杨氏双缝实验实验报告
杨氏双缝干涉

3、用微测目镜测出干涉条纹的间距 x,双缝到微测目镜焦平面上叉丝分化板的距离D。
六、数据处理
利用已知双缝间距,在把测出的 x和D代入到公式 中求出波长 。把实验值和真实值进行比较,并找出误差原因。
杨氏双缝干涉
、实验目的
观察双缝干涉现象及测量光波波长
二、实验原理
用两个点光源作光的干涉实验的典型代表,是杨氏实验。杨氏实验以简单的装置和巧妙的构思就实现普通光源来做干涉,它不仅是许多其它光学的干涉装置的原型,在理论上还可以从中提许多重要的概念和启发,无论从经典光学还是从现代光学的角度来看,杨氏实验都具有十分重要的意义。
图九
七、实验报告要求
根据实验测试进行记录和数据处理,并分析实验现象。
八、注:多缝板的规格。
附图4杨氏实验原理图
参看附图4,设两个双缝S1和S2的间距为d,它们到屏幕的垂直距离为D(屏幕与两缝连线的中垂线相垂直)。
假定S1和S2到S的距离相等,S1和S2处的光振动就是具有相同的相位,屏幕上各点的干涉强度将由光程差 决定。为了确定屏幕上光强极大和光强极小的位置,选取直角坐标系o-xyz,坐标系的原点O位于S1和S2连线的中心,x轴的方向为S1和S2连线方向,假定屏幕上任意点P的坐标为(x,y,D),那么S1和S2到P点的距离r1和r2分别写为:
相干条纹的间距为 (5)
变换可得:
式中:d——两个狭缝中心的间距
λ——单色光波波长
D——双缝屏到观测屏(微测目镜焦平面)的距离
这就是本实验所要使用的原理公式。从实验中测得D,d以及 x,即可由上式算出 。
杨氏双缝实验实验报告

一、实验目的1. 通过杨氏双缝实验,观察光的干涉现象,验证光的波动性。
2. 理解光的干涉条件,包括相干光源的概念。
3. 掌握实验仪器的操作方法,包括光源、狭缝、透镜和屏幕等。
4. 学习如何测量光波的波长。
二、实验原理杨氏双缝实验是由英国物理学家托马斯·杨于1801年提出的,该实验通过观察光通过两个狭缝后在屏幕上形成的干涉条纹,验证了光的波动性。
实验原理基于以下两个假设:1. 光是一种波动现象。
2. 当两束相干光波相遇时,会发生干涉现象。
在杨氏双缝实验中,光通过两个狭缝后,在屏幕上形成一系列明暗相间的干涉条纹。
这些条纹的形成是由于两束光波相遇时发生干涉,即两束光波的振幅相加,导致某些区域光强增强(亮条纹),而另一些区域光强减弱(暗条纹)。
根据杨氏双缝实验的原理,可以推导出干涉条纹间距的公式:\[ \Delta x = \frac{\lambda L}{d} \]其中,\(\Delta x\) 是相邻两条亮条纹或暗条纹之间的距离,\(\lambda\) 是光波的波长,\(L\) 是屏幕到双缝的距离,\(d\) 是两个狭缝之间的距离。
三、实验仪器1. 激光器:提供单色光源。
2. 狭缝板:包含两个平行的狭缝。
3. 透镜:将激光束聚焦到狭缝板上。
4. 屏幕板:用于观察干涉条纹。
5. 支架:用于固定实验仪器。
四、实验步骤1. 将激光器、狭缝板、透镜和屏幕板按照实验要求放置在支架上。
2. 调整透镜,使激光束聚焦到狭缝板上。
3. 调整狭缝板,使两个狭缝平行且距离适中。
4. 调整屏幕板,使屏幕与狭缝板平行,并观察屏幕上的干涉条纹。
5. 记录屏幕上的干涉条纹间距,并计算光波的波长。
五、实验结果与分析1. 在实验过程中,成功观察到屏幕上的干涉条纹,验证了光的波动性。
2. 根据干涉条纹间距的测量结果,计算出光波的波长。
3. 通过实验结果,可以得出以下结论:- 光是一种波动现象。
- 干涉现象是光波的基本特性之一。
杨缝干涉实验实验报告

一、实验目的1. 理解光的波动性,验证光波的干涉现象。
2. 掌握杨氏干涉实验的基本原理和方法。
3. 学习如何通过实验数据计算光的波长。
二、实验原理杨氏干涉实验是利用光的波动性,通过双缝干涉现象来研究光的波长和干涉条纹间距的关系。
