(整理)化学发光法及其应用.

合集下载

化学发光技术原理及应用

化学发光技术原理及应用

化学发光技术原理及应用化学发光技术,是指通过化学反应的方法来产生发光现象的一种技术。

它主要依赖于化学反应的能量释放和物质发生转化的过程中产生能量的特点,使用一定的化学试剂,通过物质的化学反应,来使化学能转化为光能,从而实现发光的效果。

化学发光技术广泛应用于生物医学、物质分析、环境监测、能源技术、材料科学等领域。

本文将分别探讨化学发光技术的基本原理,以及它在不同领域中的应用。

一、化学发光技术的基本原理化学发光技术的基本原理是通过特定的化学反应来激发发光分子的能级,使发光分子达到激发态,释放出光子实现发光的过程。

因此,化学发光技术的实现需要开发出一系列符合要求的发光试剂。

常见的发光方式有如下几种。

1. 化学发光化学发光法利用特定的化学反应,使反应物的活化能转化为光能而产生发光。

比如,乳酸氧化酶催化下乳酸和过氧化氢反应生成的基质产生化学发光,可以用于检测血液中的乳酸含量。

2. 其他类型的光化学反应还有一些类型的光化学反应也能产生发光现象,比如化学发光酶免疫分析法。

如果特定化学反应产生的物质与酶或抗体结合,这时的化学发光就能表现出高度的选择性和灵敏度。

3. 高分子发光材料发光高分子材料的制备通常是将一定量的化学反应物和发光剂混合,进一步地,将混合后的料加入到具有合适性能的基体中。

高分子发光材料因其易于加工、成本低廉、安全稳定等优点,在环境监测、生物医学等诸多领域都得到有效应用。

二、化学发光技术在生物医学领域的应用发光技术在生物医学领域的应用非常广泛。

一般来讲,生化指标对临床诊断和病理变化的判断测试和检测是具有非常重要价值的。

其中最重要的生化指标之一是蛋白质,通过检测蛋白质浓度、酶活性等参数的变化,能够早期发现人体的变化,这对于疾病预防和治疗至关重要。

化学发光技术能够针对不同类型的指标开发出相应的检测方法,如果高灵敏度、特异性,检测的速度也十分快。

三、化学发光技术在环境监测领域的应用化学发光技术在环境监测领域的应用十分广泛。

ca724 (化学发光法)作用

ca724 (化学发光法)作用

ca724 (化学发光法)作用
【原创实用版】
目录
一、化学发光法的概念与原理
二、化学发光法的应用领域
三、化学发光法的优点与局限性
四、化学发光法的发展趋势
正文
一、化学发光法的概念与原理
化学发光法是一种检测分析方法,其原理是利用化学反应过程中产生的光发射来检测目标物质。

与荧光法不同,化学发光法是吸收了化学能使分子激发而发射的光,而荧光是吸收了光能使分子激发而发射的光。

化学发光方法必须提供足够的化学能。

电化学发光效率,又称化学发光反应量子产率,发光效率决定于生成激发态产物分子的化学激发效率和激发态分子发射效率,发光效率和光辐射能量大小及光谱范围。

二、化学发光法的应用领域
化学发光法广泛应用于各种生物标志物、药物浓度、病毒标志物等体液中小分子蛋白质或多肽的检测。

目前,化学发光法在甲状腺激素、肿瘤标志物、感染性疾病、糖尿病、心脏标志物、过敏性疾病、治疗药物监测等领域得到广泛应用。

三、化学发光法的优点与局限性
化学发光法的主要优点包括高敏感性、特异性强、重复性好、试剂稳定有效期长、无毒害、无污染、测定范围宽、操作简单、耗时短、易于自动化等。

