万用表检测发光二极管的方法

万用表检测发光二极管的方法
万用表检测发光二极管的方法

万用表检测发光二极管的方法

1.用万用表检测普通发光二极管

A.用指针式万用表R×10k档,测量发光二极管的正、反向电阻值。正常时,正向电阻值(黑表笔接正极时)约为几十至200kΩ,反向电阻值为∞(无穷大)。在测量正向电阻值时,较高灵敏度的发光二极管,管内会发微光。若用万用表R×1k档测量发光二极管的正、反向电阻值,则会发现其正、反向电阻值均接近∞(无穷大),这是因为发光二极管的正向压降约在2V左右(部分发光二极管压降在3V左右,如白色发光二极管等),而万用表R×1k档内电池的电压值为1.5V,故不能使发光二极管正向导通。

B、用指针式万用表的R×10k档对一只220μF/25V电解电容器充电(黑表笔接电容器正极,红表笔接电容器负极),再将充电后的电容器正极接发光二极管正极、电容器负极接发光二极管负极,若发光二极管有很亮的闪光,则说明该发光二极管完好。

C、用3V直流电源,在电源的正极串接1只47Ω电阻后接发光二极管的正极,将电源的负极接发光二极管的负极,正常的发光二极管应发光。或将1节1.5V 电池串接在万用表的黑表笔(将万用表置于R×10或R×100档,黑表笔接电池负极,等于与表内的1.5V电池串联),将电池的正极接发光二极管的正极,红表笔接发光二极管的负极,正常的发光二极管应发光。

D、如果有两块指针万用表(最好同型号)。用一根导线将其中一块万用表的“+”接线柱与另一块表的“-”接线柱连接。余下的“-”笔接被测发光管的正极(P区),余下的“+”笔接被测发光管的负极(N区)。两块万用表均置×1 0Ω挡。正常情况下,接通后发光二极管就能正常发光。若亮度很低,甚至不发光,可将两块万用表均拨至×1Ω若,若仍很暗,甚至不发光,则说明该发光二极管性能不良或损坏。应注意,不能一开始测量就将两块万用表置于×1Ω,以免电流过大,损坏发光二极管。

2、万用表检测红外发光二极管

红外发光二极管的正向压降一般为1.3~2.5V,可用指针式万用表R×10k档测量红外发光管的正、反向电阻。正常时,正向电阻值约为15~40kΩ(此值越小越好);反向电阻大于500kΩ。若测得正、反向电阻值均接近零,则说明该红外发光二极管内部已击穿损坏。若测得正、反向电阻值均为无穷大,则说明该

二极管已开路损坏。若测得的反向电阻值远远小于500kΩ,则说明该二极管已漏电损坏。

由于红外发光二极管所发射的红外光人眼看不到。除了用上述方法判断PN结好坏,最好准备一只光敏器件(如2CR、2DR型硅光电池)作接收器,用万用表测光电池两端电压的变化情况。来判断红外发光二极管加上适当正向电流后是否发射红外光。

目测法判断发光二极管的正、负电极(适用于红外发光二极管和透明树脂封装的普通发光二极管)

发光二极管有两个引脚,通常长引脚为正极,短引脚为负极。红外发光二极管和透明封装的普通发光二极管,其管壳内的电极清晰可见,内部电极较宽较大的一个为负极,而较窄且小的一个为正极。

常用电子元器件检测方法与技巧

常用电子元器件检测方法与技巧

民常用电子元器件检测方法与技巧元器件的检测是家电维修的一项基本功,如何准确有效地检测元器件的相关参数,判断元器件的是否正常,不是一件千篇一律的事,必须根据不同的元器件采用不同的方法,从而判断元器件的正常与否。特别对初学者来说,熟练掌握常用元器件的检测方法和经验很有必要,以下对常用电子元器件的检测经验和方法进行介绍供对考。 一、电阻器的检测方法与经验: 1固定 1固定电容器的检测 A检测10pF以下的小电容 因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象。测量时,可选用万用表R×10k挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大。若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿。B检测10PF~001μF固定电容器是否有充电现象,进而判断其好坏。万用表选用R×1k挡。两只三极管的β值均为100以上,且穿透电流要小。可选用3DG6等型号硅三极管组成复合管。万用表的红和黑表笔分别与复合管的发射极e和集电极c相接。由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察。应注意的是:在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触A、B两点,才能明显地看到万用表指针的摆动。C对于001μF以上的固定电容,可用万用表的R×10k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容器的容量。 2电解电容器的检测 A因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程。根据经验,一般情况下,1~47μF间的电容,可用R×1k挡测量,大于47μF的电容可用R×100挡测量。 B将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一位置。此时的阻值便是电解电容的正向漏电阻,此值略大于反向漏电阻。实际使用经验表明,电解电容的漏电阻一般应在几百kΩ以上,否则,将不能正常工作。在测试中,若正向、反向均无充电的现象,即表针不动,则说明容量消失或内部断路;如果所测阻值很小或为零,说明电容漏电大或已击穿损坏,不能再使用。C对于正、负极标志不明的电解电容器,可利用上述测量漏电阻的方法加以判别。即先任意测一下漏电阻,记住其大小,然后交换表笔再测出一个阻值。两次测量中阻值大的那一次便是正向接法,即黑表笔接的是正极,红表笔接的是

