热电厂循环水余热利用方案

合集下载

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造随着现代工业生产向规模化,集中化方向发展,大型火力发电厂的规模日益扩大,日益严重的环境污染和能源压力正在推动火电厂节能减排的发展。

在火电厂的生产过程中,产生了大量的余热,若不进行有效的利用,不仅浪费能源,还将对环境造成不良的影响。

为了更好地发挥火电厂的节能减排作用,必须对其循环水余热进行改造利用,以实现能源利用的最大化。

一、火电厂循环水余热的原理及特点火电厂循环水系统在其生产过程中,通过锅炉将大量的热能转化为电力,电力发出后,锅炉排放的水蒸气会形成冷凝水,这些冷凝水将通过循环水系统循环使用,然后再次进入锅炉进行加热,为下一轮电力生成提供热源,并产生大量的余热。

这些余热的特点是温度较高、热量可观,但质量较差,含有大量杂质和气体,需要进行深度处理后才能利用,否则将会对环境造成较大的影响。

火电厂循环水余热的利用主要有以下几种途径:1、发电机组预热系统:将余热用于发电机组的预热系统,提高燃料的燃烧效率,减少燃料的消耗,降低二氧化碳和其他有害气体的排放量。

这种利用方式需要将余热进行深度处理,减少杂质和气体的含量。

2、制冷和空调:将余热用于制冷和空调,通过余热驱动冷凝器,从而提高制冷效率,减少制冷剂的消耗,降低能源消耗和碳排放量。

3、市政供热:将余热用于市政供热,通过余热驱动热水循环,提高供热效率,减少燃料的消耗,降低二氧化碳和其他有害气体的排放量。

以上几种利用途径都将循环水余热当做一种重要的能源资源,通过深度处理和优化利用,实现了能源利用的最大化。

火电厂循环水余热改造的技术路线主要包括以下三个方面:1、深度处理技术深度处理是指将循环水余热进行深度处理,减少杂质和气体的含量,使其满足各种利用目的的要求。

常用的深度处理技术包括膜分离技术、离子交换技术、蒸馏技术等,这些技术可以有效地减少循环水中的杂质和气体含量,为余热的利用提供了可靠的保障。

2、热交换技术热交换技术是指通过热交换器将余热传递给需要热源的设备。

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造火电厂是常见的一种发电方式,其通过燃烧燃料产生蒸汽驱动涡轮发电机组工作,同时也会产生大量余热。

这些余热如果不能得到有效利用,不仅会导致能源浪费,也会造成环境污染。

为了有效利用这些余热,火电厂循环水余热利用改造成为一种可行的解决方案。

火电厂循环水余热包含锅炉烟气余热和汽轮机排气余热。

锅炉烟气余热是指锅炉烟气中的高温烟气在排放之前被收集利用的过程,汽轮机排气余热是指发电机组通过减速器或其他传动装置将抽汽机或汽轮机转速降低为发电机组同步转速后所产生的余热。

