高考物理计算题训练――滑块与木板模型(答案版)

合集下载

高考物理《滑块—木板模型》真题练习含答案

高考物理《滑块—木板模型》真题练习含答案

高考物理《滑块—木板模型》真题练习含答案1.如图所示,货车车厢中央放置一装有货物的木箱,该木箱可视为质点.已知木箱与车厢之间的动摩擦因数μ=0.4.下列说法正确的是()A.若货车向前加速时,木箱对车厢的摩擦力方向向左B.为防止木箱发生滑动,则货车加速时的最大加速度不能超过4 m/s2C.若货车行驶过程中突然刹车,木箱一定与车厢前端相撞D.若货车的加速度为5 m/s2时,木箱受到的摩擦力为静摩擦力答案:B解析:若货车向前加速时,车厢对木箱的摩擦力方向向左,根据牛顿第三定律得木箱对车厢的摩擦力方向向右,A错误;当摩擦力达到最大静摩擦力时刚好不发生相对滑动,最大加速度a=μg=4 m/s2,B正确;若货车行驶过程突然刹车,加速度小于等于4 m/s时木箱不会相对车厢滑动,发生相对滑动时也不一定与车的前端相撞,C错误;货车的加速度5 m/s2>4 m/s2,木箱已经发生相对滑动,木箱受到的摩擦力为滑动摩擦力,D错误.2.[2024·广东省中山市第一次模拟](多选)如图甲所示,物块A与木板B静止地叠放在水平地面上,A、B间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,地面光滑.现对A施加水平向右的大小不同的拉力F,测得B的加速度a与力F的关系如图乙所示,取g =10 m/s2,则()A.当F<24 N时,A、B间的摩擦力保持不变B.当F>24 N时,A、B间的摩擦力保持不变C.A的质量为4 kgD.B的质量为2 kg答案:BCD解析:由图乙可知,当F<24 N时,A、B保持相对静止,B的加速度逐渐增大,则A、B间的摩擦力逐渐增大;当F>24 N时,A、B发生相对滑动,A、B间滑动摩擦力保持不变,A错误,B正确;设A、B的质量分别为m1、m2,当F=24 N时,根据牛顿第二定律,对A,有F-μm1g=m1a,对B,有μm1g=m2a,解得A、B的质量分别为m1=4 kg,m2=2 kg,C、D正确.3.[2024·广西南宁市开学考试]如图所示,质量m A=2 kg的小物块A可以看作质点,以初速度v0=3 m/s滑上静止的木板B左端,木板B足够长,当A、B的速度达到相同后,A、B又一起在水平面上滑行直至停下.已知m B=1 kg,A、B间的动摩擦因数μ1=0.2,木板B 与水平面间的动摩擦因数μ2=0.1,g取10 m/s2.求:(1)小物块A刚滑上木板B时,A、B的加速度大小a A和a B;(2)A、B速度达到相同所经过的时间t;(3)A、B一起在水平面上滑行至停下的距离x.答案:(1)a A=2 m/s2,a B=1 m/s2(2)t=1 s(3)x=0.5 m解析:(1)根据题意可知,A与B之间的滑动摩擦力大小f1=μ1m A g=4 NB与水平面之间的滑动摩擦力大小f2=μ2(m A+m B)g=3 N当A刚滑上B时,由牛顿第二定律,对A有f1=m A a A对B有f1-f2=m B a B解得a A=2 m/s2,a B=1 m/s2(2)设A、B达到相同的速度为v,对A、B相对滑动的过程,由公式v=v0+at对A有v=v0-a A t对B有v=a B t解得t=1 s,v=1 m/s(3)以A、B整体为研究对象,由牛顿第二定律得f2=(m A+m B)a一起在水平面上滑行至停下过程0-v2=-2ax解得x=0.5 m4.[2024·辽宁省阜新市月考]如图所示,水平桌面上质量m1为0.01 kg的薄纸板上,放有一质量m2为0.04 kg的小水杯(可视为质点),小水杯距纸板左端距离x1为0.5 m,距桌子右端距离x2为1 m,现给纸板一个水平向右的恒力F,欲将纸板从小水杯下抽出.若纸板与桌面、水杯与桌面间的动摩擦因数μ1均为0.4,水杯与纸板间的动摩擦因数μ2为0.2,重力加速度g取10 m/s2,设水杯在运动过程中始终不会翻倒,则:(1)求F多大时,抽动纸板过程水杯相对纸板不滑动;(2)当F为0.4 N时,纸板的加速度是多大?(3)当F满足什么条件,纸板能从水杯下抽出,且水杯不会从桌面滑落?答案:(1)0.3 N(2)12 m/s2(3)F≥0.315 N解析:(1)当抽动纸板且水杯相对纸板滑动时,对水杯进行受力分析,根据牛顿第二定律得μ2m2g=m2a1,解得a1=2 m/s2对整体分析,根据牛顿第二定律得F1-μ1(m1+m2)g=(m1+m2)a1解得F1=0.3 N故当F1≤0.3 N抽动纸板过程水杯相对纸板不滑动;(2)当F2=0.4 N时,纸杯和纸板已经发生相对滑动,则有F2-μ2m2g-μ1(m1+m2)g=m1a解得a=12 m/s2(3)纸板抽出的过程,对纸板有F-μ2m2g-μ1(m1+m2)g=m1a纸板抽出的过程,二者位移关系满足x1=12at2-12a1t2纸板抽出后,水杯在桌面上做匀减速直线运动,设经历时间t′恰好到桌面右边缘静止,有μ1m2g=m2a′1由速度关系有a1t=a′1t′纸杯的位移关系有x2-12a1t2=a1t2×t′联立解得F=0.315 N所以,当F≥0.315 N时,纸板能从水杯下抽出,且水杯不会从桌面滑落.。

高考物理一轮总复习第3章专题强化4传送带模型和“滑块_木板”模型提能训练(含答案)

高考物理一轮总复习第3章专题强化4传送带模型和“滑块_木板”模型提能训练(含答案)

高考物理一轮总复习提能训练:第三章 专题强化四基础过关练题组一 传送带模型1.(多选)为保障市民安全出行,有关部门规定:对乘坐轨道交通的乘客所携带的物品实施安全检查。