但是,化学发光法也存在一定的局限性,如标记物的制备相对复杂、发光效率相对较低、检测设备较昂贵等。

四、化学发光法的发展趋势
随着科学技术的不断发展,化学发光法在免疫分析、生物检测等领域的应用将更加广泛。

未来,化学发光法将继续朝着高灵敏度、高发光效率、简单快速的方向发展,以满足不断增长的检测需求。

化学发光分析技术的研究及应用

化学发光分析技术的研究及应用

化学发光分析技术的研究及应用一、引言化学发光分析技术已经成为生物医学领域中最受欢迎的检测方法之一。

它已广泛应用于生物分析、临床诊断、环境监测和食品安全等领域。

本文旨在探讨化学发光分析技术的研究及应用。

二、化学发光分析技术的概述化学发光分析可分为电化学发光和化学发光两类。

电化学发光是指在电极表面发生电化学反应,电化学反应所产生的激发态物质向基态跃迁时发生的发光现象,即电化学发光现象。

在这种方法中,通过电化学反应产生光,再利用光子计数器分析样品中的目标分子。

化学发光是指在化学反应中产生激发态物质,该物质向基态跃迁时释放出光子,即化学发光现象。

对于化学发光分析,灵敏度和选择性是关键。

三、化学发光分析中的发光机理化学发光分析是基于化学反应中放出的光子对产物浓度进行检测的技术。

光子释放的机理主要有三种:单分子化学发光、能量转移化学发光和化学反应发光。

1. 单分子化学发光机理单分子化学发光机理是指发光来自于一个分子的瞬间存在的激发态基态。

其内部转移是通过激发态、激发态分子、电子转移和融合步骤完成的。

2. 能量转移化学发光机理能量转移化学发光机理是指一个分子从一个激发态到另一个激发态的过程发射出光子,这种过程通常与非辐射过程相结合。

3. 化学反应发光机理化学反应发光机理通常涉及化学反应产生激发态物质,该物质向基态跃迁时释放出光子。

四、化学发光分析技术的应用化学发光分析技术已经应用于许多领域,包括生物分析、临床诊断、环境监测和食品安全等。

1. 生物分析化学发光分析技术可以用于检测细胞生长、酶活性、蛋白质分析、DNA检测和细胞代谢活性等。

典型的化学发光分析方法包括化学发光酶免疫法(CLEIA)和化学发光免疫测定(CLIA)。

2. 临床诊断化学发光分析技术可用于肿瘤标志物、激素及其代谢产物、风湿因子以及肾功能和心脏病等方面的临床诊断。

典型的化学发光分析方法包括固相化学发光免疫测定(SPCLIA)和发光免疫层析法(LIA)。

化学发光的原理及其应用

化学发光的原理及其应用

化学发光的原理及其应用1. 原理介绍化学发光是一种由化学反应产生的发光现象。

它基于分子发生激发态到基态的跃迁,释放出能量的过程。

在发光的反应中,化学物质通过吸收能量,激发到高能激发态,随后返回到稳定的基态,释放出能量并产生光。

2. 发光机理化学发光的发光机理可以分为化学发光和生物发光两种类型。

2.1 化学发光化学发光是利用化学反应产生的化学能转化为光能而发出亮光的一种现象。

化学发光反应通常包含发光物质、触发剂和基质三个组成部分。

当触发剂和发光物质在适当的反应条件下混合时,触发剂将被激活并释放能量,激发发光物质的电子跃迁。

通过电子的跃迁和复合,化学反应产生的能量转化为光能,从而产生发光现象。

2.2 生物发光生物发光指的是许多生物体能够通过化学反应产生光的能力。

生物发光主要由生物发光物质、生物催化剂及其他辅助物质组成。

生物发光通常发生在生物体的特定器官或细胞中,通过生物体代谢产生的反应,激活发光物质并产生光。

生物发光在生物学研究和医学诊断中具有重要的应用价值。

3. 化学发光的应用3.1 生物医学领域化学发光在生物医学领域具有广泛的应用。

例如,在免疫分析中,通过标记抗体或抗原与化学发光物质结合,可以实现对疾病标记物的高灵敏度检测。

化学发光技术还可以应用于基因检测、蛋白质表达研究、细胞成像等方面,为生物医学研究提供了有力的工具。

3.2 环境监测化学发光技术在环境监测中也有应用。

例如,通过化学发光分析技术可以检测水体中的重金属离子、有机物等有害物质。

化学发光还可以应用于空气质量监测和土壤污染监测等方面,提供了一种高灵敏度、高选择性的检测手段。

3.3 安全领域化学发光技术在安全领域具有重要的应用。

例如,荧光标记剂和荧光染料的应用可以增加产品的溯源性和反伪造性,保护消费者的利益。

化学发光技术还可以应用于火灾自动报警系统、防伪标签等安全设备的制造中,提高了安全性和可靠性。

3.4 光电子器件化学发光技术在光电子器件领域也有应用。

化学发光原理及应用(精)

