化学发光分析法的应用研究与新进展全解
化学发光技术原理及应用

化学发光技术原理及应用化学发光技术,是指通过化学反应的方法来产生发光现象的一种技术。
它主要依赖于化学反应的能量释放和物质发生转化的过程中产生能量的特点,使用一定的化学试剂,通过物质的化学反应,来使化学能转化为光能,从而实现发光的效果。
化学发光技术广泛应用于生物医学、物质分析、环境监测、能源技术、材料科学等领域。
本文将分别探讨化学发光技术的基本原理,以及它在不同领域中的应用。
一、化学发光技术的基本原理化学发光技术的基本原理是通过特定的化学反应来激发发光分子的能级,使发光分子达到激发态,释放出光子实现发光的过程。
因此,化学发光技术的实现需要开发出一系列符合要求的发光试剂。
常见的发光方式有如下几种。
1. 化学发光化学发光法利用特定的化学反应,使反应物的活化能转化为光能而产生发光。
比如,乳酸氧化酶催化下乳酸和过氧化氢反应生成的基质产生化学发光,可以用于检测血液中的乳酸含量。
2. 其他类型的光化学反应还有一些类型的光化学反应也能产生发光现象,比如化学发光酶免疫分析法。
如果特定化学反应产生的物质与酶或抗体结合,这时的化学发光就能表现出高度的选择性和灵敏度。
3. 高分子发光材料发光高分子材料的制备通常是将一定量的化学反应物和发光剂混合,进一步地,将混合后的料加入到具有合适性能的基体中。
高分子发光材料因其易于加工、成本低廉、安全稳定等优点,在环境监测、生物医学等诸多领域都得到有效应用。
二、化学发光技术在生物医学领域的应用发光技术在生物医学领域的应用非常广泛。
一般来讲,生化指标对临床诊断和病理变化的判断测试和检测是具有非常重要价值的。
其中最重要的生化指标之一是蛋白质,通过检测蛋白质浓度、酶活性等参数的变化,能够早期发现人体的变化,这对于疾病预防和治疗至关重要。
化学发光技术能够针对不同类型的指标开发出相应的检测方法,如果高灵敏度、特异性,检测的速度也十分快。
三、化学发光技术在环境监测领域的应用化学发光技术在环境监测领域的应用十分广泛。
电化学发光技术的研究与应用

电化学发光技术的研究与应用一、概述电化学发光技术(Electrochemiluminescence,ECL)是一种新型的光化学分析方法,通过电化学反应能够产生特定的化学物质,使其发出光信号。
该技术具有灵敏度高、特异性强、稳定性好等优点,广泛应用于生物医学、食品安全、环境监测等领域。
二、电化学发光技术原理电化学发光技术的原理基于电化学和光化学反应,是一种将化学能转化为光能的方法。
在实际应用中,通过控制电极电势,在电极表面引发化学反应,产生电化学发光反应。
这一反应可以分为两个步骤:氧化还原反应和激发发光反应。
氧化还原反应:通常通过正极产生氧化性物质,在负极产生还原性物质。
当正极带电,能够将电子传递到溶液中的分子,使其发生氧化反应,形成活性的中间体。
负极带电,则能够吸收电子,促使中间体还原为最初的化合物。
激发发光反应:中间体被还原后,会受到外部的激发,产生激发态,随着激发态的衰减,会释放出光子,形成发光现象。
三、电化学发光技术在生物医学领域的应用电化学发光技术在生物医学领域具有广泛的用途。
通过标记抗体、DNA探针等生物分子,可以快速、准确地检测各种生命体内的分子和细胞生物学特性。
以下是该技术在生物医学领域的主要应用:1.免疫分析:ECL标记的抗体用于检测肿瘤标志物、药物残留、生物分子等。
2.分子诊断:ECL用于检测DNA、RNA、蛋白质等分子的含量与种类,可用于疾病的诊断、病因研究等。
3.生物芯片:通过ECL技术将信号分子固定在电极表面上,可以大幅度提高微型芯片的检测灵敏度。
四、电化学发光技术在环境监测领域的应用电化学发光技术在环境监测领域也表现出良好的应用前景。
它可用于超低浓度有毒化学物质、生物毒素的检测,因此,在社区环境监测、食品卫生和水质安全监测等方面具有广泛的潜力。