如图甲所示为乘客在进入地铁站乘车前,将携带的物品放到水平传送带上通过检测仪接受检查时的情景。

如图乙所示为水平传送带装置示意图。

紧绷的传送带ab 始终以1 m/s 的恒定速率运行,乘客将一质量为1 kg 的小包(可视为质点)无初速度地放在传送带左端的a 点,设行李与传送带之间的动摩擦因数为0.1,a 、b 间的距离为2 m ,g 取10 m/s 2。

下列速度—时间(v -t )图像和位移—时间(x -t )图像中,可能正确反映行李在a 、b 之间的运动情况的有(除C 中0~1 s 为曲线外,其余均为直线段)( AC )[解析] 行李放到传送带上,由μmg =ma 可得a =1 m/s 2,则由v =at ,得t =1 s ,可知行李在0~1 s 内做匀加速直线运动,与传送带共速后做匀速直线运动,故A 正确,B 错误;行李在t =1 s 时的位移x =12at 2=0.5 m ,行李在0~1 s 内做匀加速直线运动,x -t图像为抛物线,之后做匀速直线运动,x -t 图像为直线,故C 正确,D 错误。

2.如图所示,水平传送带A 、B 两端相距s =3.5 m ,工件与传送带间的动摩擦因数μ=0.1。

工件滑上A 端瞬时速度v A =4 m/s ,到达B 端的瞬时速度设为v B ,则下列说法不正确的是( D )A .若传送带不动,则vB =3 m/sB .若传送带以速度v =4 m/s 逆时针匀速转动,v B =3 m/sC .若传送带以速度v =2 m/s 顺时针匀速转动,v B =3 m/sD .若传送带以速度v =2 m/s 顺时针匀速转动,v B =2 m/s[解析] 若传动带不动或逆时针匀速转动,则工件水平方向受水平向左的滑动摩擦力作用,由牛顿第二定律,得μmg =ma ,由匀变速运动的规律可知v 2B -v 2A =-2as ,代入数据解得vB =3 m/s ,A 、B 正确;若传送带以速度v =2 m/s 顺时针匀速转动,假设工件在到达B 端前速度降至2 m/s ,则工件水平方向受水平向左的滑动摩擦力作用,设加速度大小为a ,由牛顿第二定律,得μmg =ma ,工件滑上传送带先做匀减速直线运动,当速度减小到2 m/s时所经过的位移x =v 2A -v22a =16-42m =6 m>3.5 m ,所以假设不成立,所以工件一直做匀减速运动,由匀变速运动的规律可知v 2B -v 2A =-2as ,代入数据解得vB =3 m/s ,D 错误,C 正确。

高考物理专题滑块-木板模型(含多种变型题)

高考物理专题滑块-木板模型(含多种变型题)

图8
解析
小车 B 从开始运动到小物体 A 刚进入小车 B 的粗糙
部分的过程中, 因小物体 A 在小车 B 的光滑部分不受摩擦力 作用, 故小物体 A 处于静止状态. 设小车 B 此过程中的加速 度为 a1,运动时间为 t1,通过的位移为 s1,运动的最终速度 F 1 为 v1,则有: a1= v1=a1t1 s1= a1t1 2 mB 2
即学即练:如图所示,质量M=4kg的木板长 L=1.4m,静止在光滑的水平地面上,其水平 顶面右端静置一个质量m=1kg的小滑块(可视 为质点),小滑块与板间的动摩擦因数 μ =0.4。今用水平力F=28N向右拉木板,使滑 块能从木板上掉下来,求此力作用的最短时 间。(g=10m/s2)
1s
v
0
t1
t
变式题 如图 8 所示, 在光滑的水平面上停放着小车 B,车 上左端有一小物体 A,A 和 B 之间的接触面前一段光滑, 后一段粗糙,且后一段的动摩擦因数 μ=0.4,小车长 L =2 m, A 的质量 mA=1 kg, B 的质量 mB=4 kg.现用 12 N 的水平力 F 向左拉动小车,当 A 到达 B 的最右端时,两 者速度恰好相等,求 A 和 B 间光滑部分的长度. (g 取 10 m/s2)
变式题:如图13所示,车厢B底面放一个物 体A,已知它们的质量mA=20kg,mB=30 kg,在水平力F=120 N作用下,B由静止开 始运动,2 s内移动5 m,假设车厢足够长, 不计地面与B间的摩擦,求在这段时间内A在 B内移动的距离.
图13
(2011· 新课标全国· 21)如图 1 所示, 在光滑水平面上有一质量为 m1 的 足够长的木板,其上叠放一质量为
(1)求 1 s、1.5 s、2 s、3 s 末木板的速度以及 2 s、3 s 末物块 的速度; (2)在同一坐标系中画出 0~3 s 内木板和物块的 v-t 图象, 据此求 0~3 s 内物块相对于木板滑过的距离.

高考一轮微专题训练【11】“木板-滑块”模型(含答案)

高考一轮微专题训练【11】“木板-滑块”模型(含答案)

