生长素
高三生物生长素知识点

高三生物生长素知识点生物生长素是一种植物激素,它在植物体内起着重要的调节作用。
了解生长素的知识对于高三生物学习来说是必不可少的。
本文将从生长素的发现、功能、合成与代谢、应用等方面进行讲解,以帮助高三生物学习者更好地理解和掌握这一知识点。
一、生长素的发现生长素最早是由斯科利亚和卡尔瑟林这两位科学家在20世纪20年代发现的。
当时,他们注意到一种半透明物质能够引起植物生长促进或抑制的效果,后来被确定为生长素。
生长素的结构是一个由3个螺旋结构组成的不稳定环状物质,分子量相对较大。
二、生长素的功能生长素在植物生长和发育过程中发挥着重要的调节作用。
它可以促进植物的细胞分裂与伸长,影响植物体的开花、结果和种子发育等。
此外,生长素还参与了植物根、茎、叶的生长、分化和组织修复过程。
三、生长素的合成与代谢生长素在植物体内的合成和代谢是一个复杂的过程。
主要是通过植物体内的感应物质和酶的作用来实现的。
首先,天然存在的酶类催化剂可将合成物转化为生长素前体物质。
然后,通过一系列的转化反应,生长素前体物质最终转化为活性生长素。
最后,植物体内的酶可将生长素分解为无活性的物质,以保持生长素的平衡。
四、生长素的应用生长素在农业、园艺和生物技术等领域有广泛的应用。
在农业上,生长素可用于提高农作物的产量和品质,促进植物繁殖和幼苗生长。
在园艺上,生长素可以被用来繁殖植物,并促进花朵的开放和苗木的成长。
而在生物技术领域,生长素的作用可以被利用来进行基因工程和细胞培养等研究。
综上所述,生物生长素是一种重要的调节因子,对于植物的生长和发育起着关键作用。
高三生物学习者在学习过程中需要掌握生长素的发现、功能、合成与代谢以及应用等方面的知识。
通过深入了解生长素,可以更好地理解植物的生长规律和生命活动,并将其应用于实际的农业和园艺生产中。
希望本文对高三生物学习者有所帮助,能够为他们的学习提供一些参考和指导。
生长素对植物生长和发育的影响

生长素对植物生长和发育的影响植物是大自然中最重要的生物之一。
它们不仅具有美丽的外观,还能给人们提供食物、药品和建筑材料。
而生长素则是掌控植物生长和发育的重要因素之一,它对植物的发育和生长起着重要的作用。
本文将从多个方面探讨生长素对植物生长和发育的影响。
生长素的基本介绍生长素是一种植物激素,它对于植物的生长发育起着至关重要的作用。
生长素主要被植物体内的生长点、叶片和嫩枝所合成,然后通过植物体内运输到需要的部位。
因此,植物的生长和发育过程中经常受到生长素的调节。
生长素对植物生长的影响生长素对于植物的生长和发育过程中发挥着关键的作用。
首先,生长素可以刺激植株的生长,对于延长矮缩的植物、促进幼苗生长和加速花期等也有显著的效果。
其次,生长素能够影响植物根系的形成和生长,促进植物的根系发育,增加植物的养分吸收能力和生机。
最后,生长素还可以调节植物的开花和结果,促进果实的成熟。
在实际生产中,正确的使用和调配植物激素可以促进植物生长和提高产量。
例如,在温室种植中,可以通过添加适当的生长素来控制植物的生长,以达到增加产量的目的。
生长素对植物发育的影响在植物发育过程中,生长素不仅影响植物的生长,还能够对植物的发育产生重要影响。
首先,生长素能够影响植物的分化和组织形态,控制植物器官的大小和形状。
例如,在根系和茎部分化过程中,生长素能够控制根系和茎的大小和形状,使其适应环境。
其次,生长素对植物的营养吸收和代谢也有影响,它能够增加植物对养分的吸收能力,改变植物的代谢方向。
同时,生长素对植物的抗逆能力也有影响。
在干旱和高温等逆境条件下,生长素能够促进植物的生长和发育,增加植物的抗逆能力。
总结生长素作为一种重要的植物激素,对于植物的生长和发育具有重要的作用。
它不仅能够促进植物的生长,还能够影响植物的发育,调节植物的代谢和抗逆能力等。
在实际生产中,生长素的正确使用和调配能够促进植物的生长和提高产量。
因此,深入研究生长素的机制和应用前景,对于推动农业、园林和生态建设具有重要意义。
生长素的主要功能

生长素的主要功能