1.土壤、大气环境监测:ECL可以用于饮用水中甲基对硫磷、硝基苯的检测,甚至可以检测到很低浓度下的化学物质。
2.食品安全:ECL可用于检测食品中生物毒素、农药残留等。
生物化学发光技术的研究及其应用

生物化学发光技术的研究及其应用生命是神秘的,而研究生命的过程也充满著惊喜。
在现代科学技术的快速发展下,新的工具和技术带来了前所未有的优势。
其中生物化学发光技术就是一个非常好的例子。
下面,我们将深入探讨这一生物化学技术的研究与应用。
一、生物化学发光技术的定义生物化学发光技术是一种利用生物体内的化学信号来进行外部信号检测的过程。
在这种技术下,活细胞或者组织获得外部信号刺激后,将在内部产生一系列的化学反应。
这些反应会使得某些特定的分子或者化学物质的数量上升,从而激发一连串的信号传输过程,最终导致生物发出光信号或荧光。
这种技术可以用于多种生物体内的化学活动的研究,尤其是在神经科学和癌症研究领域中应用最为广泛。
二、技术的研究与发展生物化学发光技术的发展历程可以追溯到20世纪50年代初期,当时的科学家发现照射珍珠贝壳的片段时,具有自发的发光现象。
随着对于该现象的研究发现,珍珠内的荧光物质是由一种名叫琥珀酸酯酶的酶与琥珀酸化合物协同作用产生的。
这个过程需要三个特殊的成分: 琥珀酸酯酶、琥珀酸和 ATP。
随着科技的进步,科学家们利用琥珀酸酯酶在活体细胞内标记琥珀酸酯,然后照射光源。
这样可以检测出带有琥珀酸酯的生物分子是否负责发送信号。
进一步的研究发现,琥珀酸酯酶可以转化多种不同的琥珀酸盐,从而促进荧光信号的发射。
此后,研究人员也探索了其它荧光物质与发光机理,进一步开启了生物化学发光技术的探索之旅。
三、技术的应用举例在癌症研究方面,生物化学发光技术的应用尤为广泛。
例如,在研究肿瘤靶点药物的时候,要求药物只能被癌细胞甚至是某种特定的细胞表达的蛋白所识别。
因此科学家们要开发方法以区分这些癌细胞从非癌细胞中分离出来。
生物化学发光技术可以在此过程中提供帮助。
科学家们通过发现在癌细胞中的特定信号分子来基于生物化学发光技术进行测量,这些信号分子可以区分癌细胞和非癌细胞。
在神经科学中,生物化学发光技术也是一个非常重要的工具。
如大脑中多巴胺的检测,多巴胺在大脑的主要作用是行为激励和奖励系统,本质上形成实现行为奖赏和习惯性行为的神经元到神经元之间的联系。
化学发光分析技术的应用

化学发光分析技术的应用化学发光分析技术是一种基于化学反应发出光的分析方法,其原理是在化学反应中通过能量转移或激发态分子释放特定波长的光谱,利用光度计或荧光光度计测定样品中的物质浓度。
与传统的色谱、电泳等分析技术相比,化学发光分析技术具有检测灵敏度高、分析速度快、选择性好等优点,在生命科学、环境监测、食品安全等领域得到了广泛应用。
生命科学领域是化学发光分析技术最为广泛应用的领域之一。
利用化学发光分析技术可以快速、准确地测定样品中的生物分子,如蛋白质、核酸、荷尔蒙等。
在医学检测中,化学发光分析技术被广泛应用于药物代谢、肿瘤标志物、细胞信号转导等方面。
例如,通过荧光共振能量转移(FRET)技术,能够实现对蛋白质结构和功能的研究。
同时,化学发光分析技术也在基因组学研究中发挥了重要作用。
通过荧光PCR技术,例如实时定量PCR,能够快速、准确地测定样本中的目标基因表达水平。
除了生命科学领域,食品安全领域也是化学发光分析技术的应用之一。
食品中常常存在着一些环境污染物、致癌物和微生物等,对人体健康造成严重影响。
化学发光分析技术能够快速、准确地测定食品中的这些有害物质,如亚硝酸盐、塑化剂和重金属等。
同时,化学发光分析技术也可以用来检测食品中的添加剂和残留物。
例如添加到食品中的亚硝酸盐会导致人体中的亚硝胺含量升高,进而增加患癌症的风险,而化学发光分析技术则可以快速、高效地检测出亚硝酸盐的含量,以确保食品的安全。