微专题训练11 “木板—滑块”模型1.(多选)如图1所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为( ).图1A .物块先向左运动,再向右运动B .物块向右运动,速度逐渐增大,直到做匀速运动C .木板向右运动,速度逐渐变小,直到做匀速运动D .木板和物块的速度都逐渐变小,直到为零解析 由题意,撤掉拉力后,物块和木板系统最终一起匀速运动.因为撤掉拉力时,物块和木板仍有相对运动,说明物块向右的速度比木板的速度小,所以物块水平方向仍受木板向右的滑动摩擦力而向右加速直到匀速运动,A 错误,B 正确;根据牛顿第三定律可知,木板开始受到物块向左的滑动摩擦力而向右减速直到匀速运动,C 正确,D 错误. 答案 BC2.一质量m =0.5 kg 的滑块以一定的初速度冲上一倾角θ=37°的足够长的斜面.某同学利用传感器测出了滑块冲上斜面过程中多个时刻的瞬时速度,并用计算机作出了滑块上滑过程的v ­t 图象,如图2所示.(最大静摩擦力等于滑动摩擦力,sin 37°=0.6,cos 37°=0.8,g =10 m/s 2) (1)求滑块与斜面间的动摩擦因数;(2)判断滑块最后能否返回斜面底端.若能返回,求出返回斜面底端时的速度大小;若不能返回,求出滑块停在什么位置.图2解析 (1)由图象可知,滑块的加速度大小: a =101.0m/s 2=10 m/s 2滑块冲上斜面过程中根据牛顿第二定律,有mgsin θ+μmgcos θ=ma代入数据解得μ=0.5.(2)滑块速度减小到零时,重力的下滑分力大于最大静摩擦力,滑块能再下滑返回到斜面底端由匀变速直线运动的规律,滑块向上运动的位移s=v22a=5 m滑块下滑过程中根据牛顿第二定律,有mgsin θ-μmgcos θ=ma2,得a2=2 m/s2由匀变速直线运动的规律,滑块返回底端的速度v′=2a2s=2 5 m/s.答案(1)0.5 (2)能2 5 m/s3.如图3所示,一质量为m B=2 kg的木板B静止在光滑的水平面上,其右端上表面紧靠一固定斜面轨道的底端(斜面底端与木板B右端的上表面之间有一段小圆弧平滑连接),轨道与水平面的夹角θ=37°.一质量也为m A=2 kg的物块A由斜面轨道上距轨道底端x0=8 m处静止释放,物块A刚好没有从木板B的左端滑出.已知物块A与斜面轨道间的动摩擦因数为μ1=0.25,与木板B上表面间的动摩擦因数为μ2=0.2,sin θ=0.6,cos θ=0.8,g取10 m/s2,物块A可看作质点.请问:图3(1)物块A刚滑上木板B时的速度为多大?(2)物块A从刚滑上木板B到相对木板B静止共经历了多长时间?木板B有多长?解析(1)物块A从斜面滑下的加速度为a1,则m A gsin θ-μ1m A gcos θ=m A a1,解得a1=4 m/s2物块A滑到木板B上的速度为v1=2a1x0=2×4×8 m/s=8 m/s.(2)物块A在木板B上滑动时,它们在水平方向上的受力大小相等,质量也相等,故它们的加速度大小相等,数值为a2=μ2m A gm A=μ2g=2 m/s2,设木板B的长度为L,二者最终的共同速度为v2,在达到最大速度时,木板B滑行的距离为x,利用位移关系得v1t2-12a2t22-12a2t22=L.对物块A有v2=v1-a2t2,v22-v21=-2a2(x+L).对木板B有v22=2a2x,联立解得相对滑行的时间和木板B的长度分别为:t2=2 s,L=8 m.答案(1)8 m/s (2)2 s 8 m4.如图4所示,在光滑的水平面上停放着小车B,车上左端有一小物体A,A和B之间的接触面前一段光滑,后一段粗糙,且后一段的动摩擦因数μ=0.4,小车长L=2 m,A的质量m A=1 kg,B的质量m B=4 kg.现用12 N的水平力F向左拉动小车,当A到达B的最右端时,两者速度恰好相等,求A和B间光滑部分的长度.(g取10 m/s2)图4解析小车B从开始运动到小物体A刚进入小车B的粗糙部分的过程中,因小物体A在小车B的光滑部分不受摩擦力作用,故小物体A处于静止状态.设小车B此过程中的加速度为a1,运动时间为t1,通过的位移为x1,运动的最终速度为v1,则有:a1=Fm Bv1=a1t1,x1=12a1t21当小物体A进入到小车B的粗糙部分后,设小车B的加速度为a2,小物体A的加速度为a3,两者达到相同的速度经历的时间为t2,且共同速度v2=a3t2,则有a2=F-μm A gm Ba3=μg,v1+a2t2=a3t2v1t2+12a2t22-12a3t22=L-x1综合以上各式并代入数据可得A和B间光滑部分的长度:x1=0.8 m.答案0.8 m5.(2018·全国新课标Ⅱ,25)一长木板在水平地面上运动,在t=0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度-时间图象如图5所示.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦.物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.取重力加速度的大小g=10 m/s2,求:(1)物块与木板间、木板与地面间的动摩擦因数;(2)从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小.图5解析从v ­t图象中获取速度及加速度信息.根据摩擦力提供加速度,且不同阶段的摩擦力不同,利用牛顿第二定律列方程求解.(1)从t=0时开始,木板与物块之间的摩擦力使物块加速,使木板减速,此过程一直持续到物块和木板具有共同速度为止.由题图可知,在t1=0.5 s时,物块和木板的速度相同.设t=0到t=t1时间间隔内,物块和木板的加速度大小分别为a1和a2,则a1=v1t1①a 2=v 0-v 1t 1②式中v 0=5 m/s 、v 1=1 m/s 分别为木板在t =0、t =t 1时速度的大小.设物块和木板的质量均为m ,物块和木板间、木板与地面间的动摩擦因数分别为μ1、μ2,由牛顿第二定律得 μ1mg =ma 1③ (μ1+2μ2)mg =ma 2④ 联立①②③④式得μ1=0.20⑤μ2=0.30⑥(2)在t 1时刻后,地面对木板的摩擦力阻碍木板运动,物块与木板之间的摩擦力改变方向.设物块与木板之间的摩擦力大小为f ,物块和木板的加速度大小分别为a 1′和a 2′,则由牛顿第二定律得f =ma 1′⑦ 2μ2mg -f =ma 2′⑧假设f <μ1mg ,则a 1′=a 2′;由⑤⑥⑦⑧式得f =μ2mg >μ1mg ,与假设矛盾, 故f =μ1mg⑨由⑦⑨式知:物块加速度的大小a 1′等于a 1; 物块的v -t 图象如图中点划线所示.由运动学公式可推知,物块和木板相对于地面的运动距离分别为 s 1=2×v 212a 1⑩ s 2=v 0+v 12t 1+v 212a 2′⑪物块相对于木板的位移的大小为 s =s 2-s 1⑫ 联立①⑤⑥⑧⑨⑩⑪⑫式得s =1.125 m⑬答案 (1)0.20 0.30 (2)1.125 m。