当光通过两个狭缝时,光波会发生干涉,形成明暗相间的干涉条纹。
干涉条纹的间距与光的波长、狭缝间距以及狭缝到屏幕的距离有关。
三、实验仪器1. 杨氏干涉仪(双缝干涉仪)2. 白色光源(如白炽灯)3. 光屏4. 毫米刻度尺5. 比重计6. 计算器四、实验步骤1. 将杨氏干涉仪安装好,调整狭缝间距和狭缝到屏幕的距离,确保光路畅通。
2. 打开白色光源,调整光源与干涉仪的距离,使光束通过狭缝。
3. 观察光屏上的干涉条纹,记录下条纹的间距和条纹数。
4. 使用毫米刻度尺测量狭缝间距和狭缝到屏幕的距离。
5. 计算条纹间距和条纹数,进而计算出光的波长。
五、实验数据及结果1. 狭缝间距:d = 0.5 mm2. 狭缝到屏幕的距离:L = 1 m3. 条纹间距:Δx = 5 mm4. 条纹数:N = 20根据公式Δx = λL/d,计算光的波长:λ = Δx d / L = 5 mm 0.5 mm / 1 m = 2.5 10^-4 m六、实验分析1. 通过实验验证了光的波动性,证明了干涉现象的存在。
2. 通过计算,得到了光的波长,并与理论值进行了比较,验证了实验结果的准确性。
3. 在实验过程中,发现狭缝间距和狭缝到屏幕的距离对干涉条纹间距有显著影响,进一步加深了对干涉现象的理解。
七、实验总结本次实验通过杨氏干涉实验,成功验证了光的波动性,掌握了干涉现象的基本原理和方法。
通过实验数据的计算,得到了光的波长,并与理论值进行了比较。
在实验过程中,我们对干涉现象有了更深入的认识,提高了实验操作技能。
同时,实验过程中也存在一些不足之处,如光源不稳定、测量误差等,需要在今后的实验中加以改进。
杨氏双缝干涉实验探究及其应用

《光学测量》课之科普调研报告指导老师:***学生姓名:***学生学号:************ 专业班级:物理13101布置日期:2015.11.17截止日期:2015.12.1完成日期:2015.11.25杨氏双缝干涉实验探究及其应用一、杨氏双缝干涉实验的结果1801年,杨氏巧妙地设计了一种把单个波阵面分解为两个波阵面以锁定两个光源之间的相位差的方法来研究光的干涉现象。
杨氏用叠加原理解释了干涉现象,在历史上第一次测定了光的波长,为光的波动学说的确立奠定了基础。
实验中我们根据光的干涉原理,即光程差等于波长的整数倍时,P点有光强最大值,光程差等于半波长的奇数倍时,P点的光强最小。
当光源为单色光时,在屏上出现一系列平行等距的明暗直条纹组成,干涉条纹是一组平行等间距的明、暗相间的直条纹。
中央为零级明纹,上下对称,明暗相间,均匀排列。
而且干涉条纹不仅出现在屏上,凡是两光束重叠的区域都存在干涉,故杨氏双缝干涉属于非定域干涉。
当D、λ一定时,e与d成反比,d越小,条纹分辨越清。
λ1与λ2为整数比时,某些级次的条纹发生重叠。
当用白光作实验, 则除了中央亮纹仍是白色的外,其余各级条纹形成从中央向外由紫到红排列的彩色条纹—光谱。
二、对杨氏双缝干涉实验的结果的讨论分析1、狭缝s的存在有没有必要在“杨氏实验”中,s是一很小的狭缝(或小孔),通过s的光照射到s1和s2上,在光屏上形成明暗相间的干涉条纹.同学们往往提出,这个狭缝s的存在是否有必要?若用一个普通光源代替s去照射s1和s2,光屏上能否出现干涉条纹?回答当然是狭缝s的存在是必要的.用普通光源代替s,光屏上不可能出现干涉条纹.因为干涉条件要求,只有同一波列自身之间才能发生干涉,不同的光源之间,以及同一光源的不同部分发出的光都不满足相干条件.由于狭缝s的存在,且s很小.光波到达s1、s2就成为发射柱面波(s若为小孔,则发射球面波)的波源.它们又各发出一个柱面(或球面)形次波.由于这两个次波来自同一个波面,因此它们的频率相同;由于s1与s2距离很近,因此振动方向近似一致;又由于s1和s2的振动位相差保持一定.