化学发光原理及应用(精)

化学发光原理及应用(精)本文介绍了化学发光及生物发光的原理及应用。

化学发光是一种痕量分析方法,利用化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,通过仪器检测体系化学发光强度来确定待测物含量。

化学发光与其它发光分析的本质区别在于体系产生发光所吸收的能量来源不同。

根据供能反应的特点,化学发光分析法可分为普通化学发光分析法、生物化学发光分析法和电致化学发光分析法等。

根据测定方法的不同,化学发光分析法又可分为直接测定CL分析法、偶合反应CL分析法、时间分辨CL分析法、固相、气相、掖相CL分析法和酵联免疫CL分析法等。

化学发光的系统一般可以表示为PMT,不同型号的仪器其检测技术不一样,但基本原理都是利用待测组份与体系的化学发光强度呈线性定量关系,而化学发光强度随体系反应进行的速度增强或衰弱。

化学发光常用的化学试剂包括某种物质分子吸收化学能而产生的光辐射,任何一个化学发光反应都包括化学激发和发光两个关键步骤。

一个化学反应要成为发光反应,必须满足反应必须提供足够的能量和这些化学能必须能被某种物质分子吸收而产生电子激发态,并且有足够的荧光量子产率。

McCap等人合成了一系列吖啶酯类化合物,并研究了这类试剂的化学发光机理。

研究表明,试剂中可解离酸性基团的pKa应小于11,发光效率与pKa有密切关系。

吖啶酯类化合物是一种非放射性核酸探针标记物,用作DNA的发光探针,发光量子产率高,稳定性好,对杂交反应的动力学和杂交体的稳定性无影响,可以在碱性介质中进行化学发光反应。

以上五种化学发光剂具有高化学发光量子产率和水溶性稳定性,可以被多种氧化剂直接氧化而发光,也可被众多的金属高于催化发光反应而发光。

许多无机、有机和生化组分也能增强或抑制其发光,因此应用十分广泛。

目前报道的有邻菲咯啉、碱基水杨酸、罗明丹—B、没食子酸、香豆素、皮素、茜素紫、苏木色精、培花青、三苯甲烷类染料、丙酮、乙醇、羟胺等。

化学发光法检测分析中的应用

化学发光法检测分析中的应用

化学发光法检测分析中的应用化学发光法是一种应用广泛的分析方法,其可以被用于各种领域的检测分析,如医学、药学、食品科学、环境科学等等。

通过化学反应方式发生的化学发光,在定量和定性分析中都具有重要的应用。

本文将介绍化学发光法的检测原理、检测方法和应用案例。

一、检测原理化学发光是指某些物质在化学反应中释放出光的现象。

常见的化学发光反应有氧化还原反应、酶催化反应、亚硝胺反应等等。

这些化学反应所释放出的光与反应物的浓度成正比关系,因此可以通过测量光强来确定反应中物质的浓度。

二、检测方法1. 酶促发光法酶促发光法是基于酶催化反应和化学发光原理的检测方法。

此方法为生物技术和生物医学领域应用广泛的检测方法。

该方法主要采用双酶法,将触媒化学发光底物催化剂和酶学底物相互作用产生化学反应链,从而放出化学荧光。

通过测量荧光的强度,可以得出样品中酶的含量。

2. 气相色谱发光检测法气相色谱发光检测法是一种将气相色谱技术与发光检测方法相结合的新型检测方法。

该方法首先将样品通过气相色谱柱进行分离,然后在检测器中通过光的激发作用产生化学发光,通过检测这种化学发光的强度进行分析和检测。

3. 化学发光免疫分析法化学发光免疫分析法是一种基于化学反应和免疫学原理相结合的检测方法。

该方法将样品与已知抗原或抗体进行反应,然后添加酶标记抗体或抗原,通过荧光或化学发光检测法分析产生的化学反应。

该方法可快速、准确、灵敏地检测出各种生物分子。

三、应用案例1. 生化污染的检测生化污染是指非法添加和假冒伪劣的生化制品的行为,而定量测定小分子抗生素中的残留成分是评价生化制品较重要的一个指标。

李梅等人通过化学发光法检测分析,发现处于贮存温度较高或贮存时间过长的青霉素、链霉素等抗生素,其残留量有较大增加,因此化学发光法被广泛用于生化污染的检测。

2. 药物纯度及含量的检测药学中常常需要检测药品的纯度及含量。

王丽等人通过化学发光法检测氨氯地平的药剂及体外生物样品,发现药品残留量与样品的浓度呈线性关系,因此化学发光法可被用于药物纯度及含量的检测。

化学发光原理及应用(精)