高考物理专题23“滑块_木板”模型的动力学问题练习含解析

高考物理专题23“滑块_木板”模型的动力学问题练习含解析

专题23 “滑块—木板”模型的动力学问题1.“滑块—木板”模型问题中,靠摩擦力带动的那个物体的加速度有最大值:a m =F fmm.假设两物体同时由静止运动,若整体加速度小于该值,则二者相对静止,二者间是静摩擦力;若整体加速度大于该值,则二者相对滑动,二者间为滑动摩擦力.2.滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;若反向运动,位移大小之和等于板长.1.(2020·山东济南历城二中一轮复习验收)如图1所示,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t 增大的水平力F =kt (k 是常数),木板和木块的加速度大小分别为a 1和a 2,下列反映a 1和a 2变化的图线中正确的是( )图1答案 A解析 当F 比较小时,两个物体相对静止,加速度相同,根据牛顿第二定律可得a =Fm 1+m 2=kt m 1+m 2,a ∝t ;当F 比较大时,木块相对于木板运动,根据牛顿第二定律可得,a 1=μm 2gm 1,μ、m 1、m 2一定,则a 1一定,a 2=F -μm 2g m 2=k m 2t -μg ,a 2是t 的线性函数,t 增大,a 2增大.由于km 1+m 2<km 2,则木块相对于木板运动后,a 2-t 图线的斜率大于两者相对静止时图线的斜率.综上所述,A 正确.2.(2020·安徽六安市质量检测)如图2所示,静止在水平地面上的木板(厚度不计)质量为m 1=1 kg ,与地面的动摩擦因数μ1=0.2,质量为m 2=2 kg 可看作质点的小物块与木板、地面间的动摩擦因数均为μ2=0.4,以v 0=4 m/s 的水平速度从左端滑上木板,经过t =0.6 s 滑离木板,g 取10 m/s 2,以下说法正确的是( )图2A .木板的长度为1.68 mB .小物块离开木板时,木板的速度为1.6 m/sC .小物块离开木板后,木板的加速度为2 m/s 2,方向水平向右 D .小物块离开木板后,木板与小物块将发生碰撞 答案 D解析 由于μ2m 2g >μ1(m 1+m 2)g ,得物块在木板上以a 1=μ2g =4 m/s 2减速滑行时木板以a 2=μ2m 2g -μ1m 1+m 2g m 1=2 m/s 2向右加速运动,在0.6 s 时,物块的速度v 1=v 0-a 1t =1.6m/s ,木板的速度v 2=a 2t =1.2 m/s ,B 错误.0.6 s 内物块位移为x 1=v 0+v 12t =1.68 m ,木板位移x 2=0+v 22t =0.36 m ,相对位移为Δx =x 1-x 2=1.32 m ,即木板长度为1.32 m ,A 错.物块离开木板后,木板做减速运动,加速度大小为a 4=μ2g =2 m/s 2,方向向左,C 错.在地面上物块会滑行x 4=v 122a 4=v 122μ2g =0.32 m ,木板会滑行x 3=v 222a 3=v 222μ1g=0.36 m ,所以两者会相碰,D 正确.3.(多选)(2020·江苏南京师大苏州实验学校一模)如图3所示,质量为m 1的木块和质量为m 2的长木板叠放在水平地面上.现对木块施加一水平向右的拉力F ,木块在长木板上滑行,长木板始终静止.已知木块与长木板间的动摩擦因数为μ1,长木板与地面间的动摩擦因数为μ2,且最大静摩擦力与滑动摩擦力相等.重力加速度为g ,则( )图3A .μ1一定小于μ2B .μ1可能大于μ2C .改变F 的大小,F >μ2(m 1+m 2)g 时,长木板将开始运动D .改F 作用于长木板,F >(μ1+μ2)(m 1+m 2)g 时,长木板与木块将开始相对滑动 答案 BD解析 对木块,根据牛顿运动定律有:F -μ1m 1g =m 1a ;对长木板,由于保持静止,有:μ1m 1g -F f =0,F f <μ2(m 1+m 2)g ,m 1、m 2的大小关系不确定,所以μ1、μ2的大小关系无法确定,故A 错误,B 正确.改变F 的大小,只要木块在木板上滑动,木块对木板的滑动摩擦力不变,长木板仍然保持静止,故C 错误.若将F 作用于长木板,当木块与木板恰好开始相对滑动时,对木块,μ1m 1g =m 1a ,解得a =μ1g ,对整体分析,有F -μ2(m 1+m 2)g =(m 1+m 2)a ,解得F =(μ1+μ2)(m 1+m 2)g ,所以当F >(μ1+μ2)(m 1+m 2)g 时,长木板与木块将开始相对滑动,故D 正确.4.(多选)(2019·全国卷Ⅲ·20)如图4(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t =0时,木板开始受到水平外力F 的作用,在t =4 s 时撤去外力.细绳对物块的拉力f 随时间t 变化的关系如图(b)所示,木板的速度v 与时间t 的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10 m/s 2.由题给数据可以得出( )图4A .木板的质量为1 kgB .2~4 s 内,力F 的大小为0.4 NC .0~2 s 内,力F 的大小保持不变D .物块与木板之间的动摩擦因数为0.2 答案 AB解析 由题图(c)可知木板在0~2 s 内处于静止状态,再结合题图(b)中细绳对物块的拉力f 在0~2 s 内逐渐增大,可知物块受到木板的摩擦力逐渐增大,故可以判断木板受到的水平外力F 也逐渐增大,选项C 错误;由题图(c)可知木板在2~4 s 内做匀加速运动,其加速度大小为a 1=0.4-04-2 m/s 2=0.2 m/s 2,对木板进行受力分析,由牛顿第二定律可得F -F f =ma 1,在4~5 s 内做匀减速运动,其加速度大小为a 2=0.4-0.25-4 m/s 2=0.2 m/s 2,F f =ma 2,另外由于物块静止不动,同时结合题图(b)可知物块与木板之间的滑动摩擦力F f =0.2 N ,解得m =1 kg 、F =0.4 N ,选项A 、B 正确;由于不知道物块的质量,所以不能求出物块与木板之间的动摩擦因数,选项D 错误.5.(多选)(2020·山东邹城一中测试)如图5甲所示,质量为m =1 kg 可视为质点的物块A放置在长木板B 上,A 、B 静止在水平地面上,已知长木板B 的质量M =4 kg ,A 与B 及B 与地面间的动摩擦因数均为μ=0.1,用水平外力F 作用在长木板B 上,外力F 随时间变化关系如图乙所示,设最大静摩擦力等于滑动摩擦力,重力加速度g 取10 m/s 2,则下列说法正确的是( )图5A .t =0时刻,A 的加速度为零B .t =5 s 时刻,B 的加速度为3.5 m/s 2C .在整个运动过程中,物块A 的加速度始终不变D .如果长木板B 足够长,最终A 、B 将共速 答案 BC解析 由滑动摩擦力公式可知,A 、B 间的滑动摩擦力:F f A =μmg =1 N ,B 与地面间的滑动摩擦力:F f B =μ(M +m )g =5 N ,A 、B 间发生相对滑动后,A 的加速度将保持不变,其大小为:a A =F f Am=1 m/s 2.若A 、B 间刚好发生相对滑动时的外力为F 1,由牛顿第二定律得F 1-μ(M +m )g =(M +m )a A ,得F 1=10 N ,所以t =0时刻A 的加速度a A =1 m/s 2,故A 项错误,C 项正确;在t =5 s 时,F =20 N ,对长木板B 由牛顿第二定律有:F -F f A -F f B =Ma B ,得a B =3.5 m/s 2,故B 项正确;只要F 始终作用在长木板B 上,B 的加速度始终大于A 的加速度,无论长木板B 多长,A 、B 都不会共速,故D 项错误.6.(多选)如图6甲所示,质量为2m 的足够长的木板B 放在粗糙水平面上,质量为m 的物块A 放在木板B 的右端且A 与B 、B 与水平面间的动摩擦因数均为μ,现对木板B 施加一水平变力F ,F 随t 变化的关系如图乙所示,最大静摩擦力等于滑动摩擦力,重力加速度为g ,下列说法正确的是( )图6A .前3 s 内,A 受到的摩擦力方向水平向右B .t =4 s 时,A 的加速度大小为13μgC .t =5 s 时,A 受到的摩擦力大小为0.5μmgD .