2020-2021青岛市高三数学上期末一模试题附答案

合集下载

2020-2021学年山东省青岛市高一(上)期末数学试卷 (含解析)

2020-2021学年山东省青岛市高一(上)期末数学试卷 (含解析)
所以A∩B={0,1}.
故选:B.
2.命题“对∀x∈R,都有sinx≤1”的否定为( )
A.对∀x∈R,都有sinx>1B.对∀x∈R,都有sinx≤﹣1
C.∃x0∈R,使得sinx0>1D.∃x0∈R,使得sinx≤1
解:∵全称命题的否定是特称命题,
∴命题“对∀x∈R,都有sinx≤1”的否定为:∃x0∈R,使得sinx0>1;
=(sin2x﹣cos2x)(sin2x+cos2x)+2sinxcosx
=sin2x+sin2x﹣cos2x=sin2x﹣cos2x
= sin(2x﹣ ),
则最小正周期T= ,
故选:C.
5.已知a=sin160°,b=cos50°,c=tan110°,则a,b,c的大小关系为( )
A.a<b<cB.c<b<aC.c<a<bD.a<c<b
(1)写出f(x)=sinx和g(x)=cosx在[0,π]上的一个“Ω区间”(无需证明);
(2)若f(x)=x3,[﹣1,1]是f(x)和g(x)的“Ω区间”,证明:g(x)不是偶函数;
(3)若 ,且f(x)在区间(0,1]上单调递增,(0,+∞)是f(x)和g(x)的“Ω区间”,证明:g(x)在区间(0,+∞)上存在零点.
C.f(﹣x)=3﹣x﹣3x=﹣(3x﹣3﹣x)=﹣f(x),则函数f(x)是奇函数,在R上是增函数,满足条件,
D.f(﹣x)=﹣xcos(﹣x)=﹣xcosx=﹣f(x),则f(x)是奇函数,f(0)=0,f(π)=﹣π,则f(x)不是增函数,不满足条件.
故选:AC.
11.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则下列正确的是( )

2020-2021学年山东省青岛市九年级(上)期中数学试卷(附答案详解)

2020-2021学年山东省青岛市九年级(上)期中数学试卷(附答案详解)