生长素是植物激素中的一种重要类别,它在植物生长发育中起着至关重要的作用。
生长素的主要功能包括但不限于以下几个方面:
促进细胞分裂与伸长
生长素可以促进植物细胞的分裂与伸长,这对于植物的生长发育至关重要。
生长素通过调控细胞壁松弛蛋白的表达,影响细胞伸长过程,同时促进细胞分裂,从而促进植物的茎、叶和根的生长。
促进根系发育
生长素还可以促进植物根系的发育。
在幼苗阶段,生长素的存在可以促进根系的生长,增加根系的长度和密度,提高植物对水分和养分的吸收能力。
这有助于植物在贫瘠土壤中生长,并增强植物的生存能力。
调节开花生长
生长素对植物的开花生长也起着一定的调节作用。
适量的生长素可以促进植物的开花过程,提高花粉的活力和花药的分泌,促进花朵的形成和开放。
生长素还可以影响植物的生殖器官发育,从而影响植物的繁殖能力。
促进果实生长
在果实的生长发育过程中,生长素也扮演着重要的角色。
生长素可以促进果实的膨大生长,增加果实的大小和重量,提高果实的品质。
同时,生长素还可以影响果实的芽酸合成和果实的成熟过程,调节果实的味道、颜色和香气。
抵抗逆境胁迫
除了促进生长发育,生长素还可以帮助植物抵抗逆境胁迫。
在干旱、盐碱和病虫害等不利环境条件下,适量的生长素可以增强植物的抗逆能力,提高植物的存活率和产量。
总的来说,生长素在植物的生长发育过程中扮演着不可或缺的角色,它促进了植物的生长、开花、结果等关键生理过程,帮助植物适应不同环境条件下的生存挑战。
随着对生长素作用机制的研究不断深入,人们对其功能的理解也将更加深入广泛。
简要说明生长素的作用机理

简要说明生长素的作用机理生长素,听起来是不是像个神秘的化学物质?其实,它在植物界的地位可不一般,简直就是“植物生长的金钥匙”。
咱们先来聊聊它到底是个啥。
生长素主要是指一类植物激素,最著名的就是吲哚乙酸(IAA),这个名字听起来有点拗口,但别担心,听我慢慢道来。
1. 生长素的基本作用1.1 促进细胞生长首先,生长素的最基本作用就是促进细胞的生长。
想象一下,如果没有生长素,植物就像个没精神的小孩,长得慢得像蜗牛,光站着不动。
所以说,生长素就像是植物的“能量饮料”,让它们活力四射,细胞分裂得欢快,快速长高、长大,真是让人羡慕得不行。
1.2 影响根系生长接下来,咱们聊聊生长素对根系的影响。
它可是根系生长的重要推手。
生长素在植物的根部浓度高,就会促进根系的生长。
就像小孩爱吃糖,根系也爱“吸”生长素。
根部吸收到的水分和养分更丰富,植物自然长得更茁壮。
试想一下,如果根系不发达,植物就像一只无头苍蝇,东倒西歪,根本不可能长得好。
2. 生长素的分布和作用2.1 光向性和地向性说到生长素,咱们不得不提一个特别有趣的现象,那就是光向性和地向性。
光向性就是植物向光源生长的现象,而生长素在其中起着关键作用。
植物在光照下,一侧的生长素浓度高,另一侧低,结果那一侧长得快,植物就“傲娇”地向光源弯曲,追求阳光。
就好比小姑娘在阳光下转圈圈,生机勃勃的样子让人心都融化了。
而地向性呢,就是植物的根部向下生长。
根系里也有生长素的分布,根部受重力影响,生长素分布不均,结果也就形成了根向下生长、茎向上生长的现象。
这种“相辅相成”的机制,真是太妙了,简直是大自然的魔法!2.2 生长素与其他激素的配合当然,生长素也不是单打独斗,它和其他植物激素一起“搭档”工作。
比如,生长素和细胞分裂素一起配合,让植物更快地生长;和脱落酸合作,帮助植物应对干旱等不良环境。
这种“团结就是力量”的合作,真是让人感慨万分。
就像我们在生活中,朋友之间齐心协力,才能克服困难,迎接挑战。
生长素抑制生长的原理

生长素抑制生长的原理
生长素是一种植物内源激素,能够促进植物的生长和发育。
生长素抑制生长的原理主要包括以下几个方面:
1. 阻止细胞分裂:生长素能够刺激细胞分裂,但过高的浓度则会抑制细胞分裂,从而减缓或停止植物的生长。
2. 减少细胞伸长:生长素能够促进细胞的伸长,但在过高的浓度下,它会通过抑制细胞壁松弛酶的活性,导致细胞壁无法松弛,从而减少细胞的伸长,抑制植物的生长。
3. 抑制分株生长:生长素能够促进植物茎的分枝和侧芽的生长,但在过高的浓度下,它会抑制分枝和侧芽的生长,从而限制植物的生长。