循环水余热利用改造的核心是通过余热回收系统将烟气或排气所含余热回收到循环水中,然后将余热利用在火电厂的各个环节中。

具体来说,火电厂循环水余热利用改造可通过以下方式进行:1.余热回收系统的建立余热回收系统包括烟气或排气余热回收设备、循环水管道、换热器和控制系统等组成。

其中,烟气或排气余热回收设备主要有余热锅炉和余热发电机组。

余热锅炉利用锅炉烟气余热加热循环水,提高热效率;余热发电机组则利用汽轮机排气余热发电。

2.循环水加热系统的改造循环水加热系统包括锅炉、给水系统、循环水系统和冷却水系统等。

在改造过程中,需要针对不同的系统进行相应的改造设计。

例如,对于锅炉来说,可通过增设余热回收设备将烟气余热回收到循环水中,提高锅炉的热效率。

对于循环水系统来说,可通过增设通风挡板将循环水的流量分配到不同的地方,从而实现循环水的最优控制。

3.余热利用于供热和制冷利用余热进行供热和制冷是循环水余热利用改造的常见方法。

在供热方面,可通过余热加热循环水后将其输送到供热系统中供热;在制冷方面,可通过余热制冷机将余热转化为制冷量进行制冷。

这样不仅能够充分利用余热,还能提高火电厂的经济效益。

总的来说,火电厂循环水余热利用改造是一项有益于环保和节能的工作。

通过余热回收和利用,不仅能够提高火电厂的热效率和经济效益,还能够降低其对环境的影响,实现“节能减排、循环利用”的目标。

热电厂循环水余热利用方案

热电厂循环水余热利用方案

******技术发展有限公司******热电厂循环水利用方案(溴化锂吸收式热泵)联系人:手机:联系电话:传真:信箱:2013年8月18日目录1 项目简介 (3)1.1 吸收式热泵方案 (3)1.2 吸收式热泵供暖工艺流程设计 (3)1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃) (4)1.4 节能运行计算 (4)1.5 初投资与回报期计算 (5)2 热泵机组简介 (6)2.1 吸收式热泵供暖机组 (6)2.2 溴化锂吸收式热泵采暖技术特点 (7)2.3 标志性案例介绍 (7)1 项目简介********热电厂,采暖季有温度为26.3~19.6℃的循环冷却水2800m3/h,需要通过降低汽轮机组凝汽器真空或提高汽轮机背压,使得冷却循环水的温度提升到到31.7℃,然后利用溴化锂吸收式热泵机组提取凝汽器冷却循环水中的热量,将循环冷却水温度降低到25℃,可以制备供水温度为74.7/55℃热网水2400 m3/h,对建筑物进行供暖,供暖期为152天。

提高汽轮机背压大约2KPa左右,汽轮机的轴向推力几乎不变,对发电量影响不大。

1.1 吸收式热泵方案采用蒸汽型吸收式热泵机组,通过0.49MPa的饱和蒸汽作为驱动热源,在冬季采暖期,将2800m3/h的循环冷却水从31.7℃降低到25℃,可以从循环冷却水中提取21.82MW的热量用于建筑物采暖。

1.2 吸收式热泵供暖工艺流程设计使用吸收式热泵加热,供暖系统流程原理图如下:由上图可以看出,实际应用流程非常简单,只是把工艺循环水引到热泵机房,把原来通过冷却塔排放到环境中的冷凝废热,通过溴化锂吸收式热泵机组将热量传递给供暖回水。

此系统改造不影响循环水原系统的稳定性,节省大量的蒸汽,同时带来了大量的经济效益。

1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃)通过溴化锂吸收式热泵产品,利用饱和蒸汽压力为0.49MPa的蒸汽50400kg/h,可将2800 m3/h的循环冷却水,从31.7℃降低到25℃,将2400m3/h采暖55℃回1.4 节能运行计算能源价格:电价:0.7元/kWh。

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造1. 引言1.1 背景介绍循环水余热利用改造不仅能够为火电厂节约能耗成本,提高经济效益,也能够对环境进行保护和改善,促进可持续发展。