2020-2021学年山东省青岛市九年级(上)期中数学试卷1.下列方程是一元二次方程的是()A. 2x2+y=1B. 9y=3y−1C. 2x2=1D. 3x−2x2=82.如图所示的4个三角形中,相似三角形有()A. 1对B. 2对C. 3对D. 4对3.根据表格中的信息,估计一元二次方程ax2+bx+c=10(a、b、c为常数,a≠0)的一个解x的范围为()x00.51 1.52 ax2+bx+c−15−8.75−2 5.2513A. 0<x<0.5B. 0.5<x<1C. 1<x<1.5D. 1.5<x<24.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作BD的垂线,垂足为E,已知∠EAB:∠EAD=1:3,则∠EOA的度数为()A. 30°B. 35°C. 40°D. 45°5.青岛第四届海上马拉松比赛将在2020年11月举行,小明和小刚分别从A、B、C三个组中随机选择一个组参加志愿者活动,假设每人参加这三个组的可能性都相同,小明和小刚恰好选择同一组的概率是()A. 13B. 23C. 19D. 296.如图,菱形ABCD的面积为24cm2,对角线BD长6cm,点O为BD的中点,过点A作AE⊥BC交CB的延长线于点E,连接OE,则线段OE的长度是()A. 3cmB. 4cmC. 4.8cmD. 5cm7.下列结论正确的是()A. 如果一个四边形是轴对称图形,而且有两条互相垂直的对称轴,那么这个四边形一定是菱形.B. 如果一个四边形,既是轴对称图形,又是中心对称图形,那么这个四边形一定是正方形.C. 如果一个菱形绕对角线的交点旋转90°后,所得图形与原来的图形重合,那么这个菱形是正方形.D. 一个直角三角形绕斜边的中点旋转180°后,原图形与所得的图形构成的四边形一定是正方形.8.如图,在Rt△ABC中,∠C=90°,∠ABC的角平分线交AC于点D,过点D分别作BC和AB的平行线,交AB于点E,交BC于点H,连接EH交BD于点G,在AE上截取EF=BE,连接DF.下列说法中正确的有()(1)GH:FD=1:2;(2)BD2=BF⋅BC;(3)四边形EBHD是菱形;(4)S△ADF=29S△ABC.A. 1个B. 2个C. 3个D. 4个9.已知x2=y4≠0,则3x+y2y=______ .10.在一个不透明的口袋里装有黑、白两种颜色的球30个,这些球除颜色外都相同.某学习小组进行摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再把它放回袋中,不断重复上述过程,试验数据如下表:摸球的次数10020050080010001200摸到白球的次数4281201324402481根据上表数据,估算口袋中黑球有______ 个.11.如图,直线a//b//c,直线AC与DF交于点O,且与直线a、b、c分别交于点A、B、D、E、F,如果DE=2,EF=5,AC=6,那么AB的长为______ .12.书香相伴,香满校园,某校9月份借阅图书500本,11月份借阅图书845本,该校这两个月借阅图书的月均增长率是______ .13.如图,四边形ABCD是面积为6cm2的正方形,△ACE是等边三角形,图中阴影部分的面积是______ cm2.14.现有30张相同的菱形纸片(如图1,有一个内角为60°),小亮用其中3张密铺成一个如图2所示的正六边形;若小芳想密铺出一个与图②相似但面积比它大的正六边形,则她至少要用______ 张菱形纸片(不得将菱形纸片剪开).15.已知:如图,四边形ABCD是平行四边形.求作:一个菱形,使它的四个顶点分别在平行四边形ABCD的四条边上.16.解方程:x2+2x+2=8x+4(配方法).17.解方程:8x2−2x−3=0.18.已知:关于x的一元二次方程(k−1)x2+2x−1=0有两个不相等的实数根.求:k的最小整数解.19.用如图所示的两个可以自由转动的转盘进行“配紫色“游戏:游戏者同时转动两个转盘,若其中一个转盘转出了红色,另一个转盘转出了蓝色,那么他就赢了.(1)利用画树状图或列表的方法表示游戏所有可能出现的结果;(2)求游戏者获胜的概率.20.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,ADAB =25,求BC的长.21.有一个面积为54cm2的长方形,将它的一边剪短5cm,另一边剪短2cm,恰好变成一个正方形,求这个正方形的边长.22.已知:在△ABC中,CB=CA,点D、E分别是AB、AC的中点,连接DE并延长交外角∠ACM的平分线CN与点F.(1)求证:AD=CF;(2)连接CD,AF,当△ABC满足什么条件时,四边形ADCF为正方形?请证明你的结论.23.尊老爱幼是中华民族的传统美德,九九重阳节前夕,某商店为老人推出一款特价商品,每件商品的进价为15元,促销前销售单价为25元,平均每天能售出80件;根据市场调查,销售单价每降低0.5元,平均每天可多售出20件.(1)若每件商品降价5元,则商店每天的平均销量是______ 件(直接填写结果);(2)不考虑其他因素的影响,若商店销售这款商品的利润要平均每天达到1280元,每件商品的定价应为多少元?(3)在(2)的前提下,若商店平均每天至少要销售200件该商品,求商品的销售单价.24.古希腊数学家欧多克索斯曾提出:能否将一条线段分成不相等的两部分,使较短线段与较长线段的比等于较长线段与原线段的比?这就是黄金分割问题,这个相等的比又被称为黄金比,其比值是√5−12.古希腊很多矩形建筑中,宽与长之比都等于黄金比,在艺术领域,许多优美的曲线也与黄金比有关,黄金比在我们的生活中彰显着丰富的美学价值.【探索发现】:如图1,若点P1是线段AB靠近点B的黄金分割点,则AP1=√5−12AB,所以BP1=(1−√5−12)AB=3−√52AB.若P2是线段BP1靠近点B的黄金分割点,则BP2=3−√52BP1,所以BP2=______ AB.若P3是线段BP2靠近点B的黄金分割点,则BP3=3−√52BP2,所以BP3=______ AB.……【归纳提炼】若P n是线段BP n−1靠近点B的黄金分割点,则BP n=______ AB.【解释应用】:如图2,矩形ABCD中,宽BC与长AB的比为黄金比,则称矩形ABCD为“黄金矩形”.在课本“想一想”中我们已经知道,该矩形有如下特点:作正方形①,剩下的矩形仍是“黄金矩形”,且点P1为线段AB的黄金分割点;以此类推:作正方形②,剩下的矩形仍是“黄金矩形”,且点Q1为线段BC的黄金分割点;作正方形③,剩下的矩形仍是“黄金矩形”,且点P2为线段______ 的黄金分割点;作正方形④,剩下的矩形仍是“黄金矩形”,且点Q2为线段______ 的黄金分割点;……显然,这样变换可以无限的进行下去.借助对“BP2与AB,BQ2与BC的比例关系”的探究,写出当“黄金矩形”ABCD 的周长为a时,以BP2,BQ2为领边的“黄金矩形”的周长y与a的关系式:______ .【拓展延伸】:(1)设图2中四个正方形①,②,③,④的边长分别为a1,a2,a3,a4,请直接写出a1+a2+a3+a4=______ .(用含有a的代数式表示)(2)如图3,将正方形③和④的位置重新排列,再分别在每个正方形中作四分之一圆弧,四段弧可以连出一条优美的曲线,称为“黄金螺旋线”.请直接写出这条曲线的长度:______ .(用含有a的代数式表示)25.已知:如图1,在矩形ABCD中,AC是对角线,AB=6cm,BC=8cm.点P从点A出发,沿AB方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CA方向匀速运动,速度为2cm/s.过点Q作QE⊥AC,QE与BC相交于点E,连接PQ.设),解答下列问题:运动时间为t(s)(0<t≤165(1)连接BQ,当t为何值时,点E在线段BQ的垂直平分线上?(2)设四边形BPQC的面积为y(cm2),求y与t之间的函数关系式;(3)如图2,取点E关于AC的对称点F,是否存在某一时刻t,使△CDF为等腰三角形?若存在,直接写出t的值(不需提供解答过程);若不存在,请说明理由.答案和解析1.【答案】C【解析】解:A.是二元二次方程,不是一元二次方程,故本选项不符合题意;B.是一元一次方程,不是一元二次方程,故本选项不符合题意;C.是一元二次方程,故本选项符合题意;D.是分式方程,不是一元二次方程,故本选项不符合题意;故选:C.根据一元二次方程的定义逐个判断即可.本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的次数最高是2的整式方程,叫一元二次方程.2.【答案】A【解析】解:观察图象可知,图中有3个直角三角形,一个锐角三角形,其中左边的两个直角三角形的直角边的比都是1:2,所以这两个直角三角形相似.故选:A.根据相似三角形的判定方法判断即可.本题考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定方法,属于中考常考题型.3.【答案】D【解析】解:由表格可知:当x=1.5时,ax2+bx+c=5.25,则ax2+bx+c−10=−4.75,当x=2时,ax2+bx+c=13,则ax2+bx+c−10=3,∴关于x的一元二次方程ax2+bx+c=10(a≠0)的一个解x的范围是1.5<x<2,故选:D.根据ax2+bx+c的符号即可估算ax2+bx+c=10的解.本题考查一元二次方程,解题的关键是正确理解一元二次方程的近似解,本题属于基础题型.4.【答案】D【解析】解:∵四边形ABCD是矩形,∴OA=OB,∠BAD=90°,∴∠OAB=∠OBA,∵∠EAB:∠EAD=1:3,∴∠EAB=22.5°,∵AE⊥BD于点E,∴∠AEB=90°,∴∠ABE=67.5°,∴∠OBA=∠OAB=67.5°,∴∠AOB=45°,即∠EOA的度数为45°,故选:D.根据∠EAB:∠EAD=1:3,∠BAD=90°,可以求得∠BAE的度数,再根据矩形的性质和三角形内角和,即可得到∠EOA的度数.本题考查矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.5.【答案】A【解析】解:画树状图得:∵共有9种等可能的结果,小明和小刚恰好选择同一组的有3种情况,∴两人恰好选择同一组的概率为39=13;故选:A.首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及小明和小刚选到同一组的情况,再利用概率公式求解即可求得答案.本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.【答案】B【解析】解:∵四边形ABCD是菱形,∴BD⊥AC,∵BD=6cm,S菱形ABCD ═12AC×BD=24cm2,∴AC=8cm,∵AE⊥BC,∴∠AEC=90°,∴OE=12AC=4cm,故选:B.由菱形的性质得出BD=6cm,由菱形的面积得出AC=8cm,再由直角三角形斜边上的中线性质即可得出结果.本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.7.【答案】C【解析】解:A.若一个四边形是轴对称图形,且有两条互相垂直的对称轴,则这个四边形是菱形或矩形,故本选项不合题意;B.如果一个四边形,既是轴对称图形,又是中心对称图形,那么这个四边形可以是菱形,故本选项不合题意;C.若一个菱形绕对角线的交点旋转90°后所得图形与原图形重合,则这个菱形是正方形,本选项符合题意;D.一个直角三角形绕斜边的中点旋转180°后,原图形与所得的图形构成的四辺形一定是矩形,故本选项不合题意;故选:C.依据菱形、矩形以及正方形的判定方法,即可得出结论.本题考查了菱形、矩形、正方形的判定与性质;熟练掌握特殊平行四边形的判定和性质,并能进行推理论证是解答本题的关键.8.【答案】C【解析】解:∵DE//BC,DH//AB,∴四边形DEBH是平行四边形,∴GH=EG,BG=DG,又∵EF=BE,∴EG//DF,GE=12DF,∴GH=12DF,∴GH:DF=1:2,故①正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵DE//BC,∴∠EDB=∠DBC,∴∠EDB=∠EBD,∴BE=DE,∴BE=DE=EF,∴∠BDF=90°=∠C,又∵∠ABD=∠DBC,∴△BDF∽△BCD,∴BDBC =BFBD,∴BD2=BC⋅BF,故②正确;∵BE=DE,四边形DEBH是平行四边形,∴四边形DEBH是菱形,故③正确;条件不足,无法证明S△ADF=29S△ABC.故④错误,故选:C.①由题意可证四边形DEBH是平行四边形,可得GH=EG,BG=DG,由三角形中位线定理可得EG//DF,GE=12DF,可得GH=12DF;②通过证明△BDF∽△BCD,可得BDBC =BFBD,可证BD2=BC⋅BF;③由菱形的判定可证四边形EBHD 是菱形;④条件不足,无法证明.本题是三角形综合题,考查了直角三角形的性质,菱形的判定和性质,三角形中位线定理,相似三角形的判定与性质等知识点,数形结合并熟练掌握相关性质及定理是解题的关键.9.【答案】54【解析】解:∵x 2=y 4≠0, ∴y =2x ,则3x+y 2y =3x+2x 4x=54. 故答案为:54.直接利用已知得出y =2x ,即可代入化简得出答案.此题主要考查了比例的性质,得出y 与x 之间的关系是解题关键.10.【答案】18【解析】解:根据图表给出的数据可得,摸到白球的频率将会接近0.4,所以可估计口袋中白种颜色的球的个数是:30×0.4=12(个),则口袋中黑球有30−12=18(个).故答案为:18.根据图表给出的数据得出白球的频率,再用总球的个数乘以白球的频率,求出白球的个数,再用总个数减去白球的个数即可得出黑球的个数.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.11.