4. 调控根系生长:生长素能够促进根系的生长和发育,但过高的浓度则会抑制根系的生长,影响植物的吸收和营养摄取。
综上所述,生长素抑制生长的原理是通过调节细胞的分裂和伸长、分枝和侧芽的生长以及根系的生长等生理过程,使植物的生长速度减慢或停止。
生长素的生理作用知识点归纳

生长素的生理作用知识点归纳生长素(Auxin)是一类主要由植物合成的植物激素,对于植物的生长和发育有着重要的生理作用。
下面是关于生长素的生理作用知识点的归纳。
1. 促进细胞伸长:生长素可以影响植物细胞的伸长,使细胞产生膨胀压力,从而推动植物器官的伸长。
生长素主要在植物的顶端和嫩枝中合成,并通过阳性运输与负性运输的调控,在植物体内传导。
2. 促进根系发育:生长素可以促进根系的发育和延长。
在根的生长点周围,生长素的浓度较高,能够促进细胞分裂和延伸,使根系快速生长。
3. 影响植物形态:生长素在植物生长过程中,可以影响植物的形态。
在光照不足的情况下,生长素会导致植物茎变长,使植物能够接触到更多的光线。
而在光照充足的情况下,生长素会促使茎轴变短,使植物能够更好地保持竖直。
4. 控制节间伸长:生长素可以控制植物茎枝的节点伸长。
在节点生长期,生长素的合成和运输较为活跃,可以促进节点生长。
而在休眠期,生长素的合成和运输减缓,导致节点停止生长。
5. 促进果实发育:生长素在植物果实的发育过程中起着重要作用。
生长素参与果实的营养物质的运输和积累,促进果实的膨大和成熟。
6. 调控植物对环境的适应:生长素可以调节植物对环境的适应能力。
例如,在植物受到外界逆境的刺激时,生长素的合成会增加,以促进植物对逆境的适应。
而在光照不足的环境下,生长素可以促进茎蔓延,使植物能够更好地利用光线。
7. 影响叶片的形态:生长素可以影响叶片的展开和形态。
在生长素合成和运输较活跃的情况下,叶片的展开和生长会受到促进。
而在生长素的合成和运输减缓的情况下,叶片的展开和生长会受到抑制。
8. 参与细胞分化和组织形成:生长素可以调控植物细胞的分化和组织的形成。
在植物体内,生长素可以调节细胞的分化方向,并促进新的细胞组织的形成。
9. 促进根的侧根分枝:生长素可以促进根系的侧根分枝。
在根的生长过程中,生长素会在继续延长的根尖处积累,从而促进根的侧根分枝的发生和发育。
生长素

生长素生长素(auxin)是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,英文简称IAA,国际通用,是吲哚乙酸(IAA)。
4-氯-IAA、5-羟-IAA、萘乙酸(NAA)、吲哚丁酸等为类生长素。
1872年波兰园艺学家谢连斯基对根尖控制根伸长区生长作了研究;后来达尔文父子对?草胚芽鞘向光性进行了研究。
1928年温特首次分离出这种引起胚芽鞘弯曲的化学信使物质,命名为生长素。
1934年,凯格等确定它为吲哚乙酸,因而习惯上常把吲哚乙酸作为生长素的同义词。
生长素在扩展的幼嫩叶片和顶端分生组织中合成,通过韧皮部的长距离运输,自上而下地向基部积累。
根部也能生产生长素,自下而上运输。
植物体内的生长素是由色氨酸通过一系列中间产物而形成的。
其主要途径是通过吲哚乙醛。
吲哚乙醛可以由色氨酸先氧化脱氨成为吲哚丙酮酸后脱羧而成,也可以由色氨酸先脱羧成为色胺后氧化脱氨而形成。
然后吲哚乙醛再氧化成吲哚乙酸。
另一条可能的合成途径是色氨酸通过吲哚乙腈转变为吲哚乙酸。
在植物体内吲哚乙酸可与其它物质结合而失去活性,如与天冬氨酸结合为吲哚乙酰天冬氨酸,与肌醇结合成吲哚乙酸肌醇,与葡萄糖结合成葡萄糖苷,与蛋白质结合成吲哚乙酸-蛋白质络合物等。
结合态吲哚乙酸常可占植物体内吲哚乙酸的50~90%,可能是生长素在植物组织中的一种储藏形式,它们经水解可以产生游离吲哚乙酸。
植物组织中普遍存在的吲哚乙酸氧化酶可将吲哚乙酸氧化分解。
生长素有多方面的生理效应,这与其浓度有关。
低浓度时可以促进生长,高浓度时则会抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。