第6 s 以后,A 受到的摩擦力大小为μmg 答案 BD解析 A 相对B 刚要滑动时,A 的加速度为a A =μg ,B 的加速度a B =F -4μmg2m,且a A =a B ,解得F =6μmg ,由图乙可知,第6 s 以后,F >6μmg ,A 相对B 滑动,A 受到的摩擦力大小为μmg ,故D 正确;A 和B 一起滑动时,a AB =F -3μmg 3m ≥0,解得F ≥3μmg ,所以在前3 s 内,A 、B 静止不动,A 受到的摩擦力为0,故A 错误;当t =4 s 时,A 和B 一起滑动,A 的加速度大小为a AB =F -3μmg 3m =4μmg -3μmg 3m =13μg ,故B 正确;当t =5 s 时,A 和B 一起滑动,A 受到的摩擦力大小F f =ma AB =m ·5μmg -3μmg 3m =23μmg ,故C 错误.7.(多选)如图7所示,质量相等的物块A 和木板B 叠放在水平地面上,左边缘对齐.A 与B 、B 与地面间的动摩擦因数均为μ.先水平敲击A ,A 立即获得水平向右的初速度v A ,在B 上滑动距离L 后停下.接着水平敲击B ,B 立即获得水平向右的初速度v B ,A 、B 都向右运动,左边缘再次对齐时恰好相对静止,相对静止前B 的加速度大小为a 1,相对静止后B 的加速度大小为a 2,此后两者一起运动至停下.已知最大静摩擦力等于滑动摩擦力,重力加速度为g .下列说法正确的是( )图7A .a 1=3a 2B .v A =2μgLC .v B =22μgLD .从左边缘再次对齐到A 、B 停止运动的过程中,A 和B 之间没有摩擦力 答案 ABC解析 分析可知,敲击A 时,B 始终静止,由牛顿第二定律知,A 加速度的大小a A =μg ,由匀变速直线运动规律有2a A L =v A 2,解得v A =2μgL ,选项B 正确;设A 、B 的质量均为m ,敲击B 时,在A 、B 相对滑动的过程中,B 所受合外力大小为3μmg ,由牛顿第二定律有3μmg =ma 1,解得a 1=3μg ,当A 、B 相对静止后,对A 、B 整体由牛顿第二定律有2μmg =2ma 2,解得a 2=μg ,故a 1=3a 2,选项A 正确;经过时间t ,A 、B 达到共同速度v ,位移分别为x A 、x B ,A 加速度的大小等于a 2,则v =a 2t ,v =v B -a 1t ,x A =12a 2t 2,x B =v B t -12a 1t 2且x B -x A =L ,解得v B =22μgL ,选项C 正确;对齐后,A 、B 整体以加速度大小a 2=μg 一起做匀减速运动,对A 分析有F f =ma 2=μmg ,故A 、B 之间有摩擦力且达到最大静摩擦力,选项D 错误. 8.(多选)(2020·云南大理、丽江等校第二次统考)如图8(a),质量m 1=0.2 kg 的足够长平板小车静置在光滑水平地面上,质量m 2=0.1 kg 的小物块静止于小车上,t =0时刻小物块以速度v 0=11 m/s 向右滑动,同时对小物块施加一水平向左、大小恒定的外力F ,图(b)显示物块与小车第1 s 内运动的v -t 图象.设最大静摩擦力等于滑动摩擦力,g 取10 m/s 2.则下列说法正确的是( )图8A .小物块与平板小车间的动摩擦因数μ=0.4B .恒力F =0.5 NC .小物块与小车间的相对位移x 相对=6.5 mD .小物块向右滑动的最大位移是x max =7.7 m 答案 ABD解析 由题图(b)知,小车和小物块的加速度分别为a 1=Δv 1Δt =2-01 m/s 2=2 m/s 2a 2=Δv 2Δt =2-111m/s 2=-9 m/s 2对小车:μm 2g =m 1a 1,对小物块:-(F +μm 2g )=m 2a 2, 解得μ=0.4,F =0.5 N ,故A 、B 正确;根据题图(b)可知,在t =1 s 时小车和小物块的速度相同,两者不再发生相对运动,相对位移等于图中三角形的面积,x 相对=112 m =5.5 m ,C 错误;在0~1 s 内小物块向右滑动的位移x 1=2+112m =6.5 m当小车与小物块的速度相等后,在外力的作用下一起向右匀减速运动,其加速度大小为a 3=Fm 1+m 2=53m/s 2, 当速度减小到0时,整体向右发生的位移为x 2=222×53m =1.2 m所以小物块向右滑动的最大位移是x max =x 1+x 2=7.7 m ,故D 正确.9.(多选)(2020·山东济南市期末)如图9所示,倾角为37°的足够长斜面,上面有一质量为2 kg 、长8 m 的长木板Q ,木板上下表面与斜面平行.木板Q 最上端放置一质量为1 kg 的小滑块P .P 、Q 间光滑,Q 与斜面间的动摩擦因数为13.若P 、Q 同时从静止释放,以下关于P 、Q两个物体运动情况的描述正确的是(sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2)( )图9A .P 、Q 两个物体加速度分别为6 m/s 2、4 m/s 2B .P 、Q 两个物体加速度分别为6 m/s 2、2 m/s 2C .P 滑块在Q 上运动时间为1 sD .P 滑块在Q 上运动时间为2 s 答案 BD解析 对P 受力分析,受重力和Q 对P 的支持力作用,根据牛顿第二定律有:m P g sin 37°=m P a P解得:a P =g sin 37°=6 m/s 2对Q 受力分析,受重力、斜面对Q 的支持力、摩擦力和P 对Q 的压力作用,根据牛顿第二定律有:m Q g sin 37°-μ(m P +m Q )g cos 37°=m Q a Q ,解得:a Q =2 m/s 2,故A 错误,B 正确;设P 在Q 上面滑动的时间为t ,因a P =6 m/s 2>a Q =2 m/s 2,故P 比Q 运动更快,根据位移关系有:L =12(a P -a Q )t 2,代入数据解得t =2 s ,故C 错误,D正确.10.(2020·广东广州市一模)如图10所示,质量M =8 kg 的小车放在水平光滑的平面上,在小车右端加一F =8 N 的水平拉力,当小车向右运动的速度达到v 0=1.5 m/s 时,在小车前端轻轻地放上一个大小不计、质量为m =2 kg 的小物块,小物块与小车间的动摩擦因数μ=0.2,小车足够长,g 取10 m/s 2.求:图10(1)放小物块后,小物块及小车的加速度各为多大; (2)经多长时间两者达到相同的速度;(3)从小物块放上小车开始,经过t =1.5 s 小物块通过的位移大小为多少? 答案 (1)2 m/s 20.5 m/s 2 (2)1 s (3)2.1 m解析 (1)对小车和物块受力分析,由牛顿第二定律可得,物块的加速度:a m =μg =2 m/s 2小车的加速度:a M =F -μmg M=0.5 m/s 2(2)由:a m t =v 0+a M t 得:t =1 s ,所以速度相同时用的时间为1 s. (3)在开始1 s 内小物块的位移:x 1=12a m t 2=1 m最大速度:v =a m t =2 m/s在接下来的0.5 s 物块与小车相对静止,一起做加速运动,加速度:a =FM +m=0.8 m/s 2这0.5 s 内的位移:x 2=vt ′+12at ′2=1.1 m所以通过的总位移x =x 1+x 2=2.1 m.11.如图11所示,两个完全相同的长木板放置于水平地面上,木板间紧密接触,每个木板质量M =0.6 kg ,长度l =0.5 m .现有一质量m =0.4 kg 的小木块,以初速度v 0=2 m/s 从木板的左端滑上木板,已知木块与木板间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1,重力加速度g 取10 m/s 2.求:图11(1)小木块滑上第二个木板的瞬间的速度大小; (2)小木块最终滑动的位移(保留3 位有效数字). 答案 (1)1 m/s (2)0.670 m解析 (1)木板受到木块的摩擦力为F f1=μ1mg 木板受到地面的摩擦力为F f2=μ2(2M +m )g 因为F f2>F f1,所以木块运动时,木板静止不动设木块在左边第一个木板上的加速度大小为a 1,μ1mg =ma 1 小木块滑上第二个木板的瞬间的速度为v ,则v 2-v 02=-2a 1l代入数据解得:v =1 m/s(2)木块滑上第二个木板后,设木板的加速度大小为a 2,则μ1mg -μ2(M +m )g =Ma 2设木块与木板达到相同速度v 1时,用时为t ,则有: 对木块:v 1=v -a 1t 对木板有:v 1=a 2t解得:v 1=0.1 m/s ,t =0.3 s此时木块运动的位移x 1=v +v 12t =0.165 m木板的位移x 1′=v 122a 2=0.015 m木块在木板上滑动的长度为x 1-x 1′<l达到共速后,木块和木板一起继续运动,设木块、木板一起运动的加速度大小为a 3,位移为x 2,μ2(M +m )g =(M +m )a 3 v 12=2a 3x 2解得x 2=0.005 m小木块滑动的总位移x =l +x 1+x 2=0.670 m.。