【答案】127【解析】解:∵直线a//b//c,∴DEEF =ABBC=25,∴ABAC =DEDF=22+5,∴AB6=27,解得:AB=127,故答案为:127.平行线分线段成比例定理的内容是:一组平行线截两条直线,所截的线段对应成比例,根据平行线分线段成比例解答即可.本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.12.【答案】30%【解析】解:该校这两个月借阅图书的月均增长率是x,依题意,得:500(1+x)2=845,解得:x1=0.3=30%,x2=−2.3(不合题意,舍去).故答案为:30%.该校这两个月借阅图书的月均增长率是x,根据该校9月份及11月份借阅图书数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.【答案】(3√3−3)【解析】解:如图,连接BE,交AC于O,∵△ACE是等边三角形,四边形ABCD是正方形,∴EA=EC,BA=BC,∴BE垂直平分AC,∵四边形ABCD是面积为6cm2的正方形,△ACE是等边三角形,∴AB=BC=√6(cm),∴AC=√2AB=2√3(cm),∴AE=2√3(cm),AO=12AC=√3(cm),∴Rt△AOE中,EO=√AE2−AO2=3(cm),∴阴影部分面积=S△ACE−S△ACD=12×AC×EO−12×6=12×2√3×3−3=(3√3−3)cm2,故答案为:(3√3−3).连接BE,交AC于O,依据等边三角形和正方形的性质,即可得到AO的长,依据勾股定理即可得到EO的长,最后根据阴影部分面积=S△ACE−S△ACD进行计算.本题主要考查了正方形的性质、等边三角形的性质以及勾股定理的运用,正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角.14.【答案】12【解析】解:观察图象可知,至少要用12张菱形纸片.故答案为:12.利用图象法,画出图形判断即可.本题考查相似多边形的性质,菱形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用图象法解决问题.15.【答案】解:如图,四边形EFGH即为所求.【解析】过平行四边形的对角线的交点,画两条互相垂直直线EG ,FH ,J 交平行四边形ABCD 的边于E ,G ,F ,H ,连接EF ,FG ,GH ,HE ,四边形EFGH 即为所求. 本题考查作图−复杂作图,平行四边形的性质,菱形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】解:x 2+2x +2=8x +4,x 2+2x −8x =−2+4,x 2−6x =2,配方得:x 2−6x +9=2+9,(x −3)2=11,开方得:x −3=±√11,解得:x 1=3+√11,x 2=3−√11.【解析】移项,合并同类项,配方,开方,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程,能够正确配方是解此题的关键.17.【答案】解:8x 2−2x −3=0,b 2−4ac =(−2)2−4×8×(−3)=100,x =−b±√b 2−4ac 2a=2±√1002×8, x 1=34,x 2=−12.【解析】先求出b 2−4ac 的值,再代入公式求出即可.本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键.18.【答案】解:根据题意,得:△=22−4×(k −1)×(−1)>0且k −1≠0, 解得k >0且k ≠1,所以k 的最小整数解为2.【解析】根据一元二次方程有两个不相等的实数根得出△=22−4×(k −1)×(−1)>0,结合一元二次方程的定义知k −1≠0,从而得出答案.本题主要考查根的判别式和一元二次方程的定义,解题的关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.19.【答案】解:(1)根据题意画图如下:共有6种等可能的结果数;(2)∵共有6种等可能的结果数,其中一个转盘转出了红色,另一个转盘转出了蓝色的有3种,∴游戏者获胜的概率是36=12.【解析】(1)根据题意画出树状图得出所有等可能的情况数即可;(2)找出一个转盘转出了红色,另一个转盘转出了蓝色的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.【答案】(1)证明:∵AF,AG分别是△ABC和△ADE的高,∴AF⊥BC,AG⊥DE,∴∠AFB=90°,∠AGD=90°,∴∠BAF+∠B=90°,∠DAG+∠ADG=90°,∵∠BAF=∠DAG,∴∠B=∠ADG,又∵∠EAD=∠BAC,∴△ABC∽△ADE;(2)解:∵△ADE∽△ABC,∴ADAB =DEBC,∵ADAB =25,BC=3,∴25=3BC,∴BC=152.【解析】(1)由直角三角形的性质得出∠B=∠ADG,可证明△ABC∽△ADE;(2)由相似三角形的性质可得出答案.本题考查了相似三角形的判定与性质,直角三角形的性质,熟练掌握相似三角形的判定与性质是解题的关键.21.【答案】解:设这个正方形的边长为x cm,则原长方形的长为(x+5)cm,宽为(x+ 2)cm,依题意,得:(x+5)(x+2)=54,整理,得:x2+7x−44=0,解得:x1=4,x2=−11(不合题意,舍去).答:这个正方形的边长为4cm.【解析】设这个正方形的边长为xcm,则原长方形的长为(x+5)cm,宽为(x+2)cm,根据原长方形的面积为54cm2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.【答案】(1)证明:∵CB=CA,∴∠A=∠B,∵∠ACM=∠A+∠B,∴∠A=12∠ACM,∵CN平分∠ACM,∴∠ACF=12∠ACM,∴∠A=∠ACF,∵E是AC的中点,∴AE=CE,在△ADE与△CFE中,{∠A=∠ECFAE=CE∠AED=∠CEF,∴△ADE≌△CFE(ASA),∴AD=CF;(2)解:当∠ACB=90°,四边形ADCF是正方形,理由:∵AC=BC,∠ACB=90°,∴△ACB是等腰直角三角形,∴∠BAC=45°,∵CN平分∠ACM,∴∠ACF=12∠ACM=45°,∴∠DAC=∠ACF,∴AD//CF,由(1)知AD=CF,∴四边形ADCF是平行四边形,∵点D是AB的中点,∴AD=CD,∴∠ACD=∠CAD=45°,∴∠DCF=90°,∴矩形ADCF是正方形.【解析】(1)根据等腰三角形的性质得到∠A=∠B,根据外角的性质定理得到∠A=1 2∠ACM,由角平分线的定义得到∠ACF=12∠ACM,求得∠A=∠ACF,根据全等三角形的判定和性质定理即可得到结论;(2)由已知条件得到△ACB是等腰直角三角形,求得∠BAC=45°,推出AD//CF,由(1)知AD=CF,得到四边形ADCF是平行四边形,根据直角三角形的性质得到AD=CD,求得∠ACD=∠CAD=45°,根据正方形的判定定理得到结论.本题考差了正方形的判定,全等三角形的判定和性质,三角形的中位线的性质,熟练掌握全等三角形的判定和性质是解题的关键.23.【答案】280【解析】解:(1)80+5÷0.5×20=280(件). 故答案为:280.(2)设每件商品降价x 元,则销售每件商品的利润为(25−15−x)元,平均每天可售出80+x0.5×20=(40x +80)件,依题意,得:(25−15−x)(40x +80)=1280, 整理,得:x 2−8x +12=0, 解得:x 1=2,x 2=6, ∴25−x =23或19.答:每件商品的定价应为23元或19元.(3)当x =2时,40x +80=160<200,不合题意,舍去; 当x =6时,40x +80=320>200,符合题意, ∴25−x =19.答:商品的销售单价为19元.(1)根据每天的平均销售量=80+降低的价格÷0.5×20,即可求出结论;(2)设每件商品降价x 元,则销售每件商品的利润为(25−15−x)元,平均每天可售出80+x 0.5×20=(40x +80)件,根据每天的总利润=销售每件商品的利润×平均每天的销售量,即可得出关于x 的一元二次方程,解之即可得出结论;(3)由(2)的结论结合平均每天至少要销售200件该商品,可确定x 的值,再将其代入(40x +80)中即可求出结论.本题考查了一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)找准等量关系,正确列出一元二次方程;(3)将x 的值代入(40x +80)中,求出平均每天的销售量.24.【答案】(3−√52)2(3−√52)3 (3−√52)n BP 1 BQ 1 y =(√5−12)4a (√5−1)223a +(√5−1)324a +(√5−1)425a +(√5−1)526a πa ⋅[(√5−1)22+(√5−1)322+(√5−1)423+(√5−1)423]【解析】解:【探索发现】:由题意可知:BP 2=(3−√52)2AB ,BP 3=(3−√52)3AB , 故答案为:(3−√52)2,(3−√52)3.【归纳提炼】:由规律可知:BP n =(3−√52)nAB . 故答案为:(3−√52)n.【解释应用】:且点P 2为线段P 1B 的黄金分割点,点Q 2为线段BQ 1的黄金分割点, ∵BC =√5−12AB ,BP 1=√5−12BC ,BQ 1=√5−12BP 1,BP 2=√5−12BQ 1,所有矩形相似, ∴BP 2,BQ 2为领边的“黄金矩形”的周长y 与a 的关系式:y =(√5−12)4a. 故答案为:BP 1,BQ 2,y =(√5−12)4a.【拓展延伸】:(1)设图2中四个正方形①,②,③,④的边长分别为a 1,a 2,a 3,a 4, 设AB =x ,BC =y ,则2x +2y =a , ∴2x +2⋅√5−12x =a , ∴x =√5−14a ,y =(√5−1)223a , ∴a 1+a 2+a 3+a 4=(√5−1)223a +(√5−1)324a +(√5−1)425a +(√5−1)526a.(2)如图3,将正方形③和④的位置重新排列,再分别在每个正方形中作四分之一圆弧,四段弧可以连出一条优美的曲线,称为“黄金螺旋线”. 请直接写出这条曲线的长度:14⋅π(a 1+a 2+a 3+a 4)=14π⋅[(√5−1)223a +(√5−1)324a +(√5−1)425a +(√5−1)526a]=πa ⋅[(√5−1)22+(√5−1)322+(√5−1)423+(√5−1)423]. 故答案为:πa ⋅[(√5−1)22+(√5−1)322+(√5−1)423+(√5−1)423]. 【探索发现】:根据黄金分割的定义计算即可; 【归纳提炼】:探究规律,利用规律解决问题即可;【解释应用】:根据相似多边形的性质相似比等于周长比,解决问题即可; 【拓展延伸】:(1)分别求出a 1,a 2,a 3,a 4即可解决问题; (2)利用弧长公式计算即可.本题属于四边形综合题,考查了矩形的性质,黄金分割,解直角三角形,相似多边形的性质等知识,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.25.【答案】解:(1)∵四边形ABCD是矩形,∴∠B=90°,∵AB=6cm,BC=9cm,∴AC=√AB2+BC2=√62+82=10,∵EQ⊥AC,∴∠EQC=∠B=90°,∵∠ECQ=∠ACB,∴△ECQ∽△ACB,∴EQAB =CQCB=ECAC,∴EQ6=2t8=EC10,∴EQ=32t,EC=52t,∵点E在BQ的垂直平分线上,∴EB=EQ,∴8−52t=32t,∴t=2.(2)如图2中,过点Q作QH⊥AB于H,则AQ=10−2t,QH=45AQ=45(10−2t),∵AP=t,∴S△APQ=12⋅AP⋅QH=12⋅t⋅45(10−2t)=−45t2+4t,∴y=S△ABC−S△APQ=12×6×8−(−45t2+4t)=45t2−4t+24(0<t≤165).(3)①如图2−1中,当DC=DF时,连接DF,取AC的中点J,连接BJ,和点B作BH⊥AC于H,过点F作FK⊥CD于K.∵∠ABC=90°,AJ=JC,∴BJ=AJ=JC=12AC=5,∴∠JBC=∠JCB,∴∠BJH=∠BCJ+∠JCB=2∠JCB,∵E,F关于AC对称,∴∠ACE=∠ACF,CF=CE=52t ∴∠FCE=2∠ACB=∠BJH,∵FK⊥CD,CB⊥CD,∴FK//CB,∴∠CFK=∠FCE=∠BJH,∵BH⊥AC,∴S△ACB=12⋅AB⋅CB=12⋅AC⋅BH,∴BH=AB⋅BCAC =245,∵FD=FC,FK⊥CD,∴CK=KD=3,∵∠BJH=∠CFK,∴sin∠BJH=sin∠CFK,∴BHBJ =CKCF,∴2455=352t,∴t=54,②当CF=CD时,52t=6,∴t=125,综上所述,满足条件的t 的值为54或125.【解析】(1)证明△ECQ∽△ACB ,可得EQAB =CQCB =ECAC ,可得EQ6=2t 8=EC10,推出EQ =32t ,EC =52t ,由题意点E 在BQ 的垂直平分线上,推出EB =EQ ,由此构建方程,求解即可.(2)如图2中,过点Q 作QH ⊥AB 于H ,则AQ =10−2t ,QH =45AQ =45(10−2t),根据y =S △ABC −S △APQ ,求解即可.(3)分两种情形:①如图2−1中,当DC =DF 时,连接DF ,取AC 的中点J ,连接BJ ,和点B 作BH ⊥AC 于H ,过点F 作FK ⊥CD 于K.证明∠BJH =∠CFK ,可得sin∠BJH =sin∠CFK ,由此构建方程求解.②当CF =CD 时,构建方程,求解即可.本题属于四边形综合题,考查了矩形的性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