化学发光原理及应用(精)

化学发光及生物发光的原理及其应用第一部份 概述化学发光 (ChemiLuminescence ,简称为 CL) 分析法是份子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。

化学发光与其它发光分析的本质区别是体系产生发光 ( 光辐射 ) 所吸收的能量来源不同。

体系产生化学发光,必须具有一个产生可检信号的光辐射反应和一个可一次提供导致发光现象足够能量的单独反应步骤的化学反应。

化学发光体系用化学式表示为:依据供能反应的特点,可将化学发光分析法分为: 1 )普通化学发光分析法 ( 供能反应为普通化学反应 ) ; 2 )生物化学发光分析法 ( 供能反应为生物化学反应;简称 BCL) ; 3 )电致化学发光分析法 ( 供能反应为电化学反应,简称 ECL) 等。

根据测定方法该法又可分为:1 )直接测定 CL 分析法;2 )偶合反应 CL 分析法 ( 通过反应的偶合,测定体系中某一组份;3) 时间分辨 CL 分析法 ( 即利用多组份对同一化学发光反应影响的时间差实现多组份测定 ) ;4 )固相、气相、掖相 CL 。

分析法;5 )酵联免疫 CL 分析法等。

化学发光的系统普通可以表示为:在整个的检测系统中其关键的部份为 PMT ,其直接影响到仪器的检测性能,其最高检测极限为 10 - 22 mol/L 。

不同型号的仪器其检测技术不一样,但基本原理都是利用待测组份与体系的化学发光强度呈线性定量关系,而化学发光强度随体系反应进行的速度增强或者衰弱。

记录仪记录峰形,以峰高定量,也可以峰面积定量。

因化学发光多为闪烁式发光 (1—2s 摆布 ) ,故进样与记录时差短,分析速度快。

第二部份、化学发光常用的化学试剂及其原理化学发光是某种物质份子吸收化学能而产生的光辐射。

任何一个化学发光反应都包括两个关键步骤,即化学激发和发光。

化学发光现象及其应用

化学发光现象及其应用

化学发光现象及其应用化学发光现象是一种非常神奇和有趣的化学反应,也是当今科学研究领域中备受关注的一个主题。

当有些化学物质与其他物质发生反应时,会产生能量释放的现象,从而产生光。

这种发光现象在自然界和实验室中都有广泛的应用,例如在生物学、药物学、化学分析、环境监测等领域中。

发光的原理化学发光反应的原理是根据发光分子吸收能量后产生激发态并经过激发态释放能量而发光。

具体而言,某些分子经过化学反应后,其能量水平变得非常高,从而导致分子的电子跃迁到一个高能量态,称为激发态(excited state)。

在激发态,这些分子如果遭遇其他的分子,则有可能被它们碰撞并使其回到低能量态,Thus 返还释放出能量(Emission)进而发光。

常见的化学发光反应常见的化学发光现象包括:化学发光、磷光、荧光和化学发光。

其中,化学发光又被称为化学发光。

在化学发光中,产生的光是由短时间内,一种化学反应的能量释放激发的分子发出的。

磷光是当一种物质吸收电磁辐射(如紫外光)时,再辐射出去形成光谱的现象。

荧光是遗传工程和分子探针广泛应用的技术中,把一些荧光蛋白做成报告带来的光。

那些荧光蛋白其实就是一种特殊的蛋白质,他跟在分子的表面上并具有一定的荧光性,当这些荧光蛋白与其他的化学物质发生反应时,便可产生鲜艳的颜色,从而有荧光的效果。

应用化学发光的应用广泛,主要应用于生物响应探测、药物研究、环境监测、诊断和图像技术等领域。

生物响应探测化学发光荧光素的强发光性和微生物颗粒标记能力,使生物响应探测成为一个蓬勃发展的领域。

生物响应探测利用生物大分子(如蛋白质和DNA)结合特异性标记,实时监测生物过程中的数量和位置变化。

通常,这样的探测方法需要一个或多个荧光素,配合一些生物导入器或反应条件,以扩大化学发光响应的动态范围。

药物研究化学发光的生物学检测法为新药发现和药物研究,提供了强有效的工具。

化学发光可以跟踪先导化合物优选过程中的活性物质,并可以用于评估新药分子的正反映,评估药效动力学和毒性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学发光法及其应用摘要:对近年来化学发光分析法的研究应用最新进展作了评述,包括化学发光体系的类型,化学发光法的新方法,化学发光在无机、药物分析及食品中的应用。