LED发光二极管检测方法

1.发光二极管的特点 ? 发光二极管LED(Light-Emitting Diode)是能将电信号转换成光信号的结型电致发光半导体器件。其主要特点是: (1)在低电压(~)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。 (2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。 (3)单色性好,常见颜色有红、绿、黄、橙等。 (4)体积小。发光面形状分圆形、长方形、异形(三角形等)。其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1 mm的属于超微型LED。 (5)防震动及抗冲击穿性能好,功耗低,寿命长。由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。 (6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED平极型电视屏等。 (7)容易与数字集成电路匹配。 2.发光二极管的原理 发光二极管内部是具有发光特性的PN结。当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。普通发光二极管的外形、符号及伏安特性如图1所示。LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。当电压超过开启电压时,电流就急剧上升。因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎[德拉]每平方米)与正向电流IF近似成正双,有公式 L =K IFm 式中,K为比例系数,在小电流范围内(IF=1~10mA),m=~。当IF>10mA时,m=1,式()简化成 ?????? L =K IF 即亮度与正向电流成正比。以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。LED的正向电压则与正向电流以及管芯的半导体材料有关。使用时应根据所要求的显示亮度来选取合适的IF值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏LED。若电流过大,就会烧毁LED的PN结。此外,LED的使用寿命将缩短。 由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音机和电子仪器的电平指示器、调谐指示器、电源指示器等。发光二极管在正向导通时有一定稳压作用,还可作直流稳压器中的稳压二极管,提供基准电压,兼作电源指示灯。目前市场上还有一种带反射腔及固定装置的发光二要管(例如BT104-B2、BT102-F),很容易固定在仪器面板上。

实验二极管和三极管的识别与检测实验报告

实验 二极管和三极管的识别与检测 一、实验目的 1.熟悉晶体二极管、三极管的外形及引脚识别方法。 2.熟悉半导体二极管和三极管的类别、型号及主要性能参数。 3.掌握用万用表判别二极管和三极管的极性及其性能的好坏。 二、实验仪器 1.万用表 2.不同规格、类型的半导体二极管和三极管若干。 三、实验步骤及内容 1.利用万用表测试晶体二极管 (1)鉴别正负极性 机械万用表及其欧姆档的内部等效电路如图所示。 图中E 为表内电源,r 为等效内阻,I 为被测回路中的实际电流。由图可见,黑表笔接表内电源的正端,红表笔接表内电源的负端。将万用表欧姆档的量程拨到100?R 或K R 1?档,并将两表笔分别接到二极管的两端如图所示,即红表笔接二极管的负极,而黑表笔接二极管的正极,则二极管处于正向偏置状态,因而呈现出低电阻,此时万用表指示的电阻通常小于几千欧。反之,若将红表笔接二极管的正极,而黑表笔接二极管的负极,则二极管被反向偏置,此时万用表指示的电阻值将达几百千欧。 电阻小电阻大 (2)测试性能 将万用表的黑表笔接二极管正极,红表笔接二极管负极,可测得二极管的正向电阻,此电阻值一般在几千欧以下为好。通常要求二极管的正向电阻愈小愈好。将红表笔接二极管正极,黑表笔接二极管负极,可测出反向电阻。一般要求二极管的反向电阻应大于二百千欧以上。 若反向电阻太小,则二极管失去单向导电作用。如果正、反向电阻都为无穷大,表明管子已断路;反之,二者都为零,表明管子短路。 2.利用万用表测试小功率晶体三极管 (1)判定基极和管子类型 由于基极与发射极、基极与集电极之间,分别是两个PN 结,而PN 结的反向电阻值很大,正向电阻值很小,因此,可用万用表的100?R 或K R 1?档进行测试。先将黑表笔接晶体管的某一极,然后将红表笔先后接其余两个极,若两次测得的电阻都很小,则黑表笔接的为NPN 型管子基极,如图所示,若测得电阻都很大,则黑表笔所接的是PNP 型管子的基极。若两次测得的阻值为一大一小,则黑表笔所接的电极不是三极管的基极,应另接一个电极重新测量,以便确定管子的基极。

@LED特性测量实验

LED特性测量实验 【实验目的】 1、了解LED的发光机理、光学特性与电学特性,并掌握其测试方法。 2、设计简单的测试装置,并对发光二极管进行V-I特性曲线、P—I特性曲线的测量。 【实验装置】: LED(白光和黄绿光),精密数显直流稳流稳压电源,积分球(Φ=30cm),多功能光度计,光功率计,直尺,万用表,导线、支架等。 【实验原理】 1、发光二极管的发光原理 发光二极管的核心部分是由p型半导体和n型半导体组成的芯片。p型半导体和n型半导体在相互接触的时候,由于两者的功函数或者说是费米能级的不同,p区中的空穴就会流向n 区,而n区中的电子也会扩散到p区中去,同时产生内建电势差,产生耗尽层,当载流子的扩散运动和漂移运动平衡时候pn结就达到平衡状态,如图3所示。pn结正向偏置的时候,内建电势差变小,势垒的高度变小,以载流子的扩散运动为主,电子和空穴就会更容易克服势垒分别流向p区和n区。在p-n结耗尽层处,电子和空穴相遇,复合,电子由高能级跃迁到低能级,电子将多余的能量以发射光子的形式释放出来,产生电致发光现象。这就是发光二极管的发光理论。 图3 图4 2、发光二极管的主要特性 (1)光通量 LED光源发射的辐射波长为λ的单色光,在人眼观察方向上的辐射强度和人眼瞳孔对它所张的立体角的乘积,称为光通量ΦV(单位是流明lm),具体是指LED向整个空间在单位时间内发射的能引起人眼视觉的辐射通量。 光通量的测量以明视觉条件作为测量条件,测量光通量必须要把LED发射的光辐射能量收集起来,可以用积分球来收集光能。测量的探测器应具有CIE标准光度观测者光谱效率函数的光谱响应。LED器件发射的光辐射经积分球壁的多次反射,使整个球壁上的照度均匀分布,可用一置于球壁上的探测器来测量这个光通量成比例的光的照度。基于实验室提供的资