对于火电厂循环水余热利用改造的探讨和实践具有重要意义,对提高火电厂的能源利用效率、减少环境污染、促进可持续发展具有积极作用。

本文将通过对火电厂循环水余热利用改造的现状、技术方案、可行性分析、效益评估和可持续发展性进行探讨,旨在为推动我国火电厂循环水余热利用改造提供参考和借鉴。

2. 正文2.1 火电厂循环水余热利用的现状目前,火电厂循环水余热利用的现状可以说是处于一个相对落后的阶段。

在传统的火电厂中,循环水在发电过程中会被加热至高温,再通过冷却装置降温后排放到环境中,造成了巨大的能源浪费。

据统计,火电厂中排放的余热能占总发电能量的40%以上,这是一个巨大的浪费。

目前,一些先进的火电厂开始尝试利用余热进行能量回收和再利用。

通过安装余热回收装置,可以将循环水中的余热重新利用,从而提高发电效率。

一些火电厂也开始尝试利用余热进行供热或供冷,减少能源消耗,提高资源利用率。

尽管一些火电厂已经开始尝试利用循环水余热,但整体上来说,这一技术在火电厂中的推广并不广泛。

存在诸多挑战和障碍,如设备投资、技术门槛和运营成本等问题都需要克服。

需要更多的研究和实践,以推动火电厂循环水余热利用技术的进一步发展和应用。

【字数:244】2.2 利用余热的技术方案1. 蒸汽再生器:利用余热产生蒸汽,用于供暖或压力增加。

蒸汽再生器是一种高效的利用余热的技术方案,可以大大减少能源消耗,并降低生产成本。

2. 热泵技术:通过热泵设备将循环水余热转换为热能,再利用这部分热能进行供暖或热水生产。

热泵技术具有能效高、环保等优点,是一种比较先进的利用余热的技术方案。

3. 温度梯度发电:利用循环水的温度梯度,通过热电联产发电。

这种技术方案可以实现能源的双重利用,提高能源利用效率。

4. 热管技术:将余热转移到其他系统或设备中,用于提高系统效率或降低能源消耗。

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造随着国家节能减排政策的推进,火电厂循环水余热利用改造已经成为一种必然趋势。

循环水余热是指在燃煤火力发电过程中,由于热机效率低而产生的未被充分利用的热能,约占总热能的20%~25%。

如何将这些余热利用起来,不仅可以为企业节约能源开支,还能大大降低二氧化碳等温室气体的排放,达到可持续发展的目的。

1.改造循环水系统,提高热效率。

循环水系统是火电厂的重要组成部分,也是循环水余热利用的核心。

改造循环水系统,采用热交换器等技术设备,将循环水中的余热传递到其他水体或输送到热用户处,实现热能转换。

2.改进锅炉技术,减少热损失。

锅炉是燃煤火力发电的核心设备,将燃料燃烧产生的热能转化为蒸汽能源。

通过改进锅炉技术,提高锅炉效率,减少热损失,可以进一步提高循环水余热的利用效率。

3.开发稳定的余热利用项目。

火电厂循环水余热的利用涉及多个领域,如城市供暖、工业制造、农业生产等。

因此,需要针对实际情况,针对性地开发稳定、可行的余热利用项目,打造具有协同效应和经济效益的利用模式。

4.积极引入第三方合作伙伴。

火电厂的循环水余热利用需要配套设备和技术支持,同时也需要对接市场需求,寻找合适的供需对接。

引入第三方合作伙伴,针对不同业务领域,形成合作联盟,可以高效地对接市场需求,推动余热利用的规模化和普及化。

总之,火电厂循环水余热利用改造是一个长期而复杂的过程,需要政府、企业、技术机构等多方参与,共同推进。

通过利用循环水余热,既可以降低企业能源成本,又可以实现节能减排,为经济发展和环境保护做出贡献。

综述电厂循环水的余热利用技术

综述电厂循环水的余热利用技术

综述电厂循环水的余热利用技术摘要目前我国电厂由汽轮机效率和锅炉效率构成电厂的热效率,一些能量会从锅炉排放出的烟气中损失,另一些能量会从凝汽器的循环水中损失。

对于电厂的锅炉一般工作效率为92%,锅炉排烟产生的热量损失可以借助于烟气换热器等设备来回收,但利用烟气热量效率不高;在电厂汽轮机供热为65%的工况效率时,很多的热量会在电厂机组的冷端损失,对这部分循环水的热量进行再回收利用,能够使电厂的热效率得到整体提高,大大降低对煤矿能源的消耗。

本文先是简单的分析了当前电厂循环水余热利用的意义,然后从以下几个方面分析了电厂循环水余热的利用技术。

关键词电厂;循环水;余热利用;技术说明在我国的节能减排战略中,建筑节能占有重要的位置,北方城市供热产生的建筑能耗在我国的建筑总能耗中占据着最大的比重,对北方城市的供热方面进行节能减排显得尤为重要。

下面先讲一讲当前电厂循环水余热利用的意义。

1 当前电厂循环水余热利用的意义分析近几十年来,我国的城市规模扩建迅速,很多城镇出现了供热不足的问题,供热也使人们的生活环境遭到破坏,在高参数、高容量的机组方面产生的排汽余热也没有得到充分利用,只是借助于循环水冷却系统进行排放,这部分热量具有很大的能量,根据资料表明,如果能将这些低品位的余热用于人们的日常供热中,可以为我国的电厂提高至少30%的供热能力。

目前电厂在循环水的余热利用方面遇到一些问题:在冬季时电厂循环水的水温比较低,不能达到供热的要求,需要进一步提高循环水的温度,可以通过两种方面进行水温的提高,一是把电厂循环水当成低位热源,然后通过热泵吸收余热进行供热;另一种方法是保持汽轮机组在低真空环境下正常运行。