关键字:化学发光法;化学发光体系;应用;化学发光是在没有光、电、磁、声、热源激发的情况下,由化学反应或生物化学反应产生的一种光辐射。

以此为基础的化学发光化学发光(Chemiluminescence ,简称CL)分析法是近30 年来发展起来的一种高灵敏的微量及痕量分析法,由于可以进行发射光子计量,又没有外来激发光源存在时散射光背景的干扰,因而具有很高的灵敏度(检出限可达10-12-10-21mol),很宽的线性范围(3-6个数量级),同时仪器设备又很简单、廉价、易微型化,在二十世纪的最后十年发展非常迅速。

近来,在改进和完善原有发光试剂和体系的同时,新发光试剂的合成,新体系的开发,与其它技术的联用,尤其是流动注射技术,传感器技术,HPLC 技术及各种固定化试剂技术的联用,更显示出化学发光分析快速,灵敏,简便等优点,也进一步拓宽了化学发光的应用范围。

并且,化学发光在多类复杂有机物质,如氨基酸、蛋白质、维生素、核酸、DNA、激素、生物碱及各类药物及毒物的检测,多种生物活性物质的分析,多种抗体和抗原的免疫分析,基因芯片、蛋白质芯片、受体芯片、酶芯片、微流控芯片研究中得到了广泛地应用,而且呈现出上升趋势。

为生命科学、环境科学、材料科学的研究提供了许多新的、高灵敏度的、有效的分析手段,推动了这方面科学理论和高新技术的发展;同时,其他相关学科的研究成果也为化学发光和生物发光提供了许多新的技术和手段,出现了许多新的化学发光和生物发光法,如纳米发光、发光成像、发光活体分析,大大促进了化学发光的发展及应用。

本文将从以下几个方面论述化学发光分析法。

1 化学发光分析法的原理化学发光(Chemiluminescence,简称CL) 分析法是分子发光光谱分析法中的一类,是指物质在进行化学反应时,由于吸收了反应时产生的化学能,而使反应产物分子激发至激发态,受激分子由激发态回到基态时,便发出一定波长的光。

根据化学发光反应在某一时刻的发光强度或发光总量来确定组分含量的分析方法叫化学发光分析法[1]。

换句话说,化学发光是指吸收了化学反应能的分子由激发态回到基态时所产生的光辐射现象, 广义的化学发光也包括电致化学发光。

一个化学反应要产生化学发光现象, 必须满足以下条件: 第一是该反应必须提供足够的激发能, 并由某一步骤单独提供, 因为前一步反应释放的能量将因振动弛豫消失在溶液中而不能发光;第二是要有有利的反应过程, 使化学反应的能量至少能被一种物质所接受并生成激发态;第三是激发态分子必须具有一定的化学发光量子效率释放出光子, 或者能够转移它的能量给另一个分子使之进入激发态并释放出光子。

化学发光反应所以能用于分析测定,是因为化学发光强度与化学反应速度相关联,因而一切影响反应速度的因素都可以作为建立测定方法的依据。

化学发光反应一般可表示为:A +B →C* (1)C*→C+ hν (2)化学发光强度( I CL ) 取决于反应的速度(dP/dt) 和化学发光量子效率(ΦCL)ICL(t)= ΦCL dP/dt (3)式中ΦCL可表示为: ΦCL=ΦrΦf, 其中Φr为生成激发态产物分子的量子效率,Φf为激发态产物分子的发光量子效率。