2021届山东省高三一模数学试题分类汇编——专题八函数与导数

2021届山东省高三一模数学试题分类汇编——专题八函数与导数

专题八函数与导数一、单项选择1.(济宁一模3)已知a=sin2,6=log20.2,c=20.2,则A.a>b>cB.c>a>bC.b>a>cD.c>b>a2.(潍坊一模3)在一次数学实验中,某同学运用图形计算器采集到如下一组数据:x﹣2﹣1123y0.240.51 2.02 3.988.02在以下四个函数模型(a,b为待定系数)中,最能反映x,y函数关系的是A.y a bx=+B.by ax=+C.logby a x=+D.xy a b=+3.(滨州一模4)定义在R上的函数f(x)满足f(﹣x)=﹣f(x),且∀x1,x2∈[0,+∞),x1≠x2时,都有(x1﹣x2)[f(x1)﹣f(x2)]>0,则()A.f(log43)<<B.<f(log43)<C.<<f(log43)D.<f(log43)<4.(菏泽一模5)函数的图象大致为()A.B.C.D.5.(烟台一模5)某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:mg/L)与时间t(单位:h)间的关系式为P=P0e−kt,其中P0,k为正常数.如果一定量的废气在前10h的过滤过程污染物被消除了20%,那么污染物减少到最初含量的50%还需要经过多长时间?(结果四舍五入取整数,参考数据:ln2≈0.693,ln5≈1.609)A.11hB.21hC.31hD.41h6.(泰安一模6)已知定义在R 上的偶函数f (x )在(﹣∞,0)上单调递增,则( ) A .f (2)<f (log 6)<f (log 4)B .f (log 6)<f (log 4)<f (2)C .f (log 6)<f (2)<f (log 4)D .f (2)<f (log 4)<f (log 6)7.(青岛一模5)若f(x)={log 3(x +1),x ≥02x ,x <0,则不等式f(x)>12的解集为( )A.()()+∞--,130,1B.()()∞+∞,,13-1- C.()()1-300,1-, D.()()∞+∞,,1-31--8.(日照一模6)如图所示,单位圆上一定点A 与坐标原点重合.若单位圆从原点出发沿x 轴正向滚动一周则A 点形成的轨迹为A .B .C .D .9.(潍坊一模7)已知20202021a =,20212020b =,ln2c =,则A .log log a b c c >B .log log c c a b >C .c c a b <D .a b c c <10.(烟台一模7)已知f(x)是定义在R 上的奇函数,f(2-x)=f(x),当x ∈[0,1]时,f(x)=x 3,则 A.f(2021)=0B.2是f(x)的一个周期C.当x ∈(1,3)时,f(x)=(1-x)3D.f(x)>0的解集为(4k,4k+2)(k ∈Z)11.(济南一模6)函数y=f(x)在[-2π,2π]上的图象如图所示,则f(x)的解析式可能是A.f(x)=sinx+cosxB.f(x)=|sinx|+cosxC.f(x)=sin|x|+cosxD.f(x)=sin|x|+|cosx|12.(青岛一模7)已知)(x f y =为奇函数,)1(+=x f y 为偶函数,若当[]1,0∈x ,)(log )(2a x x f +=,则=)2021(fA.-1B.0C.1D.213.(德州一模7)设函数f (x )=xe x ﹣a (x ﹣1),其中a <1,若存在唯一整数x 0,使得f (x 0)<a ,则a 的取值范围是( ) A .[﹣,1)B .[﹣,)C .[,)D .[,1)14.(聊城一模8)已知函数()2,0,ln ,0,x x f x x x ⎧≤=⎨>⎩()2g x x x =-,若方程()()()0f g x g x m +-=的所有实根之和为4,则实数m 的取值范围为 A .m>1 B .m ≥1C .m<1D .m ≤115.(滨州一模7)定义在R 上的偶函数f (x )满足f (2+x )=f (2﹣x ),当x ∈[﹣2,0]时,f (x )=x +2,设函数h (x )=e ﹣|x ﹣2|(﹣2<x <6)(e 为自然对数的底数),则f (x )与h (x )的图象所有交点的横坐标之和为( ) A .5B .6C .7D .816.(2021•临沂一模7)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,也称取整函数,例如:[﹣3.7]=﹣4,[2.3]=2.已知f (x )=e x e x +1−12,则函数y =[f (x )]的值域为( )A .{0}B .{﹣1,0}C .{﹣2,﹣1,0}D .{﹣1,0,1}17.(济南一模8)设a=20221n2020, b=2021ln2021, c=20201n2022,则A.a>c>bB.c>b>aC.b>a>cD.a>b>c 二、多项选择18.(2021•淄博一模10)已知函数f (x )=2x +2﹣x ,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )最小值是2D .f (x )最大值是419.(济南一模10)已知函数f(x)=x 3-ax+1的图象在x=2处切线的斜率为9,则下列说法正确的是A.a=3B.f(x)在x= -1处取得极大值C.当x ∈(-2,1]时,f(x) ∈(-1,3]D.f(x)的图象关于点(0,1)中心对称20.(潍坊一模10)已知函数21, 0()cos , 0x x f x x x ⎧+≥=⎨<⎩,则下列结论正确的是A .()f x 是偶函数B .3(())12f f π-=C .()f x 是增函数D .()f x 的值域为[﹣1,+∞)21.(菏泽一模10)对于函数,下列说法正确的是( )A .f (x )在处取得极大值B .f (x )有两个不同的零点C .D .若在(0,+∞)上恒成立,则22.(日照一模10)已知x 1+log 3x1=0,x 2+log 2x2=0,则A. 0<x 2<x 1<1B. 0<x 1<x 2<1C. x 2lgx 1-x 1lgx 2<0D. x 2lgx 1-x 1lgx 2>023.(青岛一模11)若实数b a <,则下列不等式关系正确的是( ) A.(25)b <(25)a <(35)aB.若2log ,1>>ab a a 则C.ba ab a +>+>11,022则若 D.若m >53,a,b ∈(1,3) ,则13(a 3−b 3)−m(a 2−b 2)+a −b >024.(滨州一模11)若0<x 1<x 2<1,e 为自然对数的底数,则下列结论错误的是( ) A .<B .>C .>lnx 2﹣lnx 1D .<lnx 2﹣lnx 125.(泰安一模11)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=.则下列结论正确的是( )A .当x <0时,f (x )=﹣e x (x +1)B .函数f (x )在R 上有且仅有三个零点C .若关于x 的方程f (x )=m 有解,则实数m 的取值范围是f (﹣2)≤m ≤f (2)D .∀x 1,x 2∈R ,|f (x 2)﹣f (x 1)|<226.(日照一模11)已知函数f(x)对于任意x ∈R ,均满足f(x)=f(2-x).当x ≤1时f (x )={lnx,0<x ≤1e x ,x ≤0若函数g(x)=m|x|-2-f(x),下列结论正确的为A. 若m<0,则g(x)恰有两个零点B. 若32<m <e ,则g(x)有三个零点C. 若0<m ≤32,则g(x)恰有四个零点D. 不存在m 使得g(x)恰有四个零点27.(济宁一模12)已知函数f(x)=e sinx -e cosx,其中e 是自然对数的底数,下列说法中正确的是 A.函数f(x)的周期为2π B.f(x)在区间(0,π2)上是减函数C.f (x +π4)是奇函数D.f(x)在区间(π2,π)上有且仅有一个极值点三、填空28.(2021•临沂一模13)若函数f (x )满足:(1)对于任意实数x 1,x 2,当0<x 1<x 2时,都有f (x 1)<f (x 2); (2)f (x 1x 2)=f (x 1)﹣f (x 2),则f (x )= .(答案不唯一,写出满足这些条件的一个函数即可)29.(潍坊一模14)写出一个存在极值的奇函数()f x = .30.(日照一模13)若函数f (x )=log a x(a >1),在区间[a,2a]上的最大值是最小值的3倍,则a= . 31.(济宁一模14)已知函数f (x )={e x ,x >0f (x +2),x ≤0,则f(-5)= .32.(日照一模15)已知函数f (x )=3x+1+a3x +1(a ≥3),若对任意x 1,x 2,x 3∈R ,总有f(x 1),f(x 2),f(x 3)为某一个三角形的边长,则实数a 的取值范围是 .33.(2021•淄博一模16)已知函数f (x )=|x 3+2x +a |在[1,2]上的最大值是6,则实数a 的值是 . 34.(菏泽一模16)已知f (x )是定义在R 上的偶函数,且f (0)=1,g (x )=f (x ﹣1)是奇函数,则f (2021)= ,.35.(德州一模16)设定义在D 上的函数y =f (x )在点P (x 0,f (x 0))处的切线方程为l :y =g (x ),当x ≠x 0时,若<0在D 内恒成立,则称P 点为函数y =f (x )的“类对称中心点”,则函数h(x )=+lnx 的“类对称中心点”的坐标为 .四、解答36.(济南一模18)已知函数f(x)= 2(1),0.1,0.2x a x e x x ax x x ⎧+≤⎪⎨-+>⎪⎩. (1)若a=2,求f(x)的最小值;(2)若f(x)恰好有三个零点,求实数a 的取值范围.37.(潍坊一模21)已知函数2()2sin x af x x-=-(a ∈R).(1)若曲线()y f x =在点(2π,()2f π)处的切线经过坐标原点,求实数a ; (2)当a >0时,判断函数()f x 在x ∈(0,π)上的零点个数,并说明理由.38.(菏泽一模22)已知函数f (x )=lnx ﹣kx (k ∈R ),g (x )=x (e x ﹣2). (1)若f (x )有唯一零点,求k 的取值范围; (2)若g (x )﹣f (x )≥1恒成立,求k 的取值范围.39.(日照一模22)已知函数f (x )=e x −ax −1,g (x )=kx 2. (1)当a>0时,求f(x)的值域; (2)令a=1,当x ∈(0,+∞)时,f (x )≥g (x )ln (x+1)−x 恒成立,求k 的取值范围.40.(泰安一模22)已知函数f (x )=xlnx ﹣x 2+(2a ﹣1)x (a ∈R ). (1)讨论函数f (x )的极值点的个数; (2)已知函数g (x )=﹣f ′(x )有两个不同的零点x 1,x 2,且x 1<x 2.证明:x 2﹣x 1<.41.(2021•淄博一模22)已知数列)()11(*∈+=N n nan n (1)证明:e a n <(n ∈N *,e 是自然对数的底数);(2)若不等式e na n ≤++)11((n ∈N *,a>0)成立,求实数a 的最大值。

2020-2021青岛市初一数学上期末模拟试题(含答案)

2020-2021青岛市初一数学上期末模拟试题(含答案)

2020-2021青岛市初一数学上期末模拟试题(含答案)一、选择题1.如图,将一副三角板的直角顶点重合,摆放在桌面上,∠AOD=125°,则∠BOC= ( )A .25︒B .65︒C .55︒D .35︒2.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A .2.18×106 B .2.18×105 C .21.8×106 D .21.8×105 3.已知长方形的周长是45cm ,一边长是acm ,则这个长方形的面积是( ) A .(45)2a a -cm 2B .a (452a -)cm 2 C .452a cm 2D .(452a -)cm 2 4.如图所示运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为( )A .3B .6C .4D .25.商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( ) A .九折 B .八五折C .八折D .七五折6.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .Φ44.98D .Φ45.017.下列计算结果正确的是( )A .22321x x -=B .224325x x x +=C .22330x y yx -=D .44x y xy +=8.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…. 按照上述规律,第2015个单项式是( ) A .2015x 2015B .4029x 2014C .4029x 2015D .4031x 20159.“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是( ) A .30.2410⨯B .62.410⨯C .52.410⨯D .42410⨯10.运用等式性质进行的变形,正确的是( ) A .如果a =b ,那么a +2=b +3 B .如果a =b ,那么a -2=b -3 C .如果,那么a =bD .如果a 2=3a ,那么a =311.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )A .90°B .180°C .160°D .120°12.4h =2小时24分. 答:停电的时间为2小时24分. 故选:C . 【点睛】本题考查了一元一次方程的应用,把蜡烛长度看成1,得到两支蜡烛剩余长度的等量关系是解题的关键.二、填空题13.如图,数轴上点A 、B 、C 所对应的数分别为a 、b 、c ,化简|a|+|c ﹣b|﹣|a+b ﹣c|=__.14.已知∠AOB =72°,若从点O 引一条射线OC ,使∠BOC =36°,则∠AOC 的度数为_____.15.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.16.若代数式213k--的值是1,则k= _________. 17.若#表示最小的正整数,■表示最大的负整数,•表示绝对值最小的有理数,则=+•⨯(▲)■__________.18.若2a +1与212a +互为相反数,则a =_____.19.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n的代数式表示).所剪次数1234…n正三角形个数471013…a n 20.按照下面的程序计算:如果输入x的值是正整数,输出结果是166,那么满足条件的x的值为___________.三、解答题21.已知关于x,y的方程组54522x yax by+=⎧⎨+=-⎩与2180x yax by-=⎧⎨--=⎩有相同的解,求a,b的值.22.如图,C为线段AB上一点,点D为BC的中点,且AB=18cm,AC=4CD.(1)图中共有条线段;(2)求AC的长;(3)若点E在直线AB上,且EA=2cm,求BE的长.23.如图所示,已知∠BAC=∠EAD=90o.(1)判断∠BAE与∠CAD的大小关系,并说明理由.(2)当∠EAC=60o时,求∠BAD的大小.(3)探究∠EAC与∠BAD的数量关系,请直接写出结果,不要求说明理由.24.已知∠a=42°,求∠a的余角和补角.25.某区运动会要印刷秩序册,有两个印刷厂前来联系业务,他们的报价相同,甲厂的优惠条件是:按每份定价6元的八折收费,另收500元制版费;乙厂的优惠条件是:每份定价6元的价格不变,而500元的制版费四折优惠.问:(1)这个区印制多少份秩序册时两个印刷厂费用是相同的;(2)当印制200份、400份秩序册时,选哪个印刷厂所付费用较少;为什么.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由△AOB与△COD为直角三角形得到∠AOB=∠COD=90°,则∠BOD=∠AOD-∠AOB=125°-90°=35°,然后利用互余即可得到∠BOC=∠COD-∠BOD=90°-35°.【详解】解:∵∠AOB=∠COD=90°,∠AOD=125°,∴∠BOD=∠AOD-∠AOB=125°-90°=35°,∴∠BOC=∠COD-∠BOD=90°-35°=55°.故答案为C.【点睛】本题考查了角的计算,属于基础题,关键是正确利用各个角之间的关系.2.A解析:A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B解析:B【解析】【分析】【详解】解:设长边形的另一边长度为x cm,根据周长是45cm,可得:2(a+x)=45,解得:x=452﹣a,所以长方形的面积为:ax=a(452a-)cm2.故选B.考点:列代数式.4.D解析:D【解析】【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:根据题意得:可发现第1次输出的结果是24;第2次输出的结果是24×12=12;第3次输出的结果是12×12=6;第4次输出的结果为6×12=3;第5次输出的结果为3+5=8;第6次输出的结果为812⨯=4;第7次输出的结果为412⨯=2;第8次输出的结果为212⨯=1;第9次输出的结果为1+5=6;归纳总结得到输出的结果从第3次开始以6,3,8,4,2,1循环,∵(2017-2)÷6=335.....5,则第2017次输出的结果为2.故选:D.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中输出结果的变化规律.5.A解析:A【解析】【分析】设该商品的打x折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可.【详解】设该商品的打x 折出售,根据题意得,32002400(120%)10x⨯=+ 解得:x=9.答:该商品的打9折出售。