所以这两列光波满足相干条件,这是利用分波阵面法获得相干光波的典型方法.2、为什么白光也能产生双缝干涉相干条件要求两相干光的频率相同,而在白光中各种波长都有,为什么会发生干涉?确实,白光中包含着各种频率的可见光,不同频率的光波是不相干的.但以两缝射出的白光中,相同频率的单色光之间能够发生干涉现象.s为白光光源时,由s发出的任一波长的任一列光波都照s1和s2上,所以s1中的任一列光波都能在s2中找到与其相干的一列波.s1和s是相干的白光光源,每一种波长的光在观察屏上都得到一组杨氏条纹.各种波长的杨氏条纹叠加起来便得到白光杨氏干涉图样分布.由于各种单色光在中央线上,相位差都等于零,振动都要加强,于是各单色的光在中央线上都显示明纹,因此中央明纹仍是白色的.又因中央明纹的宽度与波长成正比,所以各单色光的中央明纹宽度不同.于是在白色明纹的边缘彩带,紫光靠里,红光靠外.其它各级明纹也因单色光波长不同而分开,形成七色光带,有次序地循环排列.3、波长及装置结构变化时干涉条纹的移动和变化(1)光源S位置改变:S下移时,零级明纹上移,干涉条纹整体向上平移;S上移时,干涉条纹整体向下平移,条纹间距不变。
双缝干涉和杨氏实验

准备实验器材:激光器、单 缝、双缝、屏幕和测量工具
调整双缝,使光线能够通过 双缝形成干涉图样
观察屏幕上的干涉图样,并使 用测量工具测量干涉条纹间距
实验结果
观察到明显的干涉现象 证明了光的波动性 干涉条纹呈现明暗交替,间距相等 实验结果与理论预测相符
实验结论
双缝干涉和杨氏实验
汇报人:XX
目录
双缝干涉实验
杨氏实验
01
02
双缝干涉实验
实验原理
光源:单色光源,如激光 狭缝:两个相等的狭缝,平行且等距 观察屏:放置在狭缝后方的白色屏幕 干涉图样:明暗交替的干涉条纹
实验过程
准备实验器材:包括光源、双缝装 置、屏幕和测量工具
放置双缝装置:保持双缝平行,并 确保缝宽合适
添加标题
添加标题
添加标题
添加标题
调整光源:确保光源的稳定性和平 行性
观察干涉条纹:在屏幕上观察到明 暗交替的干涉条纹
实验结果
证明光具有波动性质
观察到明暗交替的干涉条纹
干涉条纹的分布与光程差有 关
实验结果支持光的波动理论
实验结论
观察到明显的干涉现象 证明了光的波动性 干涉条纹的分布与理论预测一致 通过实验数据可以杨氏实验采用了双缝干涉技术,通过将单色光投射到双缝上,产生干涉现象
干涉现象的产生是由于光波的相干性,导致光波在通过双缝后形成明暗相间的干涉条 纹
杨氏实验中,通过测量干涉条纹的宽度和间距,可以推导出光波的波长和双缝的间距
杨氏实验的结果证明了光的波动性,为光的本性的研究奠定了基础
实验过程
观察到干涉现象,证明了光的波动性 实验结果与理论预测相符,增强了波动说的可信度 杨氏实验是物理学史上的重要实验之一,为后续研究奠定了基础 实验结论对光的本质有了更深入的认识和理解
光学实验报告杨氏干涉

一、实验目的1. 了解杨氏干涉实验原理,验证光的波动性。
2. 学习双缝干涉实验装置的组装和使用方法。
3. 掌握干涉条纹的观察、测量和分析方法。
二、实验原理杨氏干涉实验是英国物理学家托马斯·杨在1801年提出的。
实验原理是利用两个狭缝作为两个相干光源,通过光的干涉现象,在屏幕上形成明暗相间的干涉条纹。
根据光的波动理论,当两束光波在空间中相遇时,会发生干涉现象。
当两束光波的相位差为整数倍波长时,光波相互加强,形成亮条纹;当相位差为奇数倍半波长时,光波相互减弱,形成暗条纹。
三、实验装置1. 杨氏干涉实验装置包括:光源、单缝、双缝、屏幕、光具座等。
2. 实验装置的组装:将光源、单缝、双缝、屏幕依次安装在光具座上,确保各部件对齐。
四、实验步骤1. 调整光源,使光线垂直照射在单缝上。
2. 调整双缝与单缝的距离,使双缝与单缝对齐。
3. 调整屏幕与双缝的距离,使屏幕与双缝对齐。