环境监测领域也是化学发光分析技术的主要应用领域之一。
许多环境污染物具有毒性和潜在危险,对生态环境和人类健康造成严重影响。
化学发光分析技术在环境监测中起着至关重要的作用。
例如,通过测定水体中总有机碳和胆汁酸浓度,可以评估水体污染程度。
同时,还可以利用化学发光分析技术对大气、水体、土壤等环境中的污染物进行快速、准确的分析和检测,如挥发性有机物(VOCs)和氨等。
化学发光分析技术的简便性和快捷性,使其成为环境监测中不可缺少的分析工具。
化学发光技术发展趋势

化学发光技术:发展趋势与挑战一、化学发光技术概述化学发光技术是一种基于化学反应产生光子的技术,其原理是化学反应过程中产生的能量能够激发分子至激发态,当这些分子返回到基态时,会以光子的形式释放出能量。
自20世纪70年代以来,化学发光技术已广泛应用于分子诊断、药物研究、环保检测等诸多领域。
二、化学发光技术的应用领域与发展趋势1. 分子诊断:化学发光技术为分子诊断提供了高灵敏度、高特异性和快速简便的检测手段。
例如,利用化学发光技术可以检测DNA、RNA和蛋白质等生物分子,为肿瘤、传染病和遗传病等疾病的诊断提供了有力支持。
2. 药物研究:化学发光技术可用于药物的合成、代谢和药代动力学研究。
例如,通过化学发光技术可以追踪药物在体内的分布、吸收和排泄情况,有助于新药的开发和优化。
3. 环保检测:化学发光技术可用于环境监测,如水体、土壤和大气中污染物的检测。
该技术具有高灵敏度和高选择性,可以快速准确地检测出各类有害物质。
三、化学发光技术的创新发展1. 新型化学发光试剂盒开发:随着临床和科研的需求日益增长,开发新型化学发光试剂盒已成为研究热点。
例如,针对特定疾病的生物标志物,设计研发高特异性、高灵敏度的化学发光检测试剂盒,可实现疾病的早期诊断。
2. 更高灵敏度与分辨率的仪器设备:为了提高化学发光技术的检测限和空间分辨率,研发新型的高灵敏度、高分辨率仪器设备至关重要。
例如,通过采用先进的光学系统和高灵敏度探测器,提高现有化学发光成像设备的性能。
3. 临床试验及成果转化策略:加强化学发光技术在临床实践中的应用研究,通过大规模临床试验验证其可行性和有效性。
同时,建立与医疗机构、科研院所和产业界的紧密合作,推动化学发光技术的成果转化和产业化。
4. 人工智能与大数据在化学发光技术中的应用:借助人工智能的数据处理能力和深度学习算法,对化学发光数据进行模式识别和预测性分析。
例如,通过人工智能技术对大量的医学影像数据进行处理和分析,为疾病的早期诊断提供依据。
化学发光材料的研究及其应用

化学发光材料的研究及其应用化学发光材料是指能够在外加激发下发出光的物质,它具有发光强度高、发光时间长、反应灵敏和重复使用等优点,被广泛应用于诸如生化分析、医学诊断、食品安全、环境监测等领域。
一、发光机理发光材料的发光机理主要有化学发光和电化学发光两种。
化学发光是指在化学反应过程中,放出的能量转化为光能而表现出来的发光现象。
其中,最重要的化学发光机理为化学发光共振能转移(chemiluminescence energy transfer,CLT)。
其基本原理为,在一个化学反应中,产生的两种共振能转移废气激发态分子(singlet)会发生激发电子跃迁或非辐射能量传递,进而使另一种分子进入激发态,最终产生发光现象。
电化学发光则是指通过电化学反应中吸收或释放电子的化学反应产生的发光现象。
其中,最常见的电化学发光材料为制冷剂甲烷二酮(1,1,1-trichloroethane,TCE)和三环腺苷(tris(2,2′-bipyridine)ruthenium(II),Ru(bpy)33+)。
二、发光材料的种类根据不同的发光机理,发光材料可以分为化学发光材料和电化学发光材料。
其中,化学发光材料还包括生物发光材料和非生物发光材料两种。