对于一定的化学发光反应, ΦCL为一定值, 其反应速度可按质量作用定律表示出与反应体系中物质浓度的关系。

因此, 通过测定化学发光强度就可以测定反应体系中某种物质的浓度。

原则上讲,对任何化学发光反应, 只要反应是一级或假一级反应, 都可以通过公式(1) 进行化学发光定量分析。

例如, 在上述化学发光反应中, 如果物质B保持恒定, 而物质A的浓度变化并可视为一级或假一级反应, 则:I CL=∫I CL(t)dt=∫ΦCL〔dA(t)/dt〕dt=ΦCL C A (4)即化学发光强度与A 的浓度成正比。

化学发光分析测定的物质可以分为三类: 第一类物质是化学发光反应中的反应物; 第二类物质是化学发光反应中的催化剂、增敏剂或抑制剂; 第三类物质是偶合反应中的反应物、催化剂、增敏剂等。

这三类物质还可以通过标记方式用来测定人们感兴趣的其他物质, 进一步扩大了化学发光分析的应用范围[2]。

2 化学发光体系2.1 鲁米诺化学发光体系鲁米诺及其衍生物是使用最广泛的化学发光试剂之一。

通过对鲁米诺类衍生物的氨基进行烷基化,增强鲁米诺及其衍生物的发光效率,一些性能优异的鲁米诺类衍生物( 图1 ) 已被研究并在生物、医药分析中广泛应用。

由于鲁米诺类试剂苯环上的取代基对鲁米诺类试剂的发光性能影响较大,改变苯环上的取代基,人们研制了多种新型鲁米诺衍生物。

它们主要分为两类:鲁米诺类发光衍生化试剂和鲁米诺类发光标记试剂[3]。

图1 鲁米诺类衍生物鲁米诺化学发光体系已被广泛地研究和应用,已成功地用于测定痕量过氧化氢、空气中的氧、DNA杂交分析、生化免疫分析、滴定分析终点指示以及多种金属离子的测定,如Cu(Ⅱ)、Co(Ⅱ)、Mn(Ⅱ)、Ag(I)、Cr(Ⅲ)、Cr(Ⅵ)、Fe(Ⅱ)、Fe(Ⅲ)、V(Ⅴ)、05(Ⅲ)、As(Ⅲ)等,也用于多种无机阴离子的测定,如CN-、SO32-、PO43-、NO2-、S2-、Cl-、Br-等。

鲁米诺的衍生物ABEI,作为化学发光标记物己广泛地用于免疫分析。

此外,鲁米诺及其衍生物化学发光体系也己广泛用于液相色谱和毛细管电泳的检测器。

鲁米诺化学发光反应文献中已有很多报导,近年来,鲁米诺化学发光体系在多种金属离子测定、农药检测、人体血液、药物及保健品抗自由基能力的评价,用辣根过氧化物酶(HRP)标一记的酶联免疫分析中的应用以及药物分析等方面都发挥了重要作用;此外,人们也发现了一些新的鲁米诺发光反应的催化体系。

2.2 吖啶类化学发光体系吖啶类衍生物,包括吖啶、吖啶酯及其衍生物,是一类优良的标记试剂和发光试剂。

通过在吖啶环上9- 位的碳原子上链接具有特征结构的取代基,新的具有特殊性能的吖啶类化学发光标记试剂已广泛应用于生物和药物分析[4][5]。

尤其是吖啶酯化合物。

这类化合物只要在过氧化氢和碱存在下就迅速产生化学发光,且有很高的发光效率,如吖啶芳香酯的量子产率可高达0.05。

过氧化氢在C-9位发生亲电加成生成过氧化物,过氧化物经过过渡态二氧乙烷酮分解成激发态的N一甲基吖啶酮和CO2,前者返回到基态发出约430nm的光子。

吖啶酯也能通过不发光的途径分解生成最终产物N-甲基吖啶酮。

研究表明,分解历程受离去基团的性质、过氧化物的浓度、溶液pH值的影响。

离去基团共扼酸的pKa小于H2O2(pKa=12)的pKa时有较高的发光效率。

吖啶酯的化学发光量子产率比鲁米诺要高,是化学发光免疫分析和DNA发光探针中最重要的化学发光标记物,已广泛地用于多种传染疾病的灵敏检测和诊断。

2.3 1,2-二氧环乙烷类化学发光体系自1969 年Kopecky 和Mumford 合成1,2- 环氧乙烷以来,1,2-二氧环乙烷及其衍生物是一类重要的化学发光试剂。