深圳高中物理滑块及木板模型专题及答案

深圳高中物理滑块及木板模型专题及答案
专题Ⅱ 滑块及木板模型专题
例1、一质量为M的长木板静止在光滑水平桌面上.一质量为m的小滑块以水平速度v0从长木板的一端开始在 木板上滑动,直到离开木板.滑块刚离开木板时的速度为v0/3.若把该木板固定在水平桌面上,其它条件相 同,求滑块离开木板时的速度v.
例 2、一块质量为 M 长为 L 的长木板,静止在光滑水平桌面上,一个质量为 m 的小滑块以水平速度 v0 从长 v 木板的一端开始在木板上滑动,直到离开木板,滑块刚离开木板时的速度为 0.若把此木板固定在水平桌面 5 上,其他条件相同.求: (1)求滑块离开木板时的速度 v; (2)若已知滑块和木板之间
碰撞+弹簧模型专题
例 1、如图所示,位于光滑水平桌面上的小滑块 P 和 Q 都可视作质点,质量相等.Q 与轻质弹簧相连.设 Q 静止, P 以某一初速度向 Q 运动并与弹簧发生碰撞. 在整个碰撞过程中, 弹簧具有的最大弹性势能等于 ( ) A.P 的初动能 B.P 的初动能的 1/2 Q P C.P 的初动能的 1/3 D.P 的初动能的 1/4
例 2、如图所示,质量为 1.0kg 的物体 m1,以 5m/s 的速度在水平桌面上 AB 部分的左侧向右运动,桌面 AB 部分与 m1 间的动摩擦因数μ=0.2, AB 间的距离 s=2.25m, 桌面其他部分光滑。 m1 滑到桌边处与质量为 2.5kg 的静止物体 m2 发生正碰,碰撞后 m2 在坚直方向上落下 0.6m 时速度大小为 4m/s,若 g 取 10m/s2,问 m1 碰 撞后静止在什么位置?
与它碰后以原速率反弹(碰后立即撤去该障碍物) .求 B 与 A 的粗糙面之间的动摩擦因数 和滑块 B 最终 2 停在木板 A 上的位置. (g 取 10m/s ) (深圳晏老师 150-0206-5320)