1、电化学发光材料:主要包括金属离子复合物(如Ru(bpy)33+)、有机分子化合物、聚合物和半导体材料等。
2、化学发光材料:主要包括天然生物发光材料(如荧光素、葫芦素、棕榈酰胺等)和化学合成的发光材料(如光发光试剂、单分子发光试剂、发光纳米粒子等)等。
三、应用领域1、医学诊断领域:化学发光作为一种高灵敏度的检测方法,被广泛应用于生物医学和临床检测领域。
例如,基于化学发光原理的免疫分析技术(chemiluminescence immunoassay)可用于患者血液中病毒、细菌等微生物的检测。
2、食品安全领域:发光法测试(luminescence assay)是一种快速、简单、可重复的检测方法,能有效检测食品中的各种有害物质。
化学发光法检测分析中的应用

化学发光法检测分析中的应用化学发光法是一种应用广泛的分析方法,其可以被用于各种领域的检测分析,如医学、药学、食品科学、环境科学等等。
通过化学反应方式发生的化学发光,在定量和定性分析中都具有重要的应用。
本文将介绍化学发光法的检测原理、检测方法和应用案例。
一、检测原理化学发光是指某些物质在化学反应中释放出光的现象。
常见的化学发光反应有氧化还原反应、酶催化反应、亚硝胺反应等等。
这些化学反应所释放出的光与反应物的浓度成正比关系,因此可以通过测量光强来确定反应中物质的浓度。
二、检测方法1. 酶促发光法酶促发光法是基于酶催化反应和化学发光原理的检测方法。
此方法为生物技术和生物医学领域应用广泛的检测方法。
该方法主要采用双酶法,将触媒化学发光底物催化剂和酶学底物相互作用产生化学反应链,从而放出化学荧光。
通过测量荧光的强度,可以得出样品中酶的含量。
2. 气相色谱发光检测法气相色谱发光检测法是一种将气相色谱技术与发光检测方法相结合的新型检测方法。
该方法首先将样品通过气相色谱柱进行分离,然后在检测器中通过光的激发作用产生化学发光,通过检测这种化学发光的强度进行分析和检测。
3. 化学发光免疫分析法化学发光免疫分析法是一种基于化学反应和免疫学原理相结合的检测方法。
该方法将样品与已知抗原或抗体进行反应,然后添加酶标记抗体或抗原,通过荧光或化学发光检测法分析产生的化学反应。
该方法可快速、准确、灵敏地检测出各种生物分子。
三、应用案例1. 生化污染的检测生化污染是指非法添加和假冒伪劣的生化制品的行为,而定量测定小分子抗生素中的残留成分是评价生化制品较重要的一个指标。
李梅等人通过化学发光法检测分析,发现处于贮存温度较高或贮存时间过长的青霉素、链霉素等抗生素,其残留量有较大增加,因此化学发光法被广泛用于生化污染的检测。
2. 药物纯度及含量的检测药学中常常需要检测药品的纯度及含量。
王丽等人通过化学发光法检测氨氯地平的药剂及体外生物样品,发现药品残留量与样品的浓度呈线性关系,因此化学发光法可被用于药物纯度及含量的检测。
化学发光分析法综述

化学发光分析法综述化学发光分析法是一种基于光的检测技术,其原理是通过化学反应产生光的发射,利用发光强度与待测物质浓度之间的关系进行定量分析。
化学发光分析法在生物医学、环境监测、食品安全等领域有着广泛的应用。
本文将综述化学发光分析法的原理、方法和应用研究进展。
化学发光分析法的原理可以归纳为两类:化学发光增强原理和化学发光自身原理。
前者基于化学反应中发光物质的生成和增强,如钒酸盐-含氮化物体系中产生的荧光;后者则是通过一些物质在化学反应中的产生发光,如氧化还原反应中的增白剂和催化剂的发光作用。
化学发光分析法的方法包括化学发光法、电化学发光法和光生发光法。
其中化学发光法是应用最广泛的一种方法,其步骤通常包括试剂的制备、反应条件的优化、发光体系的选择和测量装置的设计。
电化学发光法则是利用电化学反应中产生的电流转化成光信号进行检测。
光生发光法是利用光照射样品后产生的催化剂发光进行分析。
在应用研究方面,化学发光分析法在生物医学领域有着广泛的应用。
