠碰撞时,起隔离作 从而阻止或延缓单体液珠的凝聚。 用,从而阻止或延缓单体液珠的凝聚。 悬浮聚合分散剂主要有两大类: 悬浮聚合分散剂主要有两大类:
但聚合反应发生在各个单体液珠内,对每个液珠而言, 但聚合反应发生在各个单体液珠内,对每个液珠而言, 其聚合反应机理与本体聚合一样,因此悬浮聚合也称小 其聚合反应机理与本体聚合一样,因此悬浮聚合也称小 珠本体聚合。 珠本体聚合。单体液珠在聚合反应完成后成为珠状的聚 合产物。 合产物。 均相聚合:得到透明、圆滑的小珠; 均相聚合:得到透明、圆滑的小珠; 非均相聚合:得到不透明、不规整的小珠。 非均相聚合:得到不透明、不规整的小珠。 在悬浮聚合过程不溶于水的单体依靠强力搅拌的剪切力作 用形成小液滴分散于水中,单体液滴与水之间的界面张力 用形成小液滴分散于水中, 使液滴呈圆珠状,但它们相互碰撞又可以重新凝聚, 使液滴呈圆珠状,但它们相互碰撞又可以重新凝聚, 即分散和凝聚是一个可逆过程。 分散和凝聚是一个可逆过程。
乳化剂的分类
阴离子型
烷基、烷基芳基的羧酸盐,如硬脂酸钠(肥皂) 硫酸盐,如十二烷基硫酸钠 磺酸盐,如十二、十四烷基磺酸钠 是常用的阴离子乳化剂 在碱性溶液中比较稳定,遇酸、金属盐、硬水会失效 在三相平衡点以下将以凝胶析出,失去乳化能力 三相平衡点以下将以凝胶析出,失去乳化能力 是指乳化剂处于分子溶解状态、胶束、凝胶三相平 衡时温度。高于此温度,溶解度突增,凝胶消失, 乳化剂只以分子溶解和胶束两种状态存在 聚合温度应高于三相平衡点 C11H23COONa 36℃; C15H31COONa 62℃;
球状 ( 低浓度时 ) 直径 4 ~ 5 nm
棒状 ( 高浓度时 ) 直径 100 ~ 300 nm
胶束的大小和数目取决于乳化剂的用量
单体在含有乳化剂的水中存在状态
在形成胶束的水溶液中加入单体 极小部分单体 以分子分散状 态溶于水中 小部分单体 可进入胶束 的疏水层内 体积增至 6 ~10 nm 相似相容,等于增 加了单体在水中的 溶解度,将这种溶 有单体的胶束称为 增溶胶束 大部分单体 经搅拌形成 细小的液滴 体积约为 1000 nm 周围吸附了一层 乳化剂分子,形 成带电保护层, 乳液得以稳定
(i)水溶性的高分子:如聚乙烯醇、明胶、羟基纤维素等; 水溶性的高分子:如聚乙烯醇、明胶、羟基纤维素等; 水溶性的高分子 (ii) 难溶于水的无机物:如碳酸钙、滑石粉、硅藻土等。 难溶于水的无机物:如碳酸钙、滑石粉、硅藻土等。
水溶性高分子
难溶于水的无机物
悬浮聚合产物的颗粒尺寸大小 悬浮聚合产物的颗粒尺寸大小 与搅拌速度、分散剂用量及油水比(单体 搅拌速度、分散剂用量及油水比( 与水的体积比)成反比。 与水的体积比)成反比。 由于悬浮聚合过程中存在分散 凝聚的动态平衡, 由于悬浮聚合过程中存在分散-凝聚的动态平衡,随 分散 凝聚的动态平衡 着聚合反应的进行,一般当单体转化率达25%左右 着聚合反应的进行,一般当单体转化率达 左右 由于液珠的粘性开始显著增加, 时,由于液珠的粘性开始显著增加,使液珠相互粘 结凝聚的倾向增强,易凝聚成块, 结凝聚的倾向增强,易凝聚成块,在工业生产上常 称这一时期为“危险期” 称这一时期为“危险期”,这时特别要注意保持良 好的搅拌。 好的搅拌。 由于悬浮聚合在液珠粘性增大后易凝聚成块而导致 反应失败,因此,该方法不适于制备粘性较大的高 反应失败,因此, 分子,如橡胶等。 分子,如橡胶等。
亲油基(烷基) 亲水基(羧酸钠)
ห้องสมุดไป่ตู้
乳化剂在水中的情况
①当乳化剂浓度很低时,是以分子分散状态溶解在水中 ②达到一定浓度后,乳化剂分子几十个或几百个开始形成 聚集体(约50~150个分子),称为胶束 聚集体(约50~150个分子),称为胶束