(完整版)二极管共阴共阳极检测方法

LED数码有共阳和共阴两种,把这些LED发光二极管的正极接到一块(一般是拼成一个8字加一个小数点)而作为一个引脚,就叫共阳的,相反的,就叫共阴的,那么应用时这个脚就分别的接VCC和GND。再把多个这样的8字装在一起就成了多位的数码管了。 图1 多位数码管 LED数码有共阳和共阴两种,把些LED发光二极管的正极接到一块(一般拼成一个8字加一个小数点)而作为一个引脚,就叫共阳的,相反的,就叫共阴的,那么应用时这个脚就分别的接VCC和GND。再把多个这样的8字装在一起就成了多位的数码管了。 找公共共阴和公共共阳首先,我们找个电源(3到5伏)和1个1K(几百的也欧的也行)的电阻,VCC串接个电阻后和GND接在任意2个脚上,组合有很多,但总有一个LED会发光的找到一个就够了,,然后用GND不动,VCC(串电阻)逐个碰剩下的脚,如果有多个LED (一般是8个),那它就是共阴的了。

相反用VCC不动,GND逐个碰剩下的脚,如果有多个LED(一般是8个),那它就是共阳的了。 一、LED数码管的检测方法 1. 用二极管档检测 将数字万用表置于二极管档时,其开路电压为+2.8V。用此档测量LED数码管各引脚之间是否导通,可以识别该数码管是共阴极型还是共阳极型,并可判别各引脚所对应的笔段有无损坏。 (1)检测已知引脚排列的LED数码管 检测接线如图5-42所示。将数字万用表置于二极管档,黑表笔与数码管的h点(LED的共阴极)相接,然后用红表笔依次去触碰数码管的其他引脚,触到哪个引脚,哪个笔段就应发光。若触到某个引脚时,所对应的笔段不发光,则说明该笔段已经损坏。 (2)检测引脚排列不明的LED数码管 有些市售LED数码管不注明型号,也不提供引脚排列图。遇到这种情况,可使用数字万用表方便地检测出数码管的结构类型、引脚排列以及全笔段发光性能。 下面举一实例,说明测试方法。被测器件市一只彩色电视机用来显示频道的LED数码管,体积为20mm×10mm×5mm,字形尺寸为8mm×4.5mm,发光颜色为红色,采用双列直插式,共10个引脚。

测试LED的电特性

LED的测试方法 LED测试标准的制定 解决方案: 测试LED的电特性、光特性、开关特性、颜色特性、热学特性、可靠性 半导体发光二极管(LED)已经被广泛应用于指示灯、信号灯、仪表显示、手机背光、车载光源等场合,尤其是白光LED技术的发展,LED在照明领域的应用也越来越广泛。但是过去对于LED的测试没有较全面的国家标准和行业标准,在生产实践中只能以相对参数为依据,不同的厂家、用户、研究机构对此争议很大,导致国内LED产业的发展受到严重影响。因此,半导体发光二极管测试方法国家标准应运而生。 LED测试方法 基于LED各个应用领域的实际需求,LED的测试需要包含多方面的内容,包括:电特性、光特性、开关特性、颜色特性、热学特性、可靠性等。 1、电特性 LED是一个由半导体无机材料构成的单极性PN结二极管,它是半导体PN 结二极管中的一种,其电压-电流之间的关系称为伏安特性。由图1可知,LED电特性参数包括正向电流、正向电压、反向电流和反向电压,LED必须在合适的电流电压驱动下才能正常工作。通过LED电特性的测试可以获得LED的最大允许正向电压、正向电流及反向电压、电流,此外也可以测定LED的最佳工作电功率。 LED电特性的测试一般利用相应的恒流恒压源供电下利用电压电流表进行测试。 2、光特性 类似于其它光源,LED光特性的测试主要包括光通量和发光效率、辐射通量和辐射效率、光强和光强分布特性和光谱参数等。 (1)光通量和光效

有两种方法可以用于光通量的测试,积分球法和变角光度计法。变角光度计法是测试光通量的最精确的方法,但是由于其耗时较长,所以一般采用积分球法测试光通量。如图2所示,现有的积分球法测LED光通量中有两种测试结构,一种是将被测LED放置在球心,另外一种是放在球壁。 图2 积分球法测LED光通量 此外,由于积分球法测试光通量时光源对光的自吸收会对测试结果造成影响,因此,往往引入辅助灯,如图3所示。 图3 辅助灯法消除自吸收影响 在测得光通量之后,配合电参数测试仪可以测得LED的发光效率。而辐射通量和辐射效率的测试方法类似于光通量和发光效率的测试。 (2)光强和光强分布特性 图4 LED光强测试中的问题 如图4所示,点光源光强在空间各方向均匀分布,在不同距离处用不同接收孔径的探测器接收得到的测试结果都不会改变,但是LED由于其光强分布的不一致使得测试结果随测试距离和探测器孔径变化。因此,CIE-127提出了两种推荐测试条件使得各LED在同一条件下进行光强测试与评价,目前CIE-127条件已经被各LED制造商和检测机构引用。 图5 CIE-127推荐LED光强测试条件(3)光谱参数 LED的光谱特性参数主要包括峰值发射波长、光谱辐射带宽和光谱功率分布等。单色LED的光谱为单一波峰,特性以峰值波长和带宽表示,而白光LED的光谱由多种单色光谱合成。所有LED的光谱特性都可由光谱功率分布表示,而由LED的光谱功率分布还可计算得到色度参数。 光谱功率分布的测试需要通过分光进行,将各色光从混合的光中区分出来进行测定,一般可以采用棱镜和光栅实现分光测定。 图6 白光LED光谱功率分布