2020-2021学年山东省济宁市高三(上)期末数学试卷 (解析版)

2020-2021学年山东省济宁市高三(上)期末数学试卷 (解析版)

2020-2021学年山东省济宁市高三(上)期末数学试卷一、选择题(共8小题).1.设集合A={x|x2﹣x﹣2≤0},B={x|y=ln(x﹣1)},则A∩B=()A.(1,2]B.(0,2]C.(2,+∞)D.[2,+∞)2.若复数(i为虚数单位)为纯虚数,则实数a的值为()A.﹣B.﹣C.D.3.若tanα=2,则=()A.B.C.D.14.“a=1”是“直线ax+(2a﹣1)y+3=0与直线(a﹣2)x+ay﹣1=0互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.2020年11月,中国国际进口博览会在上海举行,本次进博会设置了“云采访”区域,通过视频连线,帮助中外记者采访因疫情影响无法来沪参加进博会的跨国企业CEO或海外负责人.某新闻机构安排4名记者和3名摄影师对本次进博会进行采访,其中2名记者和1名摄影师负责“云采访”区域的采访,另外2名记者和2名摄影师分两组(每组记者和摄影师各1人),分别负责“汽车展区”和“技术装备展区”的现场采访.如果所有记者、摄影师都能承担三个采访区域的相应工作,则所有不同的安排方案有()A.36种B.48种C.72种D.144种6.函数f(x)=x﹣ln|e2x﹣1|的部分图象可能是()A.B.C.D.7.已知抛物线C:y2=2px(p>0)的焦点为F,过F作斜率为的直线l交抛物线C于A、B两点,若线段AB中点的纵坐标为,则抛物线C的方程是()A.y2=3x B.y2=4x C.y2=6x D.y2=8x8.已知函数f(x)(x∈R)的导函数是f′(x),且满足∀x∈R,f(1+x)=﹣f(1﹣x),当x>1时,f(x)+ln(x﹣1)•f′(x)>0,则使得(x﹣2)f(x)>0成立的x 的取值范围是()A.(0,1)⋃(2,+∞)B.(﹣∞,﹣2)⋃(2,+∞)C.(﹣2,﹣1)⋃(1,2)D.(﹣∞,1)⋃(2,+∞)二、选择题(共4小题).9.已知a,b,c,d均为实数,下列说法正确的是()A.若a>b>0,则>B.若a>b,c>d,则a﹣d>b﹣cC.若a>b,c>d,则ac>bd D.若a+b=1,则4a+4b≥410.直线l过点P(1,2)且与直线x+ay﹣3=0平行,若直线l被圆x2+y2=4截得的弦长为2,则实数a的值可以是()A.0B.C.D.﹣11.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<),其图象相邻两条对称轴之间的距离为,且直线x=﹣是其中一条对称轴,则下列结论正确的是()A.函数f(x)的最小正周期为B.函数f(x)在区间[﹣,]上单调递增C.点(﹣,0)是函数f(x)图象的一个对称中心D.将函数f(x)图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再把得到的图象向左平移个单位长度,可得到g(x)=sin2x的图象12.如图,在菱形ABCD中,AB=2,∠ABC=60°,M为BC的中点,将△ABM沿直线AM翻折成△AB1M,连接B1C和B1D,N为B1D的中点,则在翻折过程中,下列说法中正确的是()A.AM⊥B1CB.CN的长为定值C.AB1与CN的夹角为D.当三棱锥B1﹣AMD的体积最大时,三棱锥B1﹣AMD的外接球的表面积是8π三、填空题:本题共4小题,每小题5分,共20分。