形成胶束的最低乳化剂浓度,称为临界胶束浓度( 形成胶束的最低乳化剂浓度,称为临界胶束浓度(CMC) 不同乳化剂的CMC不同,愈小,表示乳化能力愈强 不同乳化剂的CMC不同,愈小,表示乳化能力愈强 胶束的形状
基本组分
单体 引发剂 助剂 包括气态、液态和固态单体 包括气态、液态和固态单体 一般为油溶性 色料 增塑剂 润滑剂 聚合场所:本体内
本体聚合的优缺点
优点
产品纯净,不存在介质分离问题 可直接制得透明的板材、型材 聚合设备简单,可连续或间歇生产
缺点
体系很粘稠,聚合热不易扩散,温度难控制 轻则造成局部过热,产品有气泡,分子量分布宽 重则温度失调,引起爆聚
缺点: 缺点:
(i)单体被溶剂稀释,聚合速率慢,产物分子量 )单体被溶剂稀释,聚合速率慢, 较低; 较低; (ii)消耗溶剂,溶剂的回收处理,设备利用率低, )消耗溶剂,溶剂的回收处理,设备利用率低, 导致成本增加; 导致成本增加; (iii)溶剂很难完全除去; )溶剂很难完全除去; (iv)存在溶剂链转移反应,因此必须选择链转 )存在溶剂链转移反应, 移常数小的溶剂, 移常数小的溶剂,否则链转移反应会限制聚合产 物的分子量; 物的分子量; (v)溶剂的使用导致环境污染问题。 )溶剂的使用导致环境污染问题。
解决办法
预聚 在反应釜中进行,转化率达10~40%,放出一部 在反应釜中进行,转化率达10~40%,放出一部 分聚合热,有一定粘度 后聚 在模板中聚合,逐步升温,使聚合完全
本体聚合根据聚合产物是否溶于单体可分为 两类: 两类: (i)均相聚合:聚合产物可溶于单体,如苯乙 )均相聚合:聚合产物可溶于单体, 烯、MMA等; 等 (ii)非均相聚合(沉淀聚合): )非均相聚合(沉淀聚合): 聚合产物不溶于单体,如乙烯、聚氯乙烯等, 聚合产物不溶于单体,如乙烯、聚氯乙烯等,在 聚合过程中聚合产物不断从聚合体系中析出, 聚合过程中聚合产物不断从聚合体系中析出,产 品多为白色不透明颗粒。在沉淀聚合中, 品多为白色不透明颗粒。在沉淀聚合中,由于聚 合产物不断析出,体系粘度不会明显增加。 合产物不断析出,体系粘度不会明显增加。 但不管是均相聚合还是沉淀聚合, 但不管是均相聚合还是沉淀聚合,都会导致 自动加速作用 作用。 自动加速作用。
成核机理
成核是指形成聚合物乳胶粒的过程。有两种途径: 胶束成核:自由基由水相进入胶束引发增长的过程 胶束成核:自由基由水相进入胶束引发增长的过程 均相成核: 均相成核:在水相沉淀出来的短链自由基,从水相和单体 液滴上吸附乳化剂而稳定,继而又有单体扩散 进入形成聚合物乳胶粒的过程
聚合过程
根据聚合物乳胶粒的数目和单体液滴是否存在,乳液聚 合分为三个阶段: 乳胶粒 胶束 单体液滴 RP Ⅰ阶段 不断增加 直到消失 数目不变 体积缩小 不断增加 Ⅱ阶段 恒定 - 直到消失 恒定 Ⅲ阶段 恒定 - - 下降
是衡量表面活性剂中亲水部分和亲油部分对其性能的贡献。 每种表面活性剂都有一数值,数值越大,表明亲水性越大。 HLB值不同,用途也不同。乳液聚合在 HLB值不同,用途也不同。乳液聚合在 8~18范围 18范围
3. 乳液聚合机理
对于“ 理想体系”,即单体、乳化剂难溶于水,引 发剂溶于水,聚合物溶于单体的情况
单体和乳化 剂在聚合前 的三种状态
单体 液滴
极少量单体和少量乳化剂以分子分散状态溶解在水中 大部分乳化剂形成胶束,约 4 ~5 n m,1017-18个/ cm3 m, 大部分单体分散成液滴,约 1000 n m ,1010-12个/ cm3
聚合场所:
水相不是聚合的主要场所; 水相不是聚合的主要场所; 单体液滴也不是聚合场所; 单体液滴也不是聚合场所; 聚合场所在胶束内 胶束比表面积大,内部单体浓度很高,提供了自由 胶束比表面积大,内部单体浓度很高,提供了自由 基进入引发聚合的条件 液滴中的单体通过水相可补充胶束内的聚合消耗 液滴中的单体通过水相可补充胶束内的聚合消耗
相关文档
最新文档