LED发光二极管工作原理及检测方法

LED发光二极管工作原理及检测方法 发光二极管LED(Light-EmittingDiode)是能将电信号转换成光信号的结型电致发光半导体器件。 1、发光二极管LED主要特点 (1)在低电压(1.5~2.5V)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。 (2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。 (3)单色性好,常见颜色有红、绿、黄、橙等。 (4)体积小。发光面形状分圆形、长方形、异形(三角形等)。其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1mm的属于超微型LED。 (5)防震动及抗冲击穿性能好,功耗低,寿命长。由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。 (6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED 平极型电视屏等。 (7)容易与数字集成电路匹配。 2.发光二极管的原理 发光二极管内部是具有发光特性的PN结。当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。普通发光二极管的外形、符号及伏安特性如图1 所示。LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。当电压超过开启电压时,电流就急剧上升。因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎德拉每平方米)与正向电流IF近似成正双,有公式L =K IFm 式中,K为比例系数,在小电流范围内(IF=1~10mA),m=1.3~1.5。当IF>10mA时,m=1,式(L =K IF 即亮度与正向电流成正比。以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。LED的正向电压则与正向电流以及管芯的半导体材料有关。使用时应根据所要求的显示亮度来选取合适的IF值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏LED。若电流过大,会烧毁LED的PN结。此外,LED的使用寿命将缩短。 由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音

很多人出错的数字万用表二极管挡使用方法

数字万用表的使用已很普及了,但在常见的电工技术方面的书中,半导体的测量办法多是使用指针万用表,很少介绍使用数字万用表的。数字万用表和指针万用表测量半导体的办法是不同的。 一、二极管 数字万用表二极管档开路电压约为2.8V,红表笔接正,黑表笔接负,测量时提供电流约为1mA,显示值为二极管正向压降近似值,单位是mV或V。硅二极管正向导通压降约为0.3~0.8V。锗二极管锗正向导通压降约为0.1~0.3V。并且功率大一些的二极管正向压降要小一些。如果测量值小于0.1V,说明二极管击穿,此时正反向都导通。如果正反向均开路说明二极管PN节开路。对于发光二极管,正向测量时二极管发光,管压降约1.7V左右。二、三极管 三极管有两个PN节,发射节(be)和集电节(bc),按测量二极管的办法测量即可。在实际测量时,每两个管脚间都要测正反向压降,共要测6次,其中有4次显示开路,只有两次显示压降值,否则三极管是坏的或是特殊三极管(如带阻三极管、达林顿三极管等,可通过型号与普通三极管区分开来)。在两次有数值的测量中,如果黑表笔或红表笔接同一极,则该极是基极,测量值较小的是集电节,较大的是发射节,因为已判定出基极,对应可以判定出集电极和发射极。同时可以判定:如果黑表笔接同一极,则三极管是PNP型,如果红表笔接同一极,则三极管是NPN型;压降为0.6V左右的是硅管,压降为0.2V左右的是锗管。 三、可控硅: 可控硅阳极与阴极及控制极是开路的,据此可以确定阳极管脚和判定可控硅是否击穿。可控硅控制极和阴极间也是PN节,但是大功率可控硅控制极和阴极间有一个保护电阻,测量时显示值为电阻上的压降。潮人电器论坛: W0 c! x; h% C 四、光耦 光耦的一侧是发光二极管,测量时压降约1V左右,另外一侧是三极管,有的只引出c、e,测量正反向均截止,如果三个脚都引出,测量特性同上面三极管(多为NPN管)。当用一个万用表使二极管正向导通,此时用另外一块万用表测三极管c对e导通压降约为0.15V;断开接二极管的万用表,三极管c对e截止,说明该光耦是好的。 1 / 1

万用表检测发光二极管的方法

万用表检测发光二极管的方法 1.用万用表检测普通发光二极管 A.用指针式万用表R×10k档,测量发光二极管的正、反向电阻值。正常时,正向电阻值(黑表笔接正极时)约为几十至200kΩ,反向电阻值为∞(无穷大)。在测量正向电阻值时,较高灵敏度的发光二极管,管内会发微光。若用万用表R×1k档测量发光二极管的正、反向电阻值,则会发现其正、反向电阻值均接近∞(无穷大),这是因为发光二极管的正向压降约在2V左右(部分发光二极管压降在3V左右,如白色发光二极管等),而万用表R×1k档内电池的电压值为1.5V,故不能使发光二极管正向导通。 B、用指针式万用表的R×10k档对一只220μF/25V电解电容器充电(黑表笔接电容器正极,红表笔接电容器负极),再将充电后的电容器正极接发光二极管正极、电容器负极接发光二极管负极,若发光二极管有很亮的闪光,则说明该发光二极管完好。 C、用3V直流电源,在电源的正极串接1只47Ω电阻后接发光二极管的正极,将电源的负极接发光二极管的负极,正常的发光二极管应发光。或将1节1.5V 电池串接在万用表的黑表笔(将万用表置于R×10或R×100档,黑表笔接电池负极,等于与表内的1.5V电池串联),将电池的正极接发光二极管的正极,红表笔接发光二极管的负极,正常的发光二极管应发光。 D、如果有两块指针万用表(最好同型号)。用一根导线将其中一块万用表的“+”接线柱与另一块表的“-”接线柱连接。余下的“-”笔接被测发光管的正极(P区),余下的“+”笔接被测发光管的负极(N区)。两块万用表均置×1 0Ω挡。正常情况下,接通后发光二极管就能正常发光。若亮度很低,甚至不发光,可将两块万用表均拨至×1Ω若,若仍很暗,甚至不发光,则说明该发光二极管性能不良或损坏。应注意,不能一开始测量就将两块万用表置于×1Ω,以免电流过大,损坏发光二极管。 2、万用表检测红外发光二极管 红外发光二极管的正向压降一般为1.3~2.5V,可用指针式万用表R×10k档测量红外发光管的正、反向电阻。正常时,正向电阻值约为15~40kΩ(此值越小越好);反向电阻大于500kΩ。若测得正、反向电阻值均接近零,则说明该红外发光二极管内部已击穿损坏。若测得正、反向电阻值均为无穷大,则说明该