汽轮机组的供热技术从理论方面来讲,会有很高的能效,在国外也有丰富的研究成果以及运行经验。

传统低真空运行技术有用户热负荷的严重制约,用在高参数、高容量的机组方面不合适。

在热泵方面,通过对低品位余热的供热新模式的理论分析,得出电厂把30℃左右的循环水传给用户,借助于地泵吸收热量,然后把热网水回收到凝汽器里,当成电厂的循环冷却水使用。

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造火电厂是一种以燃煤、天然气或油井气为燃料,使用燃料燃烧产生高温高压蒸汽,然后利用蒸汽驱动汽轮机发电的装置。

在火电厂的发电过程中,产生了大量的余热,如果这部分余热能够充分利用,将有助于提高火电厂的能源利用率,减少能源消耗,降低排放,符合可持续发展的理念。

循环水余热是指在火电厂中,利用水冷却设备冷却产生的余热。

在传统的火电厂中,这部分余热几乎都是直接排放到大气中,造成了严重的能源浪费和环境污染。

对于火电厂循环水余热的利用改造成为了一个重要的课题。

本文将从火电厂循环水余热的利用现状、存在的问题和改造方法等方面进行浅析,以期为相关研究和改造工作提供一定的参考。

一、火电厂循环水余热的利用现状火电厂的循环水系统是将凝汽器中的循环水通过冷却塔冷却后再循环到锅炉和凝汽器中,形成循环水系统。

在这个循环过程中,产生了大量的余热,如果这部分余热得不到有效利用,不仅会造成能源浪费,还会对环境造成一定的影响。

对火电厂循环水余热进行充分利用,已成为提高能源利用效率和减少环境污染的必然选择。

目前,国内外一些火电厂对循环水余热的利用问题已经开始进行研究和改造。

较为常见的利用方式包括余热发电、余热供暖和余热制冷等。

通过这些方式,可以有效地将循环水余热转化为电能、热能和冷能,达到提高能源利用效率和减少排放的目的。

尽管循环水余热的利用对于提高火电厂的能源利用效率具有重要意义,但在实际的应用过程中,往往会面临一些问题。

主要包括以下几个方面:1. 技术难题:火电厂的循环水余热利用涉及到余热收集、传输、转化和利用等多个环节,存在一定的技术难题。

余热的收集和传输需要一定的设备和管线,如何有效地将余热转化为电能、热能或冷能也需要相应的技术支持。

2. 经济成本:火电厂循环水余热利用改造需要一定的投入,包括设备采购、安装调试和运行维护等方面的成本。

对于一些资金较为紧张的火电厂来说,这无疑是一个问题。

3. 安全与稳定性:火电厂作为大型能源装置,其余热利用涉及到设备安全和运行稳定性等方面的问题。

热电厂循环水余热利用和节能减排效益分析

热电厂循环水余热利用和节能减排效益分析摘要:目前,我国的经济在快速发展,社会在不断进步,冷端损失是电厂热力系统的最大损失,在冬季额定供热工况下,汽轮机排汽损失可占燃料总发热量的30%以上。

余热回收利用是提高电厂能源利用率及节能环保的重要措施和手段。

公司应用电厂循环水余热利用技术,在冬季供暖季节,将汽机凝汽器大部分冷却水经由吸收式热泵吸收转换为供暖供热,大部分循环冷却水不再经过冷却塔冷却散热,通过回收其循环水的余热向公司供热,从而使电厂对外供热能力提高,采用闭式循环运行冷却,可避免原运行系统的蒸发和飘逸等水量损失。

循环水的余热利用不仅降低了能源消耗,而且还增加了效益,减少了CO2、SO2和NOX的排放。

关键词:余热;热泵;节能减排;效益引言传统的热电厂进行供热的时候,能源选用上通常是煤、石油、天然气这样的能源,供热效率较低,且会产生一些对人类有害的气体。

而如果使用循环冷却水余热回收技术,就能够改变这一点,通过该技术的使用使得整个供热过程变得清洁环保,且节约了大量的能源,供热的规模也大大增强了。

由此可见,将循环冷却水余热回收技术加以利用是非常重要的。

然而目前在该技术的应用上还存在着一些问题,因此文章中对该技术的具体探讨是非常有价值的。

1概述热电联供可实现一次能源的梯级利用和具有较高的整体能效,尽管如此,在热电生产过程中仍存在大量低品位余热未被有效利用的情况,尤其是锅炉的烟气余热和凝汽器循环冷却水(本文简称循环水)余热没有得到充分利用。