生长素的生理效应表现在两个层次上。
在细胞水平上,生长素可刺激形成层细胞分裂;刺激枝的细胞伸长、抑制根细胞生长;促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。
在器官和整株水平上,生长素从幼苗到果实成熟都起作用。
生长素控制幼苗中胚轴伸长的可逆性红光抑制;当吲哚乙酸转移至枝条下侧即产生枝条的向地性;当吲哚乙酸转移至枝条的背光侧即产生枝条的向光性;吲哚乙酸造成顶端优势;延缓叶片衰老;施于叶片的生长素抑制脱落,而施于离层近轴端的生长素促进脱落;生长素促进开花,诱导单性果实的发育,延迟果实成熟。
生长素促进生长的原理

生长素是植物体内的一种植物激素,也被称为植物生长激素或植物激素。
它在植物生长和发育过程中起着重要的调节作用,可以促进细胞分裂、细胞伸长和根系生长,从而促进植物的整体生长。
生长素促进生长的原理主要包括以下几个方面:
1. 细胞分裂:生长素可以刺激细胞分裂,特别是在植物的顶端和侧生分生组织中。
它通过促进细胞分裂,增加细胞数量,进而促进植物茎、叶和花的生长。
2. 细胞伸长:生长素可以促进细胞的伸长和延伸。
通过调节细胞壁松弛和蛋白质合成,生长素可以使细胞的长度增加,从而促进植物的茎、叶和根的伸长。
3. 根系生长:生长素对根系的生长也有促进作用。
它可以刺激根毛的生长和分化,增加根系的吸收面积和吸收能力,提供更多的水分和营养物质供植物吸收,从而促进植物的生长。
4. 花芽分化:生长素在花芽分化过程中也起着重要的作用。
它可以促进花芽的分化和发育,从而使植物能够开花结果。
总的来说,生长素通过调节细胞分裂、细胞伸长、根系生长和花芽分化等过程,促进植物的生长。
它在植物体内的浓度和分布是由植物自身调节的,不同部位和发育阶段的植物对生长素的响应也有所差异。
因此,合理利用生长素可以对植物的生长进行调控,从而实现增产、提质的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生长素
29.(16分)
向光性是高等植物中广泛存在的生理现象,是植物适应环境变化的一种体现。
研究表明,单侧光照射下水稻的根会发生背光弯曲即“负向光性”。
为研究IAA对水稻根负向光性运动的影响及有关作用机理,研究人员进行了相关的实验。
(1)已知Ca2+作为信号分子,在植物的多种信号转导及生长发育过程中起着重要的作用。
为探究Ca2+是否会影响稻根中IAA的分布,研究人员用加入H2O、CaCl2溶液、LaCl2溶液(Ca2+通道阻断剂)以及后两者混合液的四组培养液分别培养水稻秧苗刚长出的根,在单侧光的照射24h后,四组稻根均出现负向光性,每组根中IAA的分布结果如下图。
由结果可知,在单侧光照下对照组中IAA的分布情况是,而Ca2+作为信号分子。
与对照组相比,后两组实验的结果表明Ca2+能,从而进一步证明Ca2+在根负向光性运动中对IAA 分布的影响。
(2)目前已知cpt1基因编码的CPT1蛋白是水稻胚芽鞘向光性运动过程中IAA横向运输的重要载体。
为探究cpt1基因是否与水稻根负向光性运动有关,研究人员对水稻秧苗刚长出的根分别进行不同处理,24h后测量稻根弯曲度(处理条件及结果见下表)。
同时研究人员还测定了各组稻根中cpt1基因表达量(结果如下图)。
上图中的1~4表示黑暗条件下cpt1基因的表达量,7表示H2O处理组的表达量,5、6、8应分别是处理的结果。
由此可知,外源施加的四种试剂对稻根中cpt1 基因表达量的影响与它们对稻根弯曲度的影响是一致的。
在此实验结果基础上,并结合科研人员测定的单侧光照下cpt1 基因缺失突变体水稻根的向光侧和背光侧IAA均匀分布这一事实,推测CPT1蛋白在根中也是。
(3)综合上述实验结果推测,在Ca2+信号作用下,单侧光照射下水稻根内的IAA通过
,导致IAA在向光侧与背光侧分布不均匀;由于根对IAA浓度,使得两侧的生长速度表现为,
因此表现出负向光性。
29.(16分)
(1)向光侧比背光侧少促进了IAA在向光侧和背光侧的不均匀分布
缓解LaCl2对根中IAA不均匀分布的抑制作用