2021届长宁区高三数学一模试卷及参考答案

2021届长宁区高三数学一模试卷及参考答案

2020学年第一学期高三数学教学质量检测试卷考生注意:1.答题前,务必在答题纸上将姓名、学校、班级等信息填写清楚,并贴好条形码. 2.解答试卷必须在答题纸规定的相应位置书写,超出答题纸规定位置或写在试卷、草稿纸上的答案一律不予评分.3.本试卷共有21道试题,满分150分,考试时间120分钟.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果. 1. 不等式201x x -<+的解集为 . 2. 函数πsin(2)6y x =-的最小正周期为 .3. 计算:121lim 31n nn +→∞+=-__________. 4. 数组2.7、3.1、2.5、4.8、2.9、3.6的中位数为 .5. 在61()x x+的二项展开式中,2x 项的系数为__________.6. 若函数()y f x =的反函数()()1log 0,1a f x x a a -=>≠图像经过点3(8,)2,则1()2f -的值为 . 7. 若直线1201x y k-+=的法向量与直线10x y +-=的方向向量垂直,则实数k = . 8. 设集合{}21M x x =≤,{}N b =,若MN M =,则实数b 的取值范围为 .9. 设F 为双曲线()222:10y x b bΓ-=>的右焦点,O 为坐标原点,P 、Q 是以OF 为直径的圆与双曲线Γ渐近线的两个交点.若PQ OF =,则b = .10. 在ABC ∆中,3AB =,2AC =,点D 在边BC 上. 若1AB AD ⋅=, 53AD AC ⋅=,则AB AC ⋅的值为 .11. 设O 为坐标原点,从集合{}123456789,,,,,,,,中任取两个不同的元素x y 、,组成A 、B两点的坐标(),x y 、(),y x ,则12arctan3AOB ∠=的概率为 . 12. 设公差不为0的等差数列{}n a 的前n 项和为n S . 若数列{}n a 满足:存在三个不同的正整数,,r s t ,使得,,r s t a a a 成等比数列,222,,r s t a a a 也成等比数列,则1990nnS S a +的最小值为 .二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. 设复数i z a b =+(其中a b ∈R 、,i 为虚数单位),则“0a =”是“z 为纯虚数”的( ).A. 充分非必要条件;B. 必要非充分条件 ;C. 充要条件;D. 既非充分又非必要条件. 14. 对任意向量a 、b ,下列关系式中不恒成立的是( ).A .()22a ba b +=+; B .()()22a b a b a b +⋅-=-;C .a b a b ⋅≤⋅;D .a b a b -≤-. 15. 设m 、n 为两条直线,α、β为两个平面,则下列命题中假命题是( ).A .若m n ⊥,m α⊥,n β⊥,则αβ⊥;B .若//m n ,m α⊥,//n β,则αβ⊥;C .若m n ⊥,//m α,//n β,则//αβ;D .若//m n ,m α⊥,n β⊥,则//αβ. 16. 设()1232f x x b kx b x b =-+---,其中常数0k >,123,,b b b ∈R .若函数()y f x =的图像如图所示,则数组()123,,b b b 的一组值可以是( ). A. ()3,1,1-; B. ()1,2,1--; C. ()1,2,2-; D. ()1,3,1-.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,已知圆锥的顶点为P ,底面圆心为O,高为(1)求该圆锥的侧面积; (2)设OA 、OB 为该圆锥的底面半径,且︒=∠90AOB ,M为线段AB 的中点,求直线PM 与直线OB 所成的角的正切值.设抛物线2:4y x Γ=的焦点为F ,直线:0l x my n --=经过F 且与Γ交于A 、B 两点. (1)若8AB =,求m 的值;(2)设O 为坐标原点,直线AO 与Γ的准线交于点C ,求证:直线BC 平行于x 轴.某公共场所计划用固定高度的板材将一块如图所示的四边形区域ABCD 沿边界围成一个封闭的留观区. 经测量,边界AB 与AD 的长度都是20米,60BAD ∠=︒,120BCD ∠=︒.(1)若105ADC ∠=︒,求BC 的长(结果精确到米);(2)求围成该区域至多需要多少米长度的板材(不计损耗,结果精确到米).设()()322f x x ax x x =+-∈R ,其中常数a ∈R . (1)判断函数()y f x =的奇偶性,并说明理由; (2)若不等式()332f x x >在区间1[,1]2上有解,求实数a 的取值范围;(3)已知:若对函数()y h x =定义域内的任意x ,都有()()22h x h m x n +-=,则函数()y h x =的图像有对称中心(),m n .利用以上结论探究:对于任意的实数a ,函数()y f x =是否都有对称中心?若是,求出对称中心的坐标(用a 表示);若不是,证明你的结论.若对于数列{}n a 中的任意两项i a 、j a ()i j >,在{}n a 中都存在一项m a ,使得2i m ja a a =,则称数列{}n a 为“X 数列”;若对于数列{}n a 中的任意一项()3n a n ≥,在{}n a 中都存在两项k a 、()l a k l >,使得2kn la a a =,则称数列{}n a 为“Y 数列”. (1)若数列{}n a 为首项为1公差也为1的等差数列,判断数列{}n a 是否为“X 数列”,并说明理由;(2)若数列{}n a 的前n 项和()21nn S n =-∈*N,求证:数列{}na 为“Y 数列”; (3)若数列{}n a 为各项均为正数的递增数列,且既为“X 数列”,又为“Y 数列”, 求证:1234,,,a a a a 成等比数列.2020学年第一学期高三数学质量检测试卷参考答案与评分标准一.填空题(本大题共有12题,满分54分,第1—6题每题4分,第7---12题每题5分)考生应在答题纸的相应位置直接填写结果.1.()1,2- 2.π 3.0 4.3.0 5.15 6.127.1- 8.[]1,1- 9.1 10.3- 11.1912.45二.选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. B 14. D 15. C 16 . A三、解答题(本大题共有5题,满分76分) 解答下列各题必须在答题纸的相应位置写出必须的步骤. 17.(本题满分14分,第1小题满分6分,第2小题满分8分) 解:(1)OP ⊥底面OAB由题意高h =2r =,所以母线4l = ………………2分 圆锥的侧面积=S lr 2142221⨯⨯⨯=ππ8= ………………6分 (2)取OA 的中点为N ,因为M 为AB 的中点所以//MN OB ,PMN ∠就是直线PM 与直线OB 所成的角 ………………2分 因为OB OA ⊥,OB OP ⊥,所以OB ⊥平面POA ,MN ⊥平面POA ,MN PN ⊥ ………………4分在Rt △PNM 中,PN ==112MN OB == …………6分所以PMN ∠即直线PM 与直线OB ………………8分18.(本题满分14分,第1小题满分7分,第2小题满分7分) 解:设()11,A x y ,()22,B x y ,(1)()1,0F ,得1n = …………2分直线l 的方程1x my =+代入24y x =得,2440y myx --= 所以124y y m +=,124y y =- …………4分AB ==()2418m =+=所以1m =± …………7分(2)抛物线24y x =的准线方程为1x =- …………1分 设()31,C y -,由OA 的方程为11y y x x =, 得13114y y x y =-=- …………4分 由(1)知124y y =-,即214y y =-…………6分 所以32y y =,BC 平行于x 轴 …………7分 19.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)连接BD ,由题意ABD ∆是等边三角形,所以20BD =又因为,所以45DBC ∠= …………2分 在BCD ∆中,sin sin BC BDBDC C=∠∠, …………4分得BC=3620≈16(米) …………6分 (2)设θ=∠ADC , 则3BDC πθ∠=-,23CBD πθ∠=-, 105ADC ∠=在BCD ∆中,sin sin sin CD BC BDCBD BDC C==∠∠∠,所以3BC πθ⎛⎫=- ⎪⎝⎭,23DC πθ⎛⎫=- ⎪⎝⎭ …………4分所需板材的长度=40+⎪⎭⎫ ⎝⎛-3sin 3340πθ+⎪⎭⎫⎝⎛-θπ32sin 3340=θsin 334040+, …………6分 答:当2ADC π∠=时,所需板材最长为334040+≈73(米). …………8分 20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分) 解:(1) 当0=a 时,()32f x x x =-,()32f x x x -=-+所以()()f x f x =--,()y f x =为奇函数. …………2分 当0≠a 时,()11f a =-,()11f a -=+,因为()()11f f -≠±,所以()x f 既不是奇函数也不是偶函数. …………4分 (2)原问题可化为122a x x >+在区间⎥⎦⎤⎢⎣⎡1,21有解,…………1分 函数122y x x =+在区间⎥⎦⎤⎢⎣⎡1,21单调递减, …………3分 所以min 52y =, …………4分 所以a 的取值范围是5(,)2+∞…………6分(3)假设存在对称中心(),m n ,则()()()3232222222x ax x m x a m x m x n +-+-+---=恒成立得()()2232621248442m a x m a x m am m n +-+++-=恒成立…………2分所以23262012408442m a m am m am m n +=⎧⎪+=⎨⎪+-=⎩…………4分 得3a m =-,322273a a n =+ 所以函数()y f x =有对称中心322(,)3273a a a -+ …………6分21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 解(1)数列{}n a 的通项为n a n =,22a =,33a =, …………2分因为不是正整数,所以不是数列{}n a 的项, 所以数列{}n a 不是“X 数列”. …………4分(2)数列{}n a 的前n 项和()21n n S n =-∈*N ,所以12n n a -=. …………2分 当时,取,, …………4分 则221122k l n k n la a a ---===,所以数列{}n a 是“Y 数列”. …………6分 (3)证明:记21a q a =,因为数列{}n a 是各项均为正数的递增数列, 所以,且当k l >时, 1k la a >. …………1分 若k l > ,2k k n k k l l la a a a a a a a ==⨯>>,则.① ………2分 因为数列{}n a 是“X 数列”,所以存在i j >,且23i ja a a =, 由①知,,所以 即222311a a a q a ==,即1a ,2a ,3a 成等比数列. …………4分 因为数列{}n a 是“X 数列”,存在正整数、,使得24k la a a =, 由①得,,所以, 进而22141k l k la a a q a --==,记. 因为数列{}n a 是“Y 数列”存在正整数,使得233312m a a q a a q a ==⨯=, 由,得3m a a >. …………6分23292a a =3n ≥1k m =-2l m =-1q >n k l >>31i j >>≥2,1i j ==k l ()k l >4k l >>3k l ≥>421n k l =--∈*N m 1q >若43411n a a q a q =<,再由2314a a q a =<,得,与矛盾;若341m a a q a >=,则34m a a a <<,与数列{}n a 递增矛盾, 所以341a a q =,即1a ,2a ,3a ,4a 成等比数列. …………8分 423n <<4n ∈*N。

山东省青岛市即墨蓝村中学2020-2021学年高一数学理期末试卷含解析

山东省青岛市即墨蓝村中学2020-2021学年高一数学理期末试卷含解析

山东省青岛市即墨蓝村中学2020-2021学年高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A.B.C.5 D.6参考答案:C【考点】基本不等式在最值问题中的应用.【分析】将x+3y=5xy转化成=1,然后根据3x+4y=()(3x+4y),展开后利用基本不等式可求出3x+4y的最小值.【解答】解:∵正数x,y满足x+3y=5xy,∴=1∴3x+4y=()(3x+4y)=+++≥+2=5当且仅当=时取等号∴3x+4y≥5即3x+4y的最小值是5故选:C【点评】本题主要考查了基本不等式在求解函数的值域中的应用,解答本题的关键是由已知变形,然后进行“1”的代换,属于基础题.2. 若满足约束条件则的最大值()A.3 B.10 C.6D.9参考答案:D略3. 已知函数f(x)是定义在R上的增函数,则函数y=f(|x﹣1|)﹣1的图象可能是()A.B.C.D.参考答案:B【考点】函数的图象.【专题】函数的性质及应用.【分析】去掉y=f(|x﹣1|)﹣1中的绝对值,讨论复合函数y的增减性.【解答】解:∵y=f(|x﹣1|)﹣1=,且f(x)是R上的增函数;∴当x≥1时,y=f(x﹣1)﹣1是增函数,当x<1时,y=f(﹣x+1)﹣1是减函数;∴函数y=f(|x﹣1|)﹣1的图象可能是第二个;故选:B.【点评】本题考查了复合函数的增减性问题,判定f(g(x))的单调性,当f(x)、g(x)单调性相同时,f(g(x))是增函数;当f(x)、g(x)单调性相反时,f(g(x))是减函数.4. 函数与图像的交点个数是().A.0 B.1 C.2D.3参考答案:D解:函数与的图象的交点个数即函数的零点的个数.显然,和是函数的两个零点.再由,,可得,故函数在区间上有一个零点.故函数与的图象的交点个数为.故选.5. 直线被圆截得的弦长为()A. B.C.D.参考答案:B略6. 已知,则下列选项正确的是()A. B.C. D.参考答案:C7. 等于A. B. C.D.1参考答案:D 8. 已知映射f:A→B,其中A=B=R,对应法则f:→.若对实数k∈B,在集合A中存在元素与之对应,则k的取值范围是()A、k≤1B、k<1C、k≥1D、k>1参考答案:C9. (5分)设a,b,c都是正数,且3a=4b=6c,那么()A.=+B.=+C.=+D.=+参考答案:B考点:指数函数综合题.专题:计算题.分析:利用与对数定义求出a、b、c代入到四个答案中判断出正确的即可.解答:由a,b,c都是正数,且3a=4b=6c=M,则a=log3M,b=log4M,c=log6M代入到B中,左边===,而右边==+==,左边等于右边,B正确;代入到A、C、D中不相等.故选B.点评:考查学生利用对数定义解题的能力,以及换底公式的灵活运用能力.10. 设集合,要使,则应满足的条件是( )A. B. C. D.参考答案:B试题分析:由数轴可知,选B.考点:集合交集二、填空题:本大题共7小题,每小题4分,共28分11. 已知圆台的上、下底面半径分别是,且侧面面积等于两底面积之和,则圆台的母线长等于.参考答案:略12. 化简: =.参考答案:1【考点】GO :运用诱导公式化简求值.【分析】直接利用诱导公式化简求解即可.【解答】解: ==1.故答案为:1.【点评】本题考查诱导公式的应用,考查计算能力.13. 在正方体ABCD-A1B1C1D1中,异面直线A1B与AC所成的角是______°;直线A1B和平面A1B1CD所成的角是_________°.参考答案:60,3014. 若,则是的条件。