二极管的特性及万用表的测试法(精)

二极管的特性及万用表的测试法 1、二极管的特性 二极管的英文是diode。二极管的正.负二个端子,(如图1)正端A称为阳极,负端B称为阴极。电流只能从阳极向阴极方向移动。 A https://www.360docs.net/doc/2d12607500.html,/Article/uploadimages/110-y-3.gif" width=65>B 图1 2、如何用万用表测量二极管的正负极 对半导体二极管政府极进行简易测试时,要选用万用表的欧姆档。测量方法如(图2、图3)所示。和万用表+输入相连的红表笔与表内电源的负极相通;而与万用表-输入端相连的黑表笔却与表内电源的正极相通。 https://www.360docs.net/doc/2d12607500.html,/Article/uploadimages/11 0-y-1.gif" width=180> https://www.360docs.net/doc/2d12607500.html,/Article/uploadimages/11 0-y-2.gif" width=180> 图2 图3 测量的方法是先把万用表拨到“欧姆”档(通常用R×100或R×1K),然后用万用表分别接到二极管的两个极上去。当表内的电源使二极管处于正向接法时,二极管导通,阻值较小(几十欧到几千欧的范围),这就告诉我们黑表笔接触的时二极管的正极;红表笔接触的时二极管的负极(见图3);当表内的电源使二极管处在反向接法时,二极管截止,阻值很大(一般为几百千欧),这就告诉我们黑表笔接触的是二极管的负极,红表笔接触的是二极管的正极。 3、用万用表R×100档和R×1K档测量同一个二极管的正向电阻,为什么阻值不同 在用万用表欧姆挡的R×100档位和R×1K档位测量同一只二极管的正向电阻时,测得的阻值是不同的。这是由于R×100和R×1K两种量程所对应的等效内阻r不同,在电源电压E不变时,流过表头的电流也不同的缘故。

使用万用表检测光电二极管的方法有哪些

有哪些电阻测量法 用万用表1k挡。光电二极管正向电阻约10MΩ左右。在无光照情况下,反向电阻为∞时,这管子是好的(反向电阻不是∞时说明漏电流大);有光照时,反向电阻随光照强度增加而减小,阻值可达到几kΩ或1kΩ以下,则管子是好的;若反向电阻都是∞或为零,则管子是坏的。 电压测量法 用万用表1V档。用红表笔接光电二极管“+”极,黑表笔接“—”极,在光照下,其电压与光照强度成比例,一般可达0.2—0.4V。 短路电流测量法 用万用表50μA档。用红表笔接光电二极管“+”极,黑表笔接“—”极,在白炽灯下(不能用日光灯),随着光照增强,其电流增加是好的,短路电流可达数十至数百μA。 在实际工作中,有时需要区别是红外发光二极管,还是红外光电二极管(或者是光电三极管)。其方法是:若管子都是透明树脂封装,则可以从管芯安装外来区别。红外发光二极管管芯下有一个浅盘,而光电二极管和光电三极管则没有;若管子尺寸过小或黑色树脂封装的,则可用万用表(置1k挡)来测量电阻。用手捏住管子,正向电阻为20-40kΩ,而反向电阻大于200kΩ的是红外发光二极管;正反向电阻都接近∞的是光电三极管;正向电阻在10k左右,反向电阻接近∞的是光电二极管。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/2d12607500.html,/

万用表测试二极管的方法

测试二极管的方法 二极管参数的测试可用晶体管图示仪QT-2,或其它仪器进行测试。 在没有仪器的情况下也可用万用表来简单检查二极管的好坏,但这种检测方法不能测量二极管的参数。 初学者在业余条件下可以使用万用表测试二极管性能的好坏。测试前先万用表的转换开关拨到欧姆档的RX1k档位(注意不要使用RX1档,以免电流过大烧坏二极管),再将红、黑两根表笔短路,进行欧姆调零。 1、正向特性测试 把万用表的黑表笔(表内正极)搭触二极管的正极,,红表笔(表内负极)搭触二极管的负极。若表针不摆到0值而是停在标度盘的中间,这时的阻值就是二极管的正向电阻,一般正向电阻越小越好。若正向电阻为0值,说明管芯短路损坏,若正向电阻接近无穷大值,说明管芯断路。短路和断路的管子都不能使用。 2、反向特性测试 把万用表的红表笔搭触二极管的正极,黑表笔搭触二极管的负极,若表针指在无穷大值或接近无穷大值,管子就是合格的。

(一)普通二极管的检测(包括检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个PN结构成的半导体器件,具有单向导电特性。通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二 1.极性的判别将万用表置于 R×100档或R×1k档,两表笔分别接二极 管的两个电极,测出一个结果后,对调两表 笔,再测出一个结果。两次测量的结果中, 有一次测量出的阻值较大(为反向电阻), 一次测量出的阻值较小(为正向电阻)。在 阻值较小的一次测量中,黑表笔接的是二极 管的正极,红表笔接的是二极管的负极。 2.单向导电性能的检测及好坏的判断通常,锗材料二极管的正向电阻值为1kΩ左右,反向电阻值为300 kΩ左右。硅材料二极管的电阻值为5 kΩ左右,反向电阻值为∞(无穷大)。正向电阻越小越好,反向电阻越大越好。正、反向电阻值相差越悬殊,说明二极管的单向导电特性越好。 若测得二极管的正、反向电阻值均接近0或阻值较小,则说明该二极管内部已击穿短路或漏电损坏。若测得二极管的正、反向电阻值均为无穷大,则说明该二极管已开路损坏。 (二)稳压二极管的检测 1.正、负电极的判别从外形上看,金属封装稳压二极管管体的正极一端为平面形,负极一端为半圆面形。塑封稳压二极管管体上印有彩色标记的一端为负极,另一端为正极。对标志不清楚的稳压二极管,也可以用万用表判别其极性,测量的方法与普通二极管相同,即用万用表R×1k档,将两表笔分别接稳压二极管的两个电极,测出一个结果后,再对调两表笔进行测量。在两次测量结果中,阻值较小那一次,黑表笔接的是稳压二极管的正极,红表笔接的是稳压二极管的负极。 若测得稳压二极管的正、反向电阻均很小或均为无穷大,则说明该二极管已击穿或开路损坏。 2.稳压值的测量用0~30V连续可调直流电源,对于13V以下的稳压