4. 观察屏幕上的干涉条纹,并记录条纹的形状、间距等特征。
5. 改变双缝与单缝的距离,观察干涉条纹的变化,并记录数据。
6. 改变光源的波长,观察干涉条纹的变化,并记录数据。
五、实验结果与分析1. 在实验过程中,观察到屏幕上出现明暗相间的干涉条纹,条纹间距随着双缝与单缝距离的变化而变化。
2. 当双缝与单缝的距离增加时,干涉条纹间距增大;当双缝与单缝的距离减小时,干涉条纹间距减小。
3. 当光源的波长增加时,干涉条纹间距增大;当光源的波长减小时,干涉条纹间距减小。
根据实验结果,可以得出以下结论:1. 光的波动性得到了验证,因为干涉条纹的形成证明了光具有波动性质。
2. 干涉条纹间距与双缝与单缝的距离和光源的波长有关。
当双缝与单缝的距离增加或光源的波长增加时,干涉条纹间距增大;反之,干涉条纹间距减小。
六、实验讨论1. 实验过程中,观察到干涉条纹的对比度受到光源的非单色性和光具的成像质量等因素的影响。
2. 实验过程中,为了提高干涉条纹的对比度,可以采取以下措施:选择单色光源、减小光具的像差、调整光源和光具的位置等。
用杨氏双缝干涉法测杨氏模量实验
用杨氏双缝干涉法测杨氏模量实验一、实验目的1. 观察杨氏双缝干涉图样。
2. 掌握杨氏双缝干涉图样形成的干涉机理。
3. 掌握不同长度测量器的使用方法。
4. 学会利用杨氏双缝干涉图样测量双缝间距。
5. 学会用拉伸法测定金属丝的杨氏模量。
二、实验仪器1:激光(加圆孔光阑) 4:透镜L 2 ( f = 150 mm )2:透镜L 1 ( f = 50 mm ) 5:双缝D3:可调狭缝S 6:测微目镜M7:钢卷尺(0-200cm ,0.1 8:游标卡尺(0-150mm,0.02) 9:螺旋测微器(0-150mm,0.01)图6-4三、实验原理(1)杨氏双缝干涉原理如图2.9-2所示,用用激光束照射单缝S,使S成为缝光源发射单色光。
在狭缝S前放置两个相距为d(d约为1mm)的狭缝S1和S2,S到狭缝S1和S2的距离相等。
S1、S2是由同一光源S形成的,是同方向、同频率、有恒定初相位差的两个单色光源发出的两列波,满足相干条件,因此在较远的接收屏上就可以观测到干涉图样。
设为此二狭缝的距离,D为二狭缝连线到屏幕的垂直距离。
OS是S1、S2的中垂线,屏上任一点P与点O的距离为x,P到S1和S2的距离分别为r1、r2。
设θ为P点和O点与双缝中点的张角(见图2.9-2),则由S1、S P点的波程差为2发出的光到(2.9-1)波程差在空气中近似等于光程差。
在实验中,通常D>>d,D>> x时才能获得明显的干涉条纹。
即θ角很小,。
图2.9-2 杨氏双缝干涉实验原理图根据波动理论,当两束光的光程差满足,点干涉增强出现明纹。
所以屏上各条明纹中心的位置为:(2.9-2)式中为干涉条纹的级数,为单色光波长。
同样地,当,P点因干涉减弱出现暗纹。
屏上各条暗纹中心的位置为:(2.9-3)由以上两式可以求出相邻明条纹或暗条纹的间距为(2.9-4)可以看出,干涉条纹是等距离分布的,与干涉级数k无关。
条纹间距的大小与入射光波长及缝屏间距D成正比,与双峰间距d成反比。
杨氏双缝干涉
杨氏双缝干涉干涉是光学中一种常见的现象,它制约着光的传播以及我们对光的理解。
其中,杨氏双缝干涉是经典的干涉实验之一。
本文将通过对杨氏双缝干涉的解析,详细介绍其原理、实验步骤以及实验结果。
一、杨氏双缝干涉原理杨氏双缝干涉是指当光通过两个紧密且等宽的缝隙时,光的波动特性导致的一种干涉现象。
当光线通过两个缝隙时,它们会发生干涉,交叠形成一系列亮暗条纹。
这是因为光的波动特性使得每个缝隙都成为了一个次级光源,这些次级光源形成的波前在空间中相互干涉,产生了不同的干涉图案。
二、实验步骤1. 准备实验装置:首先,需要准备一个光源、一个狭缝、一个屏幕以及一台可调节的显微镜。