例如,生物芯片技术结合化学发光分析法可以用于检测DNA序列、蛋白质和细胞等。
此外,化学发光分析法还可以用于检测环境中的有毒物质,如重金属离子和有机污染物。
食品安全是一个重要的应用领域,化学发光分析法可以用于检测食品中的农药残留、添加剂和毒素等。
近年来,一些新的发展和研究方向也出现在化学发光分析法中。
例如,利用纳米材料和纳米光子学的原理,可以制备出高灵敏度、特异性的化学发光探针。
此外,不断提高化学发光分析方法的自动化程度,可以实现高通量的分析和测量。
同时,与其他分析技术的结合,如质谱技术和色谱技术,也是当前的研究重点。
综上所述,化学发光分析法是一种重要的分析技术,具有广泛的应用前景。
随着研究的不断深入,化学发光分析法在生物医学、环境监测和食品安全等领域的应用将会得到进一步的扩展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学发光分析法的应用研究与新进展摘要:化学发光分析法是根据化学反应的发光强度或发光总量确定相应组分含量的一种分析方法。
同荧光法相比,化学发光法不需要外来的光源,减少了拉曼散射和瑞利散射,降低了噪音信号的干扰,提高了检测的信噪比,扩大了线性范围。
并具通过特定的化学发光可以定性定量的测定微量物质,有操作方便,易于实现自动化,分析快等特点。
同时在实践的过程中化学发光分析法与其他方法相比较其灵敏度也较高,此外线性范围宽和仪器简单也是化学发光分析法的特点之一。
正是基于这些特点,化学发光分析法在环境化学、临床医学、生物科学等领域得到十分广泛的应用和研究。
本文从化学发光分析法的原理、优缺点和应用研究的新进展等方面进行了综述。
关键词:化学发光分析法,化学发光体系,鲁米诺,光泽精引言化学发光是化学反应体系中的某些分子或原子中的电子,如反应物、中间体或反应产物吸收了化学反应释放出的化学能后,由基态(较低能级)跃迁到激发态(较高能级),然后再返回到基态,并释放光子所产生的光辐射[2]。
化学发光又称为冷光,它是在没有任何光、热或电场等激发的情况下由化学反应而产生的光辐射。
由于不需要外源性激发光源,避免了背景光和杂散光的干扰,降低了噪声,大大提高了信噪比。
具有灵敏度高,线性范围宽,设备简单,操作方便,易于实现自动化,分析快等特点。
在生物工程学,药物学,分子生物学,临床和环境化学等各个领域正显示出它蓬勃的生机。
本文主要介绍化学发光分析法的原理、优缺点,常用的化学发光试剂及其体系,和在环境化学、临床医学、生物科学等领域的应用研究和化学发光分析法的近两年的应用新进展。
1 化学发光1.1化学发光的原理发光是指分子或原子中的电子吸收能量后,由基态(较低能级)跃迁到激发态(较高能级),然后再返回到基态,并释放光子的过程。
根据形成激发态分子的能量来源不同可分为:光照发光、生物发光、化学发光等。
光照发光(photoluminescence)是指发光剂(荧光素)经短波长的入射光照射后,电子吸收能量跃迁到激发态,在其回复至基态时,发射出较长波长的可见光(荧光)。
化学发光反应存在于生物体(萤火虫、海洋发光生物)中,称生物发光(bioluminescence)。
化学发光(chemiluminescence)是指伴随化学反应过程所产生的光的发射现象。
某些物质(发光剂)在化学反应时,吸收了反应过程中所产生的化学能,使反应的产物分子或反应的中间态分子中的电子跃迁到激发态,当电子从激发态回复到基态时,以发射光子的形式释放出能量的现象。
化学效率主要取决于发光所依赖的化学反应本身;而发光效率则取决于发光体本身的结构和性质,也受环境的影响。
化学发光反应的发光强度Icl是以单位时间内发射的光子数表示,它与化学发光反应的速率有关。
时刻t 的化学发光强度(单位时间发射的光量子数):如果反应是一级动力学反应,t时刻的化学发光强度Icl与该时刻的分析物浓度c成正比,即化学发光峰值强度与分析物浓度c成线性关系。