用万用表测量二极管.doc

怎么用万用表测二极管、发光二极管和三极管的好坏 普通二极管的检测(包括检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个PN结构成的半导体器件,具有单向导电特性。通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二极管是否损坏。 1.极性的判别将万用表置于R×100档或R×1k档,两表笔分别接二极管的两个电极,测出一个结果后,对调两表笔,再测出一个结果。两次测量的结果中,有一次测量出的阻值较大(为反向电阻),一次测量出的阻值较小(为正向电阻)。在阻值较小的一次测量中,黑表笔接的是二极管的正极,红表笔接的是二极管的负极。 2.单负导电性能的检测及好坏的判断通常,锗材料二极管的正向电阻值为1kΩ左右,反向电阻值为300左右。硅材料二极管的电阻值为5 kΩ左右,反向电阻值为∞(无穷大)。正向电阻越小越好,反向电阻越大越好。正、反向电阻值相差越悬殊,说明二极管的单向导电特性越好。 若测得二极管的正、反向电阻值均接近0或阻值较小,则说明该二极管内部已击穿短路或漏电损坏。若测得二极管的正、反向电阻值均为无穷大,则说明该二极管已开路损坏。 3.反向击穿电压的检测二极管反向击穿电压(耐压值)可以用晶体管直流参数测试表测量。其方法是:测量二极管时,应将测试表的“NPN/PNP”选择键设置为NPN状态,再将被测二极管的正极接测试表的“C”插孔内,负极插入测试表的“e”插孔,然后按下“V”键,测试表即可指示出二极管的反向击穿电压值。 也可用兆欧表和万用表来测量二极管的反向击穿电压、测量时被测二极管的负极与兆欧表的正极相接,将二极管的正极与兆欧表的负极相连,同时用万用表(置于合适的直流电压档)监测二极管两端的电压。如图4-71所示,摇动兆欧表手柄(应由慢逐渐加快),待二极管两端电压稳定而不再上升时,此电压值即是二极管的反向击穿电压。 1 中、小功率三极管的检测 A 已知型号和管脚排列的三极管,可按下述方法来判断其性能好坏 (a) 测量极间电阻。将万用表置于R×100或R×1K挡,按照红、黑表笔的六种不同接法进行测试。其中,发射结和集电结的正向电阻值比较低,其他四种接法测得的电阻值都很高,约为几百千欧至无穷大。但不管是低阻还是高阻,硅材料三极管的极间电阻要比锗材料三极管的极间电阻大得多。 (b) 三极管的穿透电流ICEO的数值近似等于管子的倍数β和集电结的反向电流ICBO的乘积。ICBO随着环境温度的升高而增长很快,ICBO的增加必然造成ICEO的增大。而ICEO的增大将直接影响管子工作的稳定性,所以在使用中应尽量选用ICEO小的管子。 通过用万用表电阻直接测量三极管e-c极之间的电阻方法,可间接估计ICEO的大小,具体方法如下: 万用表电阻的量程一般选用R×100或R×1K挡,对于PNP管,黑表管接e极,红表笔接c 极,对于NPN型三极管,黑表笔接c极,红表笔接e极。要求测得的电阻越大越好。e-c 间的阻值越大,说明管子的ICEO越小;反之,所测阻值越小,说明被测管的ICEO越大。一

发光二极管测试方法(精)

https://www.360docs.net/doc/2d12607500.html, 电子发烧友 https://www.360docs.net/doc/2d12607500.html, 电子技术论坛 发光二极管测试方法 摘要 系统地介绍了与发光二极管测试有关的术语和定义,在此基础上,详细介绍了测试方法和测试装置的要求。 1 前言 半导体发光二极管是一种重要的光电子器件,它在科学研究和工农业生产中均有非常广泛的应用.发光二极管虽小,但要准确测量它的各项光和辐射参数并非一件易事.目前在世界范围内的测试比对还有较大的差异.鉴于此,CIE(国际照明委员 会)TC2-34小组对此进行了研究,所提出的技术报告形成了CIE127-1997文件. 中国光学光电子行业协会光电器件专业分会根据国内及行业内部的实际情况,初步制定了行业标准"发光二极管测试方法",2002年起在行业内部试行.本文叙述了与发光二极管测试有关的术语和定义,在此基础上,详细介绍了测试方法和测试装置的要求,以期收到抛砖引玉之效果. 本文涉及的测试方法适用于紫外/可见光/红外发光二极管及其组件,其芯片测试可以参照进行。 2 术语和定义 2.1发光二极管 LED 除半导体激光器外,当电流激励时能发射光学辐射的半导体二极管。严格地讲,术语LED应该仅应用于发射可见光的二极管;发射近红外辐射的二极管叫红外发光二极管(IRED,Infrared Emitting Diode);发射峰值波长在可见光短波限附近,由部份紫外辐射的二极管称为紫外发光二极管;但是习惯上把上述三种半导体二极管统称为发光二极管。 2.2光轴 Optical axis 最大发光(或辐射)强度方向中心线。 2.3正向电压VF Forward voltage 通过发光二极管的正向电流为确定值时,在两极间产生的电压降。 2.4反向电流IR Reverse current 加在发光二极管两端的反向电压为确定值时,流过发光二极管的电流。 2.5反向电压VR Reverse voltage 被测LED器件通过的反向电流为确定值时,在两极间所产生的电压降。 2.6总电容C Capacitance 在规定正向偏压和规定频率下,发光二极管两端的电容。 2.7开关时间 Switching time 涉及以下概念的最低和最高规定值是10%和90%,除非特别注明。 2.7.1开启延迟时间td(on) Turn-on delay time