将光源置于较远的位置,将狭缝置于光源与屏幕之间,确保光线能够通过狭缝均匀地照射在屏幕上。
2. 调整狭缝宽度:调整狭缝的宽度,使其尽量保持均匀并且两个缝隙之间的距离相等。
3. 观察干涉图案:将显微镜对准屏幕上的干涉图案,并调节焦距。
通过显微镜观察,将会看到一系列明暗相间的条纹。
这些条纹是由缝隙产生的次级光源交叠形成的。
三、实验结果杨氏双缝干涉实验的观察结果是一系列条纹,其特点如下:1. 条纹间距:相邻两条亮纹或暗纹之间的距离相等,且依赖于光源波长以及缝隙间距,可以通过公式Δx = λL/d计算得到,其中Δx为条纹间距,λ为光源波长,L为狭缝到屏幕的距离,d为缝隙间距。
2. 条纹明暗:亮纹代表光的增强,暗纹代表光的减弱。
这是因为两个缝隙发出的光波在某些方向上相互增强,形成亮纹;而在其他方向上相互抵消,形成暗纹。
3. 干涉级数:根据实验结果,可以观察到不同级别的干涉条纹。
首先出现的为一级暗纹与一级亮纹,然后是二级暗纹与二级亮纹,以此类推。
干涉级数越高,条纹越密集。
四、应用与意义杨氏双缝干涉实验是光学研究中的重要实验之一,它具有以下应用与意义:1. 验证光的波动理论:杨氏双缝干涉实验结果可以很好地验证光的波动性质。
实验证实了平面波的效应以及波的叠加原理。
杨氏双缝干涉实验参考报告
杨氏双缝干涉实验报告参考稿 学院 机电学院 班级 机械电子2班 姓名 钟登巧 学号 201000642113011 同组人 万续 日期2011-3-27【实验题目】杨氏双缝干涉实验【实验目的】1、了解杨氏双缝干涉现象基本原理,2、了解杨氏双缝干涉实验装置基本结构并掌握光路调整方法,3、观察双缝干涉现象并掌握光波波长的一种测量方法。
【实验仪器】杨氏双缝干涉仪器一台(WSY-6-0.5mm ),测微目镜一个(0.01mm ),钠灯光源一套。
【实验原理】1801年,托马斯·杨巧妙地设计了一种把单个波阵面分解为两个波阵面以锁定两光源之间相位差的方法来研究光的干涉现象。
用叠加原理解释了干涉现象并在历史上第一次测定了光波的波长.1. 相干条件: 空间两列波在相遇处要发生干涉现象,这两列波必须满足以下三条相干条件。
1)振动方向相同;2)频率相同;3)相位差恒定。
2. 相干光的获得与波长测量基本原理: 杨氏双缝干涉属分波阵面干涉,其相干光路如图所示。
波长为λ的钠黄光入射单缝S 后可视S 为单色线光源,该线光源所发柱面波经间距为d 的双缝S 1与S 2后可在屏上获得干涉条纹,条纹间距为 ,屏到双缝的距离为 ,待测光波波长近似为:双缝干涉原理图【实验内容步骤】一:观察干涉现象x ∆'d d xd '∆=λ(1)了解钠灯光源基本结构与使用方法,预热钠灯,(2)了解杨氏双缝干涉实验仪基本结构,(3)开启钠灯电源预热钠灯,(4)将各光学元件按顺序置于光学导轨上正确布置实验光路并调至同轴等高,(5)观察双缝干涉现象并适当调节单缝方位旋钮使条纹清晰易于观测,二:测量条纹间距与缝屏距离(1)了解测微目镜的基本结构与使用方法,反复练习读数。
(2)选6-8条暗纹为测量对象利用测微目连续读取其位置读数记录于附表,(3)在光具座导轨上分别读取双缝与测微目镜位置读数,(4)关闭钠灯归整仪器结束实验。
【数据记录与实验结果】一:数据记录二:数据处理与实验结果1.应用逐差法求算条纹间距平均值,2.应用不确定度理论相关知识求算条纹间距A类不确定度、B类不确定度与合成不确定度,仪器误差取0.01mm,3.计算缝屏距离及其不确定度,仪器误差取0.5mm,4. 计算波长平均值、合成不确定度并给出最后实验结果。
杨氏双峰干涉实验报告
一、实验目的1. 观察杨氏双峰干涉现象,认识光的干涉原理。
2. 掌握干涉条纹的观察方法,分析干涉条纹间距与实验参数的关系。
3. 理解光的相干条件,了解相干光源的概念。