在化学发光分析中,常用已知时间内的发光总强度来进行定量分析。
1.2化学发光类型一些化学反应能释放足够的能量把参加反应的物质激发到能发射光的电子激发态,若被激发的是一个反应产物分子,则这种反应过程叫直接化学发光[2]。
反应过程可简单地描述如下:A+ B →C*C* → C + hv其中v为光子,C*表示C处于单线激发态;若激发能传递到另一个未参加化学反应的分子D上,使D分子激发到电子激发态,D分子从激发态回到基态时发光,这种过程叫间接化学发光[2]。
反应过程可表示如下:A +B →C*C* + D → C + D*D* → D + hv2 化学发光分析法化学发光(Chemiluminescence ,简称CL) 分析法是分子发光光谱分析法中的一类,是指物质在进行化学反应时,由于吸收了反应时产生的化学能,而使反应产物分子激发至激发态,受激分子由激发态回到基态时,便发出一定波长的光[5]。
根据化学发光反应在某一时刻的发光强度或发光总量来确定组分含量的分析方法[11]。
可将化学发光分析法分为:普通化学发光分析法 ( 供能反应为一般化学反应 ) ,生物化学发光分析法 ( 供能反应为生物化学反应;简称 BCL),电致化学发光分析法 ( 供能反应为电化学反应,简称 ECL) 等。
2.1 化学发光分析法的优点化学发光分析检测具有如下优点:一、灵敏度高,灵敏度高是化学分析关键的优越性,用其进行免疫分析,其灵敏度可达11-22mol/ L(RIA为10-12mol/L),化学发光免疫分析能够检出放射免疫分析和酶免疫分析等方法无法检出的物质,对疾病的早期诊断具有十分重要的意义;二、宽的线性动力学范围,发光强度在4-6个数量级之间与测定物质浓度间呈线性关系;三、光信号持续时间长,辉光型化学发光信号持续时间可达数小时甚至一天,简化了实验操作与测量;四、分析方法简便快速,绝大多数分析测定仅需一种试剂(复合试剂)的一步模式;五、结果稳定误差小,样品系直接自己发光,不需要任何光源照射,免除了各种可能对分析结果带来影响的因素,例如光源稳定性,光散射,光波选择器等。
2.2 化学发光分析法的缺点化学发光法不足之处是其发光在瞬间完成,发光强度峰值衰减时间短,有些发光反应时间不到10秒钟,光背景高,造成检测结果稳定性和重现性差,另外,需要发光时间,目前可以被利用的发光试剂不多,因此该法的推广应用受到一定程度的限制[5]。
3 常用的化学发光试剂及其体系一个化学反应要成为发光反应,必须满足两个条件:第一:反应必须提供足够的能量(170~300KJ/mol),第二,这些化学能必须能被某种物质分子吸收而产生电子激发态,并且有足够的荧光量子产率。
到目前为止,所研究的化学发光反应大多为氧化还原反应,且多为液相化学发光反应。
化学发光体系主要由化学发光剂,与化学发光剂反应的试剂、催化剂、增敏剂、缓冲剂、溶剂等组成。
3.1 鲁米诺化学发光体系鲁米诺(5-氨基-2,3-二氢-1,4-二杂氮萘二酮,也称3-氨基邻苯二甲酰肼)是最常用的液相化学发光试剂之一。
其在碱性条件下可被一些氧化剂氧化,形成叠氮醌,叠氮醌在碱性溶液中在催化剂Fe2+的作用下[14],与氧化剂过氧化氢作用生成不稳定的跨环过氧化物中间体,然后再转化为激发态的3-安吉邻苯二甲酸跟阴离子,当其价电子从第一电子激发态的最低振动能级跃迁回到基态中各个不同振动能级时,便产生出最大发射波长为425nm的化学发光。
此反应的发光强度(峰值强度)或发光总量可以确定反应中的相应组分含量,通过特定的化学发光可以定性定量的测定微量物质,具有操作方便,易于实现自动化,分析快等特点。
鲁米诺的衍生物主要有异鲁米诺、4-氨基已基-N-乙基异鲁诺及AHEI和ABEI等。
在通常情况下鲁米诺与过氧化氢的化学发光反应相当缓慢,但当有某些催化剂存在时反应非常迅速。