二极管的检测方法与经验

二极管的检测方法与经验 四、二极管的检测方法与经验 检测小功率晶体二极管 判别正、负电极 观察外壳上的的符号标记。通常在二极管的外壳上标有二极管的符号,带有三角形箭头的一端为正极,另一端是负极。 观察外壳上的色点。在点接触二极管的外壳上,通常标有极性色点(白色或红色)。一般标有色点的一端即为正极。还有的二极管上标有色环,带色环的一端则为负极。 (c)以阻值较小的一次测量为准,黑表笔所接的一端为正极,红表笔所接的一端则为负极。 检测最高工作频率fM。晶体二极管工作频率,除了可从有关特性表中查阅出外,实用中常常用眼睛观察二极管内部的触丝来加以区分,如点接触型二极管属于高频管,面接触型二极管多为低频管。另外,也可以用万用表R×1k 挡进行测试,一般正向电阻小于的多为高频管。 检测最高反向击穿电压VRM。对于交流电来说,因为不断变化,因此最高反向工作电压也就是二极管承受的交流峰值电压。需要指出的是,最高反向工作电压并不是二极管的击穿电压。一般情况下,二极管的击穿电压要比最高反向工作电压高得多(约高一倍)。 检测玻封硅高速开关二极管 检测硅高速开关二极管的方法与检测普通二极管的方法相同。不同的是,这种管子的正向电阻较大。用R×1k电阻挡测量,一般正向电阻值为~,反向电阻值为无穷大。 检测快恢复、超快恢复二极管 用万用表检测快恢复、超快恢复二极管的方法基本与检测塑封硅整流二极管的方法相同。即先用R×1k挡检测一下其单向导电性,一般正向电阻为左右,反向电阻为无穷大;再用R×1挡复测一次,一般正向电阻为几,反向电阻仍为无穷大。 检测双向触发二极管 将万用表置于R×1k挡,测双向触发二极管的正、反向电阻值都应为无穷大。若交换表笔进行测量,万用表指针向右摆动,说明被测管有漏电性故障。 将万用表置于相应的直流电压挡。测试电压由兆欧表提供。测试时,摇动兆欧表,万用表所指示的电压值即为被测管子的VBO值。然后调换被测管子的两个引脚,用同样的方法测出VBR值。最后将VBO与VBR进行比较,两者的绝对值之差越小,说明被测双向触发二极管的对称性越好。 瞬态电压抑制二极管(TVS)的检测 用万用表R×1k挡测量管子的好坏 对于单极型的TVS,按照测量普通二极管的方法,可测出其正、反向电阻,一般正向电阻为4kΩ左右,反向电阻为无穷大。 对于双向极型的TVS,任意调换红、黑表笔测量其两引脚间的电阻值均应为无穷大,否则,说明管子性能不良或已经损坏。 高频变阻二极管的检测 识别正、负极 高频变阻二极管与普通二极管在外观上的区别是其色标颜色不同,普通二极管的色标颜色一般为黑色,而高频变阻二极管的色标颜色则为浅色。其极性规律与普通二极管相似,即带绿色环的一端为负极,不带绿色环的一端为正极。 测量正、反向电阻来判断其好坏 具体方法与测量普通二极管正、反向电阻的方法相同,当使用500型万用表R×1k挡测量时,正常的高频变阻二极管的正向电阻为~,反向电阻为无穷大。 变容二极管的检测 将万用表置于R×10k挡,无论红、黑表笔怎样对调测量,变容二极管的两引脚间的电阻值均应为无穷大。如果在测量中,发现万用表指针向右有轻微摆动或阻值为零,说明被测变容二极管有漏电故障或已经击穿损坏。对于变容二极管容量消失或内部的开路性故障,用万用表是无法检测判别的。必要时,可用替换法进行检查判断。 单色发光二极管的检测

LED发光二极管检测方法

1.发光二极管的特点 发光二极管LED(Light-Emitting Diode)是能将电信号转换成光信号的结型电致发光半导体器件。其主要特点是: (1)在低电压(~)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。 (2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。 (3)单色性好,常见颜色有红、绿、黄、橙等。 (4)体积小。发光面形状分圆形、长方形、异形(三角形等)。其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1 mm的属于超微型LED。 (5)防震动及抗冲击穿性能好,功耗低,寿命长。由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。 (6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED平极型电视屏等。 (7)容易与数字集成电路匹配。 2.发光二极管的原理 发光二极管内部是具有发光特性的PN结。当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。普通发光二极管的外形、符号及伏安特性如图1所示。LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。当电压超过开启电压时,电流就急剧上升。因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎[德拉]每平方米)与正向电流IF近似成正双,有公式L =K IFm