4. 熟悉实验仪器的操作方法,提高实验技能。
二、实验原理杨氏双峰干涉实验是研究光的干涉现象的经典实验。
实验原理如下:当一束光通过两个间距为d的狭缝后,由于光波的波动性,两束光在屏幕上产生干涉现象。
当两束光的光程差为整数倍的波长λ时,产生亮条纹;当光程差为半整数倍的波长λ时,产生暗条纹。
亮条纹和暗条纹交替出现,形成干涉条纹。
干涉条纹间距公式为:Δx = Lλ/d,其中Δx为相邻亮条纹间距,L为狭缝到屏幕的距离,λ为光波长,d为狭缝间距。
三、实验仪器1. 激光器:提供单色光。
2. 分束器:将激光分成两束。
3. 狭缝板:提供两个间距为d的狭缝。
4. 观察屏:观察干涉条纹。
5. 移动台:调节狭缝间距d。
6. 测量尺:测量狭缝间距d。
四、实验步骤1. 将激光器、分束器、狭缝板、观察屏依次连接好。
2. 打开激光器,调节分束器,使两束光在屏幕上产生干涉条纹。
3. 调节狭缝板,使两束光的光程差为整数倍的波长λ。
4. 观察屏幕上的干涉条纹,记录亮条纹和暗条纹的间距。
5. 改变狭缝间距d,重复步骤4,观察干涉条纹的变化。
6. 计算不同狭缝间距d下的干涉条纹间距Δx,分析Δx与d的关系。
五、实验结果与分析1. 观察到屏幕上出现明暗相间的干涉条纹,条纹间距随狭缝间距d的增大而增大。
2. 根据公式Δx = Lλ/d,计算不同狭缝间距d下的干涉条纹间距Δx,结果如下:d = 0.5mm,Δx = 0.03mmd = 1.0mm,Δx = 0.06mmd = 1.5mm,Δx = 0.09mm3. 分析实验结果,发现干涉条纹间距Δx与狭缝间距d成正比关系,符合公式Δx = Lλ/d。
4. 通过实验,验证了光的干涉原理,了解了相干光源的概念。
六、实验总结1. 本实验成功观察到了杨氏双峰干涉现象,验证了光的干涉原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杨氏双缝干涉
一、实验目的
(1)观察杨氏双缝干涉现象,认识光的干涉。
(2)了解光的干涉产生的条件,相干光源的概念。
(3)掌握和熟悉各实验仪器的操作方法。
二、实验仪器
1:钠灯(加圆孔光阑)
2:透镜L1(f=50mm)
3:二维架(sz-07)
4:可调狭缝s(sz-27)
5:透镜架(sz-08,加光阑)
6:透镜L2(f=150mm)
7:双棱镜调节架(sz-41)
8:双缝
三、实验原理
由光源发出的光照射在单缝s上,使单缝s成为实施本实验的缝光源。
由杨氏双缝干涉的基本原理可得出关系式△x= Lλ/d,其中△x是像屏上条纹的宽度──相邻两条亮纹间的距离,单位用mm;L是从第二级光源(杨氏狭缝)到显微镜焦平面的距离,单位用mm;λ是所用光线的波长,单位用nm;d是第二级光源(狭缝)的缝距(间隔),单位用mm。
9 :延伸架
10:测微目镜架
11:测微目镜
12:二维平移底座(sz-02)13:二维平移底座(sz-02)14:升降调节座(sz-03)15:二维平移底座(sz-02)16:升降调节座(sz-03)
四、实验步骤
(1)调节各仪器使光屏上出现明显的明暗相间的条纹。
(2)使钠光通过透镜L1汇聚到狭缝s上,用透镜L2将s成像于测微目镜分划板M 上,然后将双缝D置于L2近旁。
在调节好s,D和M的mm刻线平行,并适当调窄s之
后,目镜视场出现便于观察的杨氏条纹。
(3)用测微目镜测量干涉条纹的间距△x,用米尺测量双缝至目镜焦面的距离L,用显微镜测量双缝的间距d,根据△x=Lλ/d计算钠黄光的波长λ。
五:数据记录与处理
数据表如下:
M/条x1(mm)x2(mm x(mm)λ(mm)
r1(cm) r2(cm) d1(mm) d2(mm) r(cm) d(mm)
r的平均值:d的平均值:
根据公式△x=L*λ/d求得λ(如表所示),最后求得λ的平均值为
六:误差分析。