2025届高考物理复习:经典好题专项(“滑块-木板”模型问题)练习(附答案)

2025届高考物理复习:经典好题专项(“滑块-木板”模型问题)练习(附答案)

2025届高考物理复习:经典好题专项(“滑块-木板”模型问题)练习1. 如图所示,在光滑的水平地面上静止地叠放着两个物体A 、B ,A 、B 之间的动摩擦因数为0.2,A 质量为2 kg ,B 质量为1 kg ,从t =0时刻起,A 受到一向右的水平拉力F 的作用,F 随时间的变化规律为F =(6+2t ) N 。

t =5 s 时撤去外力,运动过程中A 一直未从B 上滑落,最大静摩擦力等于滑动摩擦力(g 取10 m/s 2),则( )A .t =2 s 时,A 、B 发生相对滑动B .t =3 s 时,B 的速度大小为8 m/sC .撤去拉力瞬间,A 的速度大小为19 m/sD .撤去拉力后,再经过1 s ,A 、B 速度相等2. (多选)一长轻质薄硬纸片置于光滑水平地面上,其上放质量均为1 kg 的A 、B 两物块,A 、B 与薄硬纸片之间的动摩擦因数分别为μ1=0.3、μ2=0.2,水平恒力F 作用在A 物块上,如图所示。

已知最大静摩擦力等于滑动摩擦力,g 取10 m/s 2。

下列说法正确的是( )A .若F =1.5 N ,则A 物块所受摩擦力大小为1.5 NB .若F =8 N ,则B 物块的加速度大小为2.0 m/s 2C .无论力F 多大,A 与薄硬纸片都不会发生相对滑动D .无论力F 多大,B 与薄硬纸片都不会发生相对滑动3.(多选)(2021ꞏ全国乙卷ꞏ21)水平地面上有一质量为m 1的长木板,木板的左边上有一质量为m 2的物块,如图(a)所示。

用水平向右的拉力F 作用在物块上,F 随时间t 的变化关系如图(b)所示,其中F 1、F 2分别为t 1、t 2时刻F 的大小。

木板的加速度a 1随时间t 的变化关系如图(c)所示。

已知木板与地面间的动摩擦因数为μ1,物块与木板间的动摩擦因数为μ2,假设最大静摩擦力均与相应的滑动摩擦力相等,重力加速度大小为g 。

则( )A .F 1=μ1m 1gB .F 2=m 2(m 1+m 2)m 1(μ2-μ1)g C .μ2>m 1+m 2m 2μ1 D .在0~t 2时间段物块与木板加速度相等4.(多选)如图所示,在桌面上有一块质量为m1的薄木板,薄木板上放置一质量为m2的物块,现对薄木板施加一水平恒力,使得薄木板能被抽出而物块也不会滑出桌面。

滑块—木板模型专题(附详细答案)(1)

滑块—木板模型专题(附详细答案)(1)

牛顿定律——滑块和木板模型专题一.“滑块—木板模型”问题的分析思路1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动. 2.建模指导解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.例1、m A =1 kg ,m B =2 kg ,A 、B 间动摩擦因数是0.5,水平面光滑. 用10 N 水平力F 拉B 时,A 、B 间的摩擦力是 用20N 水平力F 拉B 时,A 、B 间的摩擦力是例2、如图所示,物体A 叠放在物体B 上,B 置于光滑水平面上,A 、B 质量分别为m A =6 kg ,m B =2 kg ,A 、B 之间的动摩擦因数μ=0.2,开始时F =10 N ,此后逐渐增加, 若使AB 不发生相对运动,则F 的最大值为针对练习1、如图5所示,物体A 叠放在物体B 上,B 置于光滑水平面上,A 、B 质量分别为m A =6 kg ,m B =2 kg ,A 、B 之间的动摩擦因数μ=0.2,开始时F =10 N ,此后逐渐增加,在增大到45 N 的过程中,则 ( )A .当拉力F <12 N 时,物体均保持静止状态B .两物体开始没有相对运动,当拉力超过12 N 时,开始相对运动C .两物体从受力开始就有相对运动D .两物体始终没有相对运动例3、如图所示,质量M =8 kg 的小车放在光滑的水平面上,在小车左端加一水平推力F =8 N ,当小车向右运动的速度达到1.5 m/s 时,在小车前端轻轻地放上一个大小不计,质量为m =2 kg 的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g =10 m/s 2.则:(1)小物块放上后,小物块及小车的加速度各为多大?(2)小车的长度L 是多少?针对练习2、如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s 2,求:(1)木板的加速度;(2)要使木块能滑离木板,水平恒力F 作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.(4)若木板的长度、木块的质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间?1、动力学问题【例1】如图,A是小木块,B是木板,A和B都静止在地面上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、木板M静止在光滑水平面上,木板上放着一个小滑块m,与木板之间的动摩擦因数μ,为了使得m能从M上滑落下来,求下列各种情况下力F的大小范围。

(1)m与M刚要发生相对滑动的临界条件:①要滑动:m
与M间的静摩擦力达到最大静摩擦力;②未滑动:此时m与
M加速度仍相同。

受力分析如图,先隔离m,由牛顿第二定
律可得:a=μmg/m=μg
再对整体,由牛顿第二定律可得:F0=(M+m)a
解得:F0=μ(M+m) g
所以,F的大小范围为:F>μ(M+m)g
(2)受力分析如图,先隔离M,由牛顿第二定律可得:a=μ
mg/M
再对整体,由牛顿第二定律可得:F0=(M+m)a
解得:F0=μ(M+m) mg/M
所以,F的大小范围为:F>μ(M+m)mg/M
2、如图所示,有一块木板静止在光滑水平面上,木板质量M=4kg,长L=1.4m.木板右端放着一个小滑块,小滑块质量m=1kg,其尺寸远小于L,它与木板之间的动摩擦因数μ=0.4,g=10m/s2,
(1)现用水平向右的恒力F作用在木板M上,为了使得m能从M上滑落下来,求F的大小范围.
(2)若其它条件不变,恒力F=22.8N,且始终作用在M上,求m在M上滑动的时间.
(1)小滑块与木板间的滑动摩擦力
f=μFN=μmg=4N…………①
滑动摩擦力f是使滑块产生加速度的最大合外力,其最大加速度
a1=f/m=μg=4m/s2…②
当木板的加速度a2> a1时,滑块将相对于木板向左滑动,直至脱离木板
F-f=m a2>m a1F> f +m a1=20N …………③
即当F>20N,且保持作用一般时间后,小滑块将从木板上滑落下来。