式中,K为比例系数,在小电流范围内(IF=1~10mA),m=~。当IF>10mA时,m=1,式()简化成 L =K IF 即亮度与正向电流成正比。以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。LED的正向电压则与正向电流以及管芯的半导体材料有关。使用时应根据所要求的显示亮度来选取合适的IF值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏 LED。若电流过大,就会烧毁LED的PN结。此外,LED的使用寿命将缩短。 由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音机和电子仪器的电平指示器、调谐指示器、电源指示器等。发光二极管在正向导通时有一定稳压作用,还可作直流稳压器中的稳压二极管,提供基准电压,兼作电源指示灯。目前市场上还有一种带反射腔及固定装置的发光二要管(例如BT104-B2、BT102-F),很容易固定在仪器面板上。 LED的输出光谱决定其发光颜色及光辐射纯度,也反映出半导体材料的特性。常见管芯材料有磷化镓(GaP)、砷化镓(GaAsP)、磷砷化镓(GaAlAs)、砷铝化镓(GaN)氮化镓可发蓝光。 3.使用注意事项 (1)管子极性不得接反,一般讲引线较长的为正极,引线较短的是负极。 (2)使用中各项参数不得超过规定极限值。正向电流IF不允许超过极限工作电流IFM值,并且随着环境温度的升高,必须作降额使用。长期使用温度不宜超过75℃。 (3)焊接时间应尽量短,焊点不能在管脚根部。焊接时应使用镊子夹住管脚根部散热,宜用中性助焊剂(松香)或选用松香焊锡丝。 (4)严禁用有机溶液浸泡或清洗。 (5)LED的驱动电路必须加限流电阻,一般可取一百欧至几百欧,视电源电压而定。

晶体管的检测方法

晶体管的检测方法 1、检测小功率晶体二极管 A、判别正、负电极 (a)、观察外壳上的的符号标记。通常在二极管的外壳上标有二极管的符号,带有三角形箭头的一端为正极,另一端是负极。 (b)、观察外壳上的色点。在点接触二极管的外壳上,通常标有极性色点(白色或红色)。一般标有色点的一端即为正极。还有的二极管上标有色环,带色环的一端则为负极。 (c)、以阻值较小的一次测量为准,黑表笔所接的一端为正极,红表笔所接的一端则为负极。 B、检测最高工作频率fM。晶体二极管工作频率,除了可从有关特性表中查阅出外,实用中常常用眼睛观察二极管内部的触丝来加以区分,如点接触型二极管属于高频管,面接触型二极管多为低频管。另外,也可以用万用表R×1k挡进行测试,一般正向电阻小于1k的多为高频管。 C、检测最高反向击穿电压VRM。对于交流电来说,因为不断变化,因此最高反向工作电压也就是二极管承受的交流峰值电压。需要指出的是,最高反向工作电压并不是二极管的击穿电压。一般情况下,二极管的击穿电压要比最高反向工作电压高得多(约高一倍)。 2、检测玻封硅高速开关二极管 检测硅高速开关二极管的方法与检测普通二极管的方法相同。不同的是,这种管子的正向电阻较大。用R×1k电阻挡测量,一般正向电阻值为5k~10k,反向电阻值为无穷大。 3、检测快恢复、超快恢复二极管 用万用表检测快恢复、超快恢复二极管的方法基本与检测塑封硅整流二极管的方法相同。即先用R×1k挡检测一下其单向导电性,一般正向电阻为4.5k左右,反向电阻为无穷大;再用R×1挡复测一次,一般正向电阻为几欧,反向电阻仍为无穷大。 4、检测双向触发二极管 A、将万用表置于R×1k挡,测双向触发二极管的正、反向电阻值都应为无穷大。若交换表笔进行测量,万用表指针向右摆动,说明被测管有漏电性故障。 将万用表置于相应的直流电压挡。测试电压由兆欧表提供。测试时,摇动兆欧表,万用表所指示的电压值即为被测管子的VBO值。然后调换被测管子的两个引脚,用同样的方法测出VBR值。最后将VBO与VBR进行比较,两者的绝对值之差越小,说明被测双向触发二极管的对称性越好。 5、瞬态电压抑制二极管(TVS)的检测 A、用万用表R×1k挡测量管子的好坏 对于单极型的TVS,按照测量普通二极管的方法,可测出其正、反向电阻,

发光二极管的简易测试(精)

发光二极管的简易测试 发光二极管,简称LED,是一种能把电能转换成光能的半导体器件,当管子上通过一定的正向电流时,便可以光的形式将能量释放出来,发光强度与正向电流近似成正比,发光颜色与管子的材料有关。 一、LED的主要特点 (1)工作电压低,有的仅需1.5 - 1.7V即能导通发光;(2)工作电流小,典型值约1OmA;(3)具有和普通二极管相似的单向导电特性,只是死区电压略高些;(4)具有和硅稳压二极管相似的稳压特性;(5)响应时间快、从加电压到发出光的时间仅1一1Oms,响应频率可达100Hz;则使用寿命长,一般可达10万小时以上。 目前常用的发光二极管有发红光和绿光的磷化稼(GaP)LED,其正向压降V F=2.3V;发红光的磷砷化稼(GaASP) LED,其正向压降V F= 1.5 - 1.7V;以及采用碳化硅和蓝宝石材料的黄色、蓝色LED,其正向压降V F=6V。 由于LED的正向伏安曲线较陡,故在应用时,必须串接限流电阻,以免烧坏管子。在直流电路中,限流电阻R可用下式估算: R=(E-V F)/I F 在交流电路中,限流电阻R可用下式估算:R= (e-V F )/2I F,式中e为交流电源电压的有效值。 二、发光二极管的测试 在无专用仪器的情况下,LED也可用万用表估测(这里以MF30型万用表为例)。首先,将万用表置于Rx1k档或Rx100档,测量LED的正反向电阻,若正向电阻小于50kΩ,反向电阻无穷大,表明管子正常。若正、反向均为零或均为无穷大,或正反向电阻值比较接近,均说明管子有问题。 然后,还须测量LED的发光情况。因其正向压降为1.5V以上,故无法用Rx1, Rx1O, Rx1k档直接测量,R x1Ok档虽然使用15V电池;但内阻太高,也不能使管子导通发光。但可采用双表法测试。将两块万用表串联起来,均置于Rx1档,这样电池总电压为3V,总内阻为50Ω,则提供给L印的工作电流大于1OmA,足以使管子导通发光。若测试中,某管不发光即说明该管有问题。

相关文档
最新文档