电厂燃煤锅炉的省煤器、空气预热器仅能回收烟气中部分显热,烟气中的大量潜热未被有效利用。

同时,循环水余热一般直接通过冷却塔(集中设置在空冷岛)散失在环境中,未得到有效利用。

近年来,采用汽轮机低真空运行技术提高凝汽器循环水的出水温度直接用于供热的方式在热电厂得到了部分应用,但该类技术的供热效果受到机组运行参数的制约,而且凝汽器内真空度的改变会对机组本身造成安全隐患。

本文对热电厂烟气余热回收在烟气脱白工艺中的应用和循环水余热回收的研究进展和技术手段进行综述。

热电厂循环水余热利用方案

热电厂循环水余热利用方案摘要利用制冷剂循环水余热利用技术在热电厂中进行电力发电,可以有效提高电厂热效率,提高发电量,缩小单位电量的电耗。

本文重点探讨了制冷剂循环水余热利用系统的工作原理、节能经济分析和详细方案等内容。

通过分析,可以看出,制冷剂循环水余热利用技术在热电厂中的应用具有可行性,可以在热电厂中进行发电,提高电厂热效率,降低单位发电量的电耗以及提高整体的投资回收期等经济利益。

关键词:制冷剂循环;水余热;利用技术;热电厂IntroductionWorking PrincipleThis technology implements that, in the pro-cess ofelectricity generation in a power plant, the condensed water cooling system will be routed to the generator cooling system, and then the cooling cycle water is collected into a waste heat recovery system for reheating power generation. The system consists of cooling cycle water waste heat recovery device, reheater and auxiliary. When water in the condenser is cooled,the heat absorbed by the cooling cycle water can be recovered by the waste heat recovery equipment and sent to the heater of the steam turbine cycle and then goes into the reheater. In this way, the amount of steam extracted from the turbine reduces, and theexhaust pressure before the turbine increases, resulting in an increase in the electrical efficiency of the power plant.Analysis of Energy-saving and Economical BenefitsThe application of cooling cycle water waste heatutilization technology in power plants can effectively improve the thermal efficiency of the power plants and increase power generation. The unit electrical consumption can be reduced and the economic benefits of the project can be improved. Therefore, it is of great significance for the development of energy saving and efficiency of a power plant to utilize the cooling cycle water waste heat.The economic analysis results show that, after the application of cooling cycle water waste heat utilization technology, the power plant's thermal efficiency can be increased by 4.6%, the power generation increased by 7.2%, and the unit power consumption decreased by 10.6%. And the annual energy saving is 4.48 x 104 tons of standard coal. In addition, the payback period of the investment is 1.4 years.Detailed Scheme2. Reheater selection.In the rehe。