2020-2021学年上学期高一数学期末模拟卷03(人教A版新教材)(浙江专用)【解析版】

2020-2021学年上学期高一数学期末模拟卷03(人教A版新教材)(浙江专用)【解析版】

数学模拟试卷03第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·河北高二学业考试)已知集合{}012M =,,,{}1,2N =,则M N ⋃=( ).A .{}1,2B .{}0C .{}0,1,2D .{}0,1【答案】C 【解析】由并集定义可得:{}0,1,2M N =.故选:C.2.(2019·浙江高二学业考试)已知a ,b 是实数,则“a b >”是“22a b >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】若a b >,则a b b >≥,即a b >,故22a b >. 取1,2a b ==-,此时22a b >,但a b <, 故22a b >推不出a b >, 故选:A.3.(2019·伊宁市第八中学高一期中)若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭【答案】D 【解析】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D.4.(2020·黑龙江哈尔滨市第六中学校高三开学考试(理))设2313a ⎛⎫= ⎪⎝⎭,532b =,21log 3c =,则( )A .b a c <<B .a b c <<C .c a b <<D .b c a <<【答案】C 【解析】23110133⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭,503221>=,221log log 103<=, ∴c a b <<. 故选:C5.(2020·江苏南通市·高三期中)已知角α的终边经过点()3,4P ,则πcos 24α⎛⎫+= ⎪⎝⎭( )A .50-B .50C .50-D .50【答案】A 【解析】角α的终边经过点()3,4P ,5OP ∴==,由三角函数的定义知:3cos 5α=,4sin 5α, 2237cos 22cos 121525αα⎛⎫∴=-=⨯-=- ⎪⎝⎭,4324sin 22sin cos 25525ααα==⨯⨯=,()()π724cos 2cos2cos sin 2sin 4442525ππααα∴+=-=-=.故选:A.6.(2020·甘肃兰州市·西北师大附中高三期中)函数()f x 在[)0,+∞单调递增,且()3f x +关于3x =-对称,若()21f -=,则()21f x -≤的x 的取值范围( )A .[]22-,B .(][),22,-∞-+∞C .()[),04,-∞+∞D .[]0,4【答案】D 【解析】因为()3f x +关于3x =-对称,所以()f x 关于y 轴对称,所以()()221f f -==, 又()f x 在[)0,+∞单调递增,由()21f x -≤可得222x -≤-≤,解得:04x ≤≤, 故选:D7.(2020·浙江高一期末)对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法: ①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈⎪⎝⎭ ④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1 B .2C .3D .4【答案】A 【解析】函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭, 当3=42x ππ+时,即=12x π,函数()f x 取得最小值为132122-⨯+=-,故①正确;当342x k πππ+=+时,即=,123k x k Z ππ+∈,函数()f x 的图象的对称轴是直线=,123k x k Z ππ+∈,故②错误; 当34x k ππ+=时,即,123k x k Z ππ=-+∈,函数()f x 的图象的对称中心为1,,1232k k Z ππ⎛⎫-+∈ ⎪⎝⎭,故③错误; 当3232242k x k πππππ+≤+≤+,即2523,123123k k x k Z ππππ+≤≤+∈,函数()f x 的递增区间为252,,123123k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当1k =-时,()f x 的递增区间为7,124ππ⎡⎤--⎢⎥⎣⎦,故④错误. 故选:A8.(2020·山西吕梁市·高三期中(文))函数1()11f x x=+-的图象与函数()2sin 1(24)g x x x π=+-的图象所有交点的横坐标之和等于( ) A .8 B .6C .4D .2【答案】A 【解析】由函数图象的平移可知, 函数1()11f x x=+-与函数()2sin 1g x x π=+的图象都关于(1,1)M 对称. 作出函数的图象如图,由图象可知交点个数一共8个(四组,两两关于点(1,1)对称), 所以所有交点的横坐标之和等于428⨯=.故选:A9.(2020·山西吕梁市·高三期中(文))已知函数2,0()()21,0x e a x f x a R x x ⎧+=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞- B .[2,0)-C .(1,0)-D .[1,0)-【答案】B 【解析】当0x >时,()21f x x =-有一个零点12x =,只需当0x ≤时,20x e a +=有一个根,利用“分离参数法”求解即可.解:因为函数()2,021,0x e a x f x x x ⎧+≤=⎨->⎩, 当0x >时,()21f x x =-有一个零点12x =, 所以只需当0x ≤时,202x xa e a e +==-即有一个根即可,因为2xy e =单调递增,当0x ≤时,(]0,1xe ∈,所以(]0,2a -∈,即[)2,0a ∈-,故选:B.10.(2020·河北高二学业考试)已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()2log 1f x x =+,则不等式()2f x ≤的解集是( ). A .[]3,3- B .[]4,4-C .(][),33,-∞-+∞D .(][),44,-∞-⋃+∞【答案】A 【解析】0x ≥时,()()2log 1f x x =+,()f x ∴在[)0,+∞上单调递增,又()f x 是定义在R 上的奇函数,()f x ∴在R 上单调递增,易知()()223log 31log 42f =+==,()()332f f -=-=-, 由()2f x ≤, 解得:()22f x -≤≤, 由()f x 在R 上单调递增, 解得:33x -≤≤,()2f x ∴≤的解集是[]3,3-.故选:A.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2020·上海青浦区·高三一模)圆锥底面半径为1cm ,母线长为2cm ,则其侧面展开图扇形的圆心角θ=___________.【答案】π; 【解析】因为圆锥底面半径为1cm ,所以圆锥的底面周长为2cm π, 则其侧面展开图扇形的圆心角22πθπ==, 故答案为:π.12.(2020·浙江宁波市·高三期中)设2log 3a =,则4a =______(用数值表示),lg 36lg 4=______.(用a 表示)【答案】9 1a + 【解析】2log 3a =,22394429log log a ∴===,4222236log 36log 6log (23)log 2log 314lg a lg ===⨯=+=+, 故答案为:9,1a +.13.(2020·深圳科学高中高一期中)某移动公司规定,使用甲种卡,须付“基本月租费”(每月需交的固定费用)30元,在国内通话时每分钟另收话费0.10元;使用乙种卡,不收“基本月租费”,但在国内通话时每分钟话费为0.2元.若某用户每月手机费预算为50元,则使用__________种卡才合算;若要使用甲种卡合算,则该用户每月手机费预算(元)的区间为__________. 【答案】乙 (60,)+∞ 【解析】由题意,设月通话时间为t 分钟,有甲费用为300.1t +,乙费用为0.2t , ∴每月手机费预算为50元,则:由300.150t +=知,甲的通话时间为200分钟, 由0.250t =知,乙的通话时间为250分钟, ∴用户每月手机费预算为50元,用乙种卡合算;要使用甲种卡合算,即月通话时间相同的情况下甲费用更低,即300.10.2t t +<, 解得300t >时,费用在(60,)+∞. 故答案为:乙,(60,)+∞14.(2020·商丘市第一高级中学高一期中)设函数()112,1,1x e x f x x x -⎧<⎪=⎨⎪≥⎩则()3f x ≤成立的x 的取值范围为______. 【答案】(],9-∞ 【解析】当1x <时,由13x e -≤得1ln3x ≤+,所以1x <; 当1≥x 时,由213x ≤得9x ≤,所以19x ≤≤. 综上,符合题意的x 的取值范围是(,9]-∞. 故答案为:(,9]-∞.15.(2020·辽宁本溪市·高二月考)摩天轮是一种大型转轮状的机械建筑设施,稳坐于永乐桥之上的“天津之眼”作为世界上唯一一座建在桥上的摩天轮,其巧夺天工和奇思妙想确是当之无愧的“世界第一”.如图,永乐桥摩天轮的直径为110m ,到达最高点时,距离地面的高度为120m ,能看到方圆40km 以内的景致,是名副其实的“天津之眼”.实际上,单从高度角度来看,天津之眼超越了曾大名鼎鼎的伦敦之眼而跃居世界第一.永乐桥摩天轮设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min .游客甲坐上摩天轮的座舱,开始转到min t 后距离地面的高度为m H ,则转到10min 后距离地面的高度为______m ,在转动一周的过程中,H 关于t 的函数解析式为______.【答案】1852 π55cos 6515H t =-+,030t ≤≤. 【解析】如图,设座舱距离地面最近的位置为点P ,以轴心O 为原点,与地面平行的直线为x 轴,建立直角坐标系.设0min t =时,游客甲位于点()0,55P -,以OP 为终边的角为π2-; 根据摩天轮转一周大约需要30min , 可知座舱转动的角速度约为πmin 15rad , 由题意可得πππ55sin 6555cos 6515215H t t ⎛⎫=-+=-+⎪⎝⎭,030t ≤≤.当10t =时,π18555cos 1065152H ⎛⎫=-⨯+= ⎪⎝⎭. 故答案为:1852;π55cos 6515H t =-+,030t ≤≤ 16.(2020·浙江建人专修学院高三三模)已知2,0()(),0x x f x f x x ⎧≥=⎨--<⎩,若4log 3a =,则()f a =___________;()1f a -=___________.3 233-因为4log 3a =,所以43a =,即2a =01a <<,所以()2a f a ==1(1)(1)2a f a f a --=--=-==3-17.(2020·上海虹口区·高三一模)已知(0,)απ∈,且有12sin2cos2αα-=,则cos α=___________.【解析】2212sin 2cos214sin cos 12sin sin 2sin cos αααααααα-=⇒-=-⇒=,因为(0,)απ∈,所以sin 0α≠,因此由2sin 2sin cos sin 2cos tan 2(0,)2πααααααα=⇒=⇒=⇒∈,而22sin cos 1(1)αα+=,把sin 2cos αα=代入(1)得:22214cos cos 1cos cos 5αααα+=⇒=⇒=(0,)2πα∈,因此cos α=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·黑龙江工农�鹤岗一中高二期末(文))函数()22xxaf x =-是奇函数. ()1求()f x 的解析式;()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,求m 的取值范围.【答案】(1)()122xxf x =-;(2)5m <-.() 1函数()22x x af x =-是奇函数, ()()1222222x x x x x x a af x a f x --∴-=-=-+=-+=-,故1a =, 故()122xx f x =-; ()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,即21(2)42x xm +<-⋅在()0,x ∈+∞恒成立,令()2(2)42x xh x =-⋅,(0)x >,显然()h x 在()0,+∞的最小值是()24h =-, 故14m +<-,解得:5m <-.19.(2020·宁夏长庆高级中学高三月考(理))已知函数()22sin cos 22222x x x f x ππ⎛⎫⎛⎫=-++- ⎪ ⎪⎝⎭⎝⎭(1)求()f x 的最小正周期;(2)求()f x 在区间[]0,π上的最小值及单调减区间.【答案】(1)最小正周期为2π;(2)()min f x =()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 【解析】(1)1cos ()2sin cos 222x x xf x +=+sin x x =+12sin cos 2sin 223x x x π⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.所以()f x 的最小正周期为2π. (2)因为[]0,x π∈,所以4,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以当433x ππ+=,即x π=时,函数()f x 取得最小值由4233x πππ≤+≤,得6x ππ≤≤,所以函数()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 20.(2019·河北师范大学附属中学高一期中)已知二次函数()f x 的图象经过点()4,4-,方程()0f x =的解集为{}0,2.(1)求()f x 的解析式;(2)是否存在实数(),m n m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出m ,n 的值;若不存在,说明理由.【答案】(1)21()2f x x x =-+;(2)存在;2m =-,0n =. 【解析】(1)由已知,设()()2f x ax x =-.因为()f x 的图象经过点()4,4-,所以()4442a -=-,解得12a =-, 即()f x 的解析式为21()2f x x x =-+; (2)假设满足条件实数m ,n 的存在, 由于221111()(1)2222f x x x x =-+=--+≤,因此122n ≤,即14n ≤. 又()f x 的图象是开口向下的抛物线,且对称轴方程1x =,可知()f x 在区间[],m n 上递增,故有()2()2f m m f n n=⎧⎨=⎩,并注意到14m n <≤,解得2m =-,0n =. 综上可知,假设成立,即当2m =-,0n =时,()f x 的定义域和值域分别为[],m n 和[]2,2m n .21.(2020·山西吕梁市·高三期中(文))已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min 7x x π-=,求ϕ的值. 【答案】(1)37π;(2)14π. 【解析】(1)由()sin ,(0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值, 可知:236T πππω-≤=,故有012ω<≤. 又6x π=与3x π=在一个周期内,且63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭; 4x π∴=时,函数取到最小值.2,()432k k Z πππωπ∴+=-+∈ 故有1083k ω=-+, 又因为012ω<≤,所以143ω=. 所以函数()f x 的最小正周期为37π. (2)由()()122f x g x -=∣∣可知的()()12,f x g x 中一个对应最大值,一个对应最小值. 对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π. ∴有12min 314x x πϕ-+=. 即314714πππϕ=-=.22.(2020·安徽省蚌埠第三中学高一月考)设函数()()21x x a t f x a--=(0a >,且1a ≠)是定义域为R 的奇函数.(1)求t 的值;(2)若函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,是否存在正数()1m m ≠,使函数()()22log x x m g x a a mf x -⎡⎤=+-⎣⎦在[]21,log 3上的最大值为0,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)2t =;(2)不存在,理由见解析.【解析】(1)∵()f x 是定义域为R 的奇函数,∴()00f =,∴2t =;经检验知符合题意.(2)函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,所以2132a a -=, ∴2a =(12a =-舍去), 假设存在正数m ,且1m ≠符合题意,由2a =得()()22log 2222x x x x m g x m --⎡⎤=+--⎣⎦, 设22x x t -=-,则()()22222222x x x x m t mt -----+=-+,∵[]21,log 3x ∈,2[2,3]x ∈,∴38,23t ⎡⎤∈⎢⎥⎣⎦,记()22h t t mt =-+, ∵函数()g x 在[]21,log 3上的最大值为0,∴(i )若01m <<时,则函数()22h t t mt =-+在38,23⎡⎤⎢⎥⎣⎦有最小值为1, 由于对称轴122m t =<,∴()min 31731312426h t h m m ⎛⎫==-=⇒= ⎪⎝⎭,不合题意. (ii )若1m 时,则函数()220h t t mt =-+>在38,23⎡⎤⎢⎥⎣⎦上恒成立,且最大值为1,最小值大于0, ①()max 1252512212736873241324m m m h t h m ⎧⎧<≤<≤⎪⎪⎪⎪⇒⇒=⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩, 而此时7338,24823m ⎡⎤=∈⎢⎥⎣⎦,又()min 73048h t h ⎛⎫=< ⎪⎝⎭, 故()g x 在[]21,log 3无意义, 所以7324m =应舍去; ②()max 25252126313126m m h t h m ⎧⎧>>⎪⎪⎪⎪⇒⇒⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩m 无解, 综上所述:故不存在正数m ,使函数()g x 在[]21,log 3上的最大值为0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
2
b ,由不等式的平方法则, a b ,即 a b .选 D.
2.B
解析:B 【解析】
【分析】
【详解】
先作可行域,而 y 4 表示两点 P(x,y)与 A(-6,-4)连线的斜率,所以 y 4 的取值范围
x6
x6
是[kAD , kAC ] [3,1] ,选 B.
点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还 是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜 率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.
11.C
解析:C
【解析】
【分析】
【详解】
解:∵ a2 , a3, a4 1成等比数列,