(2)当恒力F=22.8N时,木板的加速度a2',由牛顿第二定律得F-f=Ma2'
解得:a 2'=4.7m/s 2………④
设二者相对滑动时间为t ,在分离之前
小滑块:x 1=½ a1t 2 …………⑤
木板:x 1=½ a2't 2 …………⑥
又有x 2-x 1=L …………⑦
解得:t=2s …………⑧
3、质量mA=3.0kg 、长度L=0.70m 、电量q=+4.0×10-5C 的导体板A 在足够大的绝缘水平面上,
质量mB=1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左、场强大小E=1.0×105N/C 的匀强电场,此时A 的右端到竖直绝缘挡板的距离为S =2m ,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A 与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦力均可认为等于其滑动摩擦力,g 取10m/s2(不计空气的阻力)求:
(1)刚施加匀强电场时,物块B 的加速度的大小?
(2)导体板A 刚离开挡板时,A 的速度大小?
(3)B 能否离开A,若能,求B 刚离开A 时,B 的速
度大小;若不能,求B 与A 的左端的最大距离?
解:(1)设B 受到的最大静摩擦力为m f 1,则.5.211N g m f B m ==μ ① (1分)
设A 受到地面的滑动摩擦力的2f ,则.0.4)(22N g m m f B A =+=μ ② (1分) 施加电场后,设A .B 以相同的加速度向右做匀减速运动,加速度大小为a ,由牛顿第二定律 a m m f qE B A )(2+=+ ③ (2分)解得:2/0.2s m a = (2分)
设B 受到的摩擦力为1f ,由牛顿第二定律得 a m f B =1,④
解得:.0.21N f =因为m f f 11<,所以电场作用后,A .B 仍保持相对静止以相同加速度a 向右做匀减速运动,所以刚加上匀强电场时,B 的加速度大小2
/0.2s m a = (2分)
(2)A 与挡板碰前瞬间,设A .B 向右的共同速度为1v ,
as v v 22021-= (2分)解得s m v /11= (1分) A 与挡板碰撞无机械能损失,故A 刚离开挡板时速度大小为s m v /11= (1分)
(3)A 与挡板碰后,以A .B 系统为研究对象,2f qE = ⑥
故A 、B 系统动量守恒,设A 、B 向左共同速度为ν,规定向左为正方向,得: v m m v m v m B A B A )(11+=- ⑦ (3分)
设该过程中,B 相对于A 向右的位移为1s ,由系统功能关系得:
22111)(21)(21v m m v m m gs m B A B A B +-+=μ ⑧ (4分) 解得 m s 60.01= (2分) 因L s <1,所以B 不能离开A ,B 与A 的左端的最大距离为m s 60.01= (1分)
4、如图所示,光滑水平面MN 的左端M 处有一弹射装置P (P 为左端固定,处于压缩状态且锁
定的轻质弹簧,当A 与P 碰撞时P 立即解除锁定),右端N 处与水平传送带恰平齐且很靠近,传送带沿逆时针方向以恒定速率υ = 5m/s 匀速转动,水平部分长度L = 4m 。

放在水平面上的两相同小物块A 、B (均视为质点)间有一被压缩的轻质弹簧,弹性势能E p = 4J ,弹簧与A 相连接,与B 不连接,A 、B 与传送带间的动摩擦因数μ = 0.2,物块质量m A = m B = 1kg 。

现将A 、B 由静止开始释放,弹簧弹开,在B 离开弹簧时,A 未与P 碰撞,B 未滑上传送带。

取g = 10m/s 2。

求:(1)B 滑上传送带后,向右运动的最远处与N 点间的距离s ;(2)B 从滑上传送带到返回到N 端的时间t 和这一过程中B 与传送带间因摩擦而产生的热 能Q ;
(3)B 回到水平面后压缩被弹射装置P 弹回的A 上的弹簧,B 与弹簧分离然后再滑上传送带。

则P 锁定时具有的弹性势能E 满足什么
条件,才能使B 与弹簧分离后不再与弹簧相
碰。

解:(1)弹簧弹开的过程中,系统机械能守恒
E p = 12 m A υA 2 + 12 m B υB 2 (1分)
由动量守恒有 m A υA - m B υB = 0 (1分)
联立以上两式解得 υA = 2m/s υB = 2m/s (1分)
B 滑上传送带做匀减速运动,当速度减为零时,向右运动的距离最大。

由动能定理得 - μm B gs m = 0 - 12 m B υB 2 (1分)
解得 s m = υB 2
2μg
= 1m (1分) (2)物块B 先向右做匀减速运动,直到速度减小到零,然后反方向做匀加速运动, 回到皮带左端时速度大小仍为υB = 2m/s (1分)
由动量定理 - μm B gt = - m B υB - m B υB (1分)
解得 t = 2υB μg = 2s (1分) B 向右匀减速运动因摩擦而产生的热能为
Q 1 = μm B g (υ · t 2
+ s m ) (1分) B 向左匀加速运动因摩擦而产生的热能为
Q 2 = μm B g (υ · t 2
- s m ) (1分) Q = Q 1 + Q 2 = μm B gυt = 20J (1分)
(3)设弹射装置P 将A 弹开时的速度为υA ′,则
E = 12 m A υA ′2 - 12 m A υA 2 (2分)
B 离开弹簧时,AB 速度互换,B 的速度 υB ′ = υA ′ (2分)
M
B与弹簧分离后不再与弹簧相碰,则B滑出平台Q端,由能量关系有1
2m BυB′2 > μm B gL(2分)以上三式解得
E > μm A gL-1
2m AυA2(2分)
代入数据解得E> 6J (1分)。

相关文档
最新文档