最常用催化剂是金属离子,在很大浓度范围内,金属离子浓度与发光强度成正比,从而可进行某些金属离子的化学发光分析,利用这一反应可以分析那些含有金属离子的有机化合物,达到很高的灵敏度。
3.2 过氧草酸酯类化学发光体系过氧草酸酯(peroxalate) 类化学发光体系最早发现于20世纪60年代,最初主要用于军事目的,后来逐渐转入民用。
过氧草酸酯类化学发光体系有4种要素化合物,即荧光剂、草酸酯、过氧化氢、催化剂。
其化学发光的基本原理是:在合适的荧光化合物(增敏剂) 的存在下,过氧化氢诱导氧化芳香基草酸酯放出能量,而由化学发光染料分子吸收后转化为光能,以荧光形式放出[8]。
这种发光体系除了能用于制造各种冷光源外,还广泛应用于各类化学发光分析。
与鲁米诺及其类似物化学发光体系相比,主要优点是量子产量高,因而具有较高的灵敏度,金属离子和氧分子干扰少。
3.3 高锰酸钾化学发光反应体系高锰酸钾是化学发光反应中常用的强氧化剂[3],高锰酸钾化学发光反应可用来测定两类物质,一类是能直接与高锰酸钾产生化学发光反应的有机物,该有机物的分子结构大多数都含有多个羟基或氨基。
另一类是基于能量转移机理测定荧光物质。
高锰酸钾可以氧化很多种有机物从而产生化学发光[4],某些不易与鲁米诺发光进行测定的物质,可以利用高锰酸钾的高氧化性与之反应,得到满意的测定结果。
从而不断开发了新的化学发光体系,扩展了化学发光的应用范围。
3.4 其它化学发光反应体系其它化学发光反应体系如吖啶酯化合物,是应用最广泛的化学发光剂之一。
代表性物质为光泽精。
光泽精是使用较早的一种优良发光试剂,在碱性介质中如被过氧化氢等氧化剂氧化后的产物吸收了反应放出的热量而处于激发态,发射蓝绿光并回到基态。
吖啶酯类化合物是一类很有前途的非放射性核酸探针标记物,用作DNA 的发光探针,发光量子产率高,稳定性好,标记物对杂交反应的动力学和杂交体的稳定性无影响,可以直接在碱性介质中进行化学发光反应。
4 化学发光分析法的应用化学发光的高灵敏度,宽线性范围,分析快速简便,安全性好等优势使得化学发光作为一种光谱检测手段,越来越受到大家的关注。
随着研究的升入,化学发光有着其广泛的应用前景。
4.1化学发光法在环境监测中的应用4.1.1化学发光分析与毛细管电泳技术的联用化学发光分析结合毛细管电泳技术联用的现代测试技术在环境监测工作中应用较多。
刘等[14]用柱头场放大样品富集技术测定镍,使镍离子的灵敏度得到显著提高,其检测限为7.0•10-11mol/L。
卫洪清等[15]以邻菲咯琳为配位剂,在鲁米诺一过氧化氢体系中,对两种形态的铁元素(Fe(II)和Fe(III))进行了分离和检测。
除了直接用化学发光法检测金属离子外,还可以用间接化学发光法。
如任吉存等[16]以钻离子为探针,在鲁米诺一过氧化氢体系中用间接化学发光的方法在线分离和检测了18种金属离子,检测限比间接紫外检测方法低三个数量级,比间接激光诱导荧光法低两个数量级。
4.1.1 金属离子分析痕量金属离子对化学发光反应具有很好的催化作用,因而化学发光测定金属离子[17,18,19]得到广泛的应用(见表1)。
此外,文献上记载最早的化学发光试剂洛粉碱被用于多种元素的分析测定。
4.1.2 其它化合物的分析四价铈可直接与多种还原性无机物或者有机物放生氧化还原反应,是强氧化性化学发光剂之一。
尽管发光体系比较简单,可是因为不收Cl-的影响,更合适检测水样中有机物污染的程度。
化学发光反应中,过氧化氢是最常用的一种氧化剂,因此有关H2O2化学发光分析涉及到鲁米诺、过氧草酸酯及光泽精等化学发光反应的较多( 见表2)。
4.2化学发光法在临床医学中的应用4.2.1 药物根据药物的不同类型选择不同的化学发光分析方法。
目前较常用的方法是直接氧化化学发光。
药物大多为一些有机化合物,有机化合物的同系物结构和性质相似,使单一组分的测定遇到困难,因此有机化合物同系物的分析常与HPLC相结合。