∵数列an为递增的等差数列,设公差为 d,




又数列 an 前三项的和


,即

即 d=2 或 d=−2(舍去), 则公差 d=2. 故选:C.
12.C
解析:C 【解析】
【分析】
①根据正弦定理可得到结果;②根据 A B 或 A B , 可得到结论不正确;③可由余弦 2
1 4 1 (a b)( 1 4) 1 (5 b 4a ) 1 (5 2 b 4a ) 3 ,当且仅当 b 4a ,
Байду номын сангаас
ab 6
ab 6 a b 6
ab 2
ab
即 a 1 ,b 2 时等号成立,即 1 4 的最小值为 3 .
33
ab
2
故选:B.
【点睛】
本题考查简单的线性规划,考查用基本不等式求最值,解题关键是用“1”的代换凑配出基
2020-2021 青岛市高三数学上期末一模试题附答案
一、选择题
1.下列结论正确的是( )
A.若 a b ,则 ac2 bc2 C.若 a b, c 0 ,则 a c b c
B.若 a2 b2 ,则 a b D.若 a b ,则 a b
x y 2 0
2.设 x, y 满足约束条件 2x y 3 0 ,则 y 4 的取值范围是
x 2y 3 0
4.已知
x,y
满足
x
3
y
3
0
,z=2x+y
的最大值为
m,若正数
a,b
满足
a+b=m,则
y 1
1 4 的最小值为( ) ab
A.3
B. 3
C.2
2
D. 5 2
5.“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,干支是天干和地支的总
称,把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”
移直线可确定最大值取得的点,代入可得结果. 【详解】 由约束条件可得可行域如下图所示:
当 z x 2y 取最大值时, y 1 x 1 z 在 y 轴截距最大 22
平移直线 y 1 x ,可知当直线 y 1 x 1 z 过图中 A 点时,在 y 轴截距最大
2
22

y x 2x y
化目标函数为 y 2x z ,
联立
x x
y 7 0 3y 1 0
,解得
A(5,
2).
由图象可知,当直线过点 A 时,直线在 y 轴上截距最小, z 有最大值 25- 2 8 .
【点睛】
本题主要考查了简单的线性规划,数形结合的思想,属于中档题.
9.C
解析:C
【解析】
【分析】
由约束条件可得可行域,将问题变成 y 1 x 1 z 在 y 轴截距最大问题的求解;通过平 22
ab
15.已知递增等比数列
an
的前 n 项和为 Sn ,且满足: a1
1, a4 a2
a5 a3
4 ,则
S1 S4 a4
______.
16.设 Sn 是等差数列 an 的前 n 项和,若 S5 10 , S10 5 ,则公差 d (___).
17.已知数列{an}满足 an
( 1 2
1 bcsinA 2
1 24 2
15 8
15 2
故选 D.
【点睛】
三角形的面积公式常见形式有两种:一是 1 (底 高),二是 1 bcsinA .借助 1 (底
2
2
2
高)时,需要将斜三角形的高与相应的底求出来;借助 1 bcsinA 时,需要求出三角形两边 2
及其夹角的正弦值.
7.C
解析:C 【解析】
x y 2 0,
20.已知等比数列
an
的公比为 2,前
n
项和为
S
n
,则
S4 a2
=______.
三、解答题
21.在条件① (a b)(sin A sin B) (c b)sin C ,② asin B bcos(A ) , 6
③ bsin B C a sin B 中任选一个,补充到下面问题中,并给出问题解答. 2
x y 0
x6
A.[3, 3] 7
B.[3,1]
C.[4,1]
D. (, 3][1, )
3. ABC 的内角 A , B , C 的对边分别为 a , b , c ,已知 b 2 , B , C
6
则 ABC 的面积为( )
, 4
A. 2 2 3
B. 3 1
C. 2 3 2
D. 3 1
等腰三角形;③若 acosB bcos A c ,则 ABC —定为直角三角形.以上结论中正确的
个数有( )
A.0
B.1
C.2
D.3
二、填空题
(x 4)( y 2)
13.设 x>0,y>0,x+2y=4,则
的最小值为_________.
xy
14.已知 a 0 , b 0 ,当 a 4b2 1 取得最小值时, b __________.
1 bcsinA ,故需要求出边 b 2
与c
,由余弦定理可以解得 b
与c
.
【详解】
解:在 ABC 中, cosA b2 c2 a2 7
2bc
8
将 b 2c , a 解得: c 2
6
代入上式得
4c2
c2 4c2
6
7 8

由 cosA 7 得 sinA 8
1
7 8
2
15 8
所以, SABC
n (cos B,cosC) ,且 m / /n . (1)求角 C 的大小; (2)求 y sinA 3sin(B ) 的最大值.
3
24.已知函数 f x x 1 x 1 .
(1)解不等式 f x 2 ;
(2)设函数 f x 的最小值为 m ,若 a , b 均为正数,且 1 4 m ,求 a b 的最小
本不等式的定值,从而用基本不等式求得最小值.
5.C
解析:C
【解析】
记公元 1984 年为第一年,公元 2047 年为第 64 年,即天干循环了十次,第四个为“丁”,
地支循环了五次,第四个为“卯”,所以公元 2047 年农历为丁卯年.
故选 C.
6.D
解析:D 【解析】 【分析】
三角形的面积公式为 SABC
1,

a1
3 5
,则数列的第
2018
项为
()
A. 1 5
B. 2 5
C. 3 5
D. 4 5
11.一个递增的等差数列an ,前三项的和 a1 a2 a3 12 ,且 a2 , a3, a4 1成等比数
列,则数列an的公差为 ( )
A. 2
B.3
C.2
D.1
12. ABC 中有:①若 A B ,则 sinA>sinB ;②若 sin2A sin2B ,则 ABC —定为
甲、乙、丙、丁、戊、己、庚、辛、癸等十个符号叫天干,子、丑、寅、卯、辰、巳、
午、未、申、酉、戌、亥等十二个符号叫地支,如公元 1984 年农历为甲子年,公元 1985
年农历为乙丑年,公元 1986 年农历为丙寅年,则公元 2047 年农历为
A.乙丑年
B.丙寅年
C.丁卯年
D.戊辰年
6.在 ABC 中, a , b , c 分别是角 A , B , C 的对边,若 b 2c , a 6 ,
(1)求数列 an 的通项公式;
(2)当 n 为何值时,数列an的前 n 项和最大?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D 【解析】
选项 A 中,当 c=0 时不符,所以 A 错.选项 B 中,当 a 2,b 1时,符合 a2 b2 ,不
满足 a b ,B 错.选项 C 中, a c b c ,所以 C 错.选项 D 中,因为 0 a
【详解】
因为直线 x y 1a 0,b 0 过点 1,1 ,所以 1 + 1 1 ,因此
ab
ab
(4a b)( 1 + 1) 5 b + 4a 5 2 b 4a 9 ,当且仅当 b 2a 3时取等号,所以选
ab
ab
ab
C.
点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不
a)n 1, n
6 ,若对任意 n N*
都有 an
an1 ,则实数
an5, n 6
a 的取值范围是_________.
18.已知 Sn 为数列 an 的前 n 项和,且 a1 3, an1 3Sn 1 , n N* ,则 S5 ______.
2x y 2 0, 19.设 x , y 满足则 x 2 y 2 0, 则 z x 3y 的最小值是______.
相关文档
最新文档