通过选择环烷烃、苯基、蒽基、烷氧基等不同取代基修饰1,2- 二氧环乙烷,改变1,2-二氧环乙烷衍生物的发光和分解动力学性质, 1,2-二氧环乙烷类衍生物得到不断发展。

1,2-二氧杂环丁烷类化合物化学发光反应机理的研究不仅具有理论意义,也有实际意义。

主要在于许多化学发光反应和生物发光反应的中间体都涉及到氧杂四元环的生成,而这类化合物由于其结构上的简单性,十分有利于进行实验和理论探讨,其理论的发展必然深化对化学发光和生物发光本质的认识。

同时,这些研究手段也为其他化学发光反应的研究提供许多可供借鉴之处。

在分析化学也受到注意。

利用1,2-二氧杂环丁烷类化合物作为化学发光探针和标记物,由于其刚性结构可方便地通过控制温度而产生化学发光,从而获取某一点的信息。

根据发光位点的信息,就能实现对生物体系进行“原位”或“在位”(on-site)研究。

2.4 铈( IV) 化学发光反应体系在酸性介质中,Ce(IV)可以和许多物质发生氧化还原反应从而产生荧光特性或化学发光,利用该反应已经建立了一些化合物的测定方法。

何治柯等人发现铈(IV)可以氧化钌( II)2联吡啶从而产生比较微弱的化学发光现象,并且发现α-羟基羧酸、巴比妥酸、丙酮酸、抗坏血酸、盐酸小檗碱[6]等作为增敏剂,对该反应有显著的增强作用,其增强的强度跟被测物质的浓度成正比,据此建立起一系列测定有机酸的新方法。

并在此基础上提出了偶合化学发光机理,指出增强化学发光与有机酸结构的关系。

王园朝等[7]还研究了Ce(IV)在增敏剂Ru(phen)2+3存在时氧化SO2-3的化学发光特性,并用于测定葡萄酒中亚硫酸盐总含量,取得了满意结果。

在酸性介质中,铈(IV)还可以与某些含有巯基的化合物发生发光反应。

头孢类β-内酰胺抗生素、卡托普利、阿莫西林等有机化合物都可以在酸性介质中水解,产物中有巯基从而与铈(IV)可以产生弱发光,利用一些荧光物质如奎宁、吡哌酸、罗丹明B或罗丹明6G 等以及金属离子的增敏测定了如青霉胺、巯基酰甘氨酸、双氢克尿噻、氟罗沙星、头孢类β-内酰胺类抗生素、阿莫西林、吩噻嗪、氧乐果以及抗高血压药物卡托普利(巯甲丙脯酸) 等。

同时也可以利用某些物质对铈( IV) 发光体系的抑制作用进行测定. 如赵亚娟等人[8]发现尼莫地平对铈( IV) 与Na2 CO3化学发光体系的抑制作用,据此建立了测定尼莫地平的新方法。

以往测定亚硝酸根多用光度法、离子色谱法、荧光法等,前面这些方法多基于重氮化-偶联反应,所用试剂毒性较大,后者虽有较高灵敏度,但测定有色水样有困难。

2.5 钌( Ⅱ)联吡啶配合物化学发光体系钌( Ⅱ)联吡啶配合物也是常用的化学发光体系之一。

它具有独特的化学稳定性、氧化还原性和发光性。

在酸性介质中,Ru(bpy)32+被氧化剂氧化成Ru(bpy)33+,然后与还原分析物反应产生化学发光以检测这些还原分析物。

利用该体系可以检测二甲基亚硝胺、脯氨酸和四环素类等。

THONGPOON等[9]基于高氯酸存在下,Mn(Ⅱ)对头孢菌素族抗菌素- Ru(bpy)32++2KMnO4的化学发光反应的催化作用,建立了一种快速、灵敏检测甲氧噻吩头孢菌素、头孢菌素Ⅴ、头孢菌素Ⅳ、头孢羟氨下、氯氨下头孢菌素等6种头孢菌素族抗菌素的FI-CL新方法。

WEI等[10]利用Ru(bpy)32+-PbO2化学发光体系,检测了甲氧萘丙酸,线性范围为2×10-8~6×10-6 mol/L,检出限达l.0×10-8mol/L。

测定了甲氧萘丙酸和蛋白质间的键合常数和人血清白蛋白平衡液中的甲氧萘丙酸未键合片段。

相关文档
最新文档