(2)IAA、CaCl2、LaCl2 IAA横向运输的载体
(3)促进cpt1 基因的表达敏感背光侧的生长速度小于向光侧
30.(20分)研究植物激素代谢及其分子机制常用突变体作为实验材料。
IAA甲酯(MeIAA ) 是IAA甲基化的产物,本身没有活性,在一定条件下可以重新转变为IAA。
(1)黑暗条件下,用不同浓度的IAA和MelAA分别处理拟南芥的种子,种子萌发后形成的下胚轴长度如上图所示,发现IAA和MeIAA对拟南芥的下胚轴生长均具有____________作用。
在____________μmol·L-1浓度下,二者的抑制能力差异最显著。
(2)IAA是目前发现的唯一需要极性运输的激素,MeIAA是一种脂溶性小分子,其进入细胞不需要________。
MeIAA的运输方式暗示它不是作为IAA的贮存或者降解形式,而是通过微调IAA在植物体内的_________从而影响植物发育过程。
(3)为了获得MeIAA抗性突变体,对拟南芥种子进行EMS (甲基磺酸乙酯)化学诱变培养。
待种子萌发后,挑选下胚轴长度远远____________平均值的小苗,进行单独培养。
为了鉴定该抗性性状是否可以遗传,应将每株小苗的____________在含有____________的培养基上培养,观察下胚轴的长度。
若____________,则说明该抗性性状可以遗传。
(4)挑选MeIAA抗性突变体(mirl)进行遗传学分析,如下表所示。
根据____________,可判断该抗性突变由____________性单基因控制。
29. (16分)生长素(IAA)对植物根系生长具有重要作用。
为探讨IAA作用机制,科研
人员做了如下研究。
(1)用浓度为0.1mg/L的IAA处理拟南芥植株,并检测拟南芥植株中一系列基因的表达量,其中V蛋白基因表达量结果如图1。
由图得知V蛋白基因表达量,推测V蛋白可能参与IAA作用过程。
(2)已有研究表明,V蛋白需要与其它蛋白质结合发挥作用。
科研人员为了寻找细胞中与V 蛋白相互作用的蛋白质,通过图2所示体系(YN、YC两种蛋白结合后可发出荧光),利用相关蛋白的基因构建表达载体并导入拟南芥原生质体,实验处理如表1。
①②③④
利用此方法选出了与V蛋白相互作用的R蛋白,V蛋白将R蛋白运输并定位在细胞膜上,从而使R蛋白接受胞外信号,利于主根的生长。
(3)科研人员用浓度为0.1mg/L的IAA处理拟南芥的野生型植株和V蛋白功能缺失的突变体植株,测量主根长度,结果如图3。
结果表明,此浓度的IAA对主根伸长有作用,且对植株的作用更显著。
(4)综合上述实验,请解释在浓度为0.1mg/L 的IAA作用下野生型拟南芥出现图3结果的原因是。
29. (16分)
(1)随时间延长而显著增加
(2)
①yc
②无荧光
③yn-v
④有荧光或无荧光
(3)抑制(V蛋白功能缺失)突变体
(4)V蛋白含量较高,利于R蛋白发挥促进主根生长的作用,部分解除IAA对主根生长的抑制。
29.(18分)当萌发水稻种子的根长至6mm时,用下图所示装置进行实验
用含有不同浓度生长素(IAA)的琼脂片贴在根尖表面的一侧,进行光照或黑暗处理,24
(1)生长素是一种植物激素,它主要是由植物体的部位产生,再被运输到植物体全身,相对集中分布在部位,对生长发育起作用的
有机物。
(2)上图所示的装置中,萌发的种子与下部的水面之间有一定距离,这样设计的目的是便于、。
(3)黑暗条件下,根尖的弯曲度随琼脂片中IAA浓度的而增大;据此推测单侧光照条件下,根尖负向光性生长的原因是。
(4)上述实验说明,根尖的生长方向受到、的调控。
(5)为了进一步验证根尖向背光侧弯曲生长确实是由于生长素的分布不均引起的,还需用锋利的刀片将根尖剖开,测定的生长素含量,预期结果为。
29.(18分)除特殊说明外,每空2分。
(1)幼嫩;生长旺盛;调节;微量(每空1分)
(2)进行单侧琼脂片处理测量根的弯曲程度(此两空无顺序,每空1分)(3)增加;单侧光引起背光侧生长素浓度过高,抑制生长
(4)单侧光;生长素浓度
(5)向光侧和背光侧背光侧生长素含量大于向光侧。