浅析火电厂循环水余热利用改造

浅析火电厂循环水余热利用改造1. 引言1.1 引言火电厂是指以燃煤、燃气、生物质等燃料为能源的发电厂,其在发电过程中产生大量的余热。

循环水余热利用是指通过将火电厂产生的热水或蒸汽余热进行回收和再利用,以提高能源利用效率,降低能源消耗。

在目前能源资源日益紧张的情况下,充分利用火电厂的循环水余热已经成为一种重要的能源节约措施。

为了更好地实现火电厂循环水余热利用改造,本文将从背景介绍、循环水余热利用方案、改造实施步骤、效果评估和经济性分析等方面进行探讨。

通过对火电厂的循环水余热进行有效利用,不仅可以减少能源消耗,降低生产成本,还可以减少对环境的污染,提高火电厂的竞争力。

希望通过本文的浅析,能够为火电厂循环水余热利用改造提供一些有益的启示和借鉴。

2. 正文2.1 背景介绍火电厂是一种常见的电力发电设施,其主要工作原理是通过燃烧燃料产生热能,再通过热能驱动发电机发电。

在这个过程中,会产生大量的余热,如果这些余热不能有效利用将会造成巨大的资源浪费和环境污染。

火电厂循环水余热利用改造显得尤为重要。

目前大部分火电厂的循环水余热利用程度较低,主要采用的是简单的冷却方式,将余热直接排放至大气中。

这种做法不仅浪费了宝贵的能源资源,还可能对周围的环境造成污染和破坏。

实施循环水余热利用改造,将有助于提高能源利用效率,减少对环境的影响。

改造循环水余热利用需要对火电厂的设备和工艺进行深入调整和改造,以实现余热的充分利用。

通过设计合理的余热回收系统,将余热用于蒸汽发生器加热或其他能耗环节,可以大大提高发电效率,减少燃料消耗。

改造后的火电厂也将减少对大气的排放,降低对环境的影响,是一种积极的环保举措。

2.2 循环水余热利用方案循环水余热利用方案是实现火电厂能源节约和环境保护的重要举措。

在火电厂的运行过程中,循环水通过冷却设备冷却后排放,这其中蕴含着巨大的能量。

利用循环水的余热可以将这部分能量充分利用,提高火电厂的能效和经济效益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

******技术发展有限公司
******热电厂循环水利用方案
(溴化锂吸收式热泵)
联系人:
手机:
联系电话:
传真:
信箱:
2013年8月18日
目录
1 项目简介 (3)
1.1 吸收式热泵方案 (3)
1.2 吸收式热泵供暖工艺流程设计 (3)
1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃) (4)
1.4 节能运行计算 (4)
1.5 初投资与回报期计算 (5)
2 热泵机组简介 (6)
2.1 吸收式热泵供暖机组 (6)
2.2 溴化锂吸收式热泵采暖技术特点 (7)
2.3 标志性案例介绍 (7)
1 项目简介
********热电厂,采暖季有温度为26.3~19.6℃的循环冷却水2800m3/h,需要通过降低汽轮机组凝汽器真空或提高汽轮机背压,使得冷却循环水的温度提升到到31.7℃,然后利用溴化锂吸收式热泵机组提取凝汽器冷却循环水中的热量,将循环冷却水温度降低到25℃,可以制备供水温度为74.7/55℃热网水2400 m3/h,对建筑物进行供暖,供暖期为152天。

提高汽轮机背压大约2KPa左右,汽轮机的轴向推力几乎不变,对发电量影响不大。

1.1 吸收式热泵方案
采用蒸汽型吸收式热泵机组,通过0.49MPa的饱和蒸汽作为驱动热源,在冬季采暖期,将2800m3/h的循环冷却水从31.7℃降低到25℃,可以从循环冷却水中提取21.82MW的热量用于建筑物采暖。

1.2 吸收式热泵供暖工艺流程设计
使用吸收式热泵加热,供暖系统流程原理图如下:
由上图可以看出,实际应用流程非常简单,只是把工艺循环水引到热泵机房,把原来通过冷却塔排放到环境中的冷凝废热,通过溴化锂吸收式热泵机组将热量传递给供暖回水。

此系统改造不影响循环水原系统的稳定性,节省大量的蒸汽,同时带来了大量的经济效益。

1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃)
通过溴化锂吸收式热泵产品,利用饱和蒸汽压力为0.49MPa的蒸汽50400kg/h,可将2800 m3/h的循环冷却水,从31.7℃降低到25℃,将2400m3/h采暖55℃回
1.4 节能运行计算
能源价格:电价:0.7元/kWh。

标煤单价:900元/t。

通过溴化锂热泵机组(共2套)回收余热总热量为21.82MW,热泵总供热量为54.96MW,热泵总耗蒸汽为50.4t/h。

运行时间:152天,每天24h运行。

(以下按2台机组运行节能计算)
1)回收的经济效益分析:
2台设备回收余热为21.82MW;运行时间152天;日运行24小时;采暖期平均负荷系数0.645;则总的热回收为21.82MW×152天×24h/天x0.645=51341.6MWh;折合标煤热值51341.6x3.6/7000/4.187=6306.2t。

回收的经济效益= 6306.2t×900元/t=567.6万元
2)吸收式热泵系统耗电费用计算:
2台吸收式热泵的耗电功率为:30×2千瓦。

所以年运行耗电功率为:60×152天×24小时/天x0.645=141177.6kWh。

设备运行费用= 141177.6kWh×0.7元/ kWh= 98824元。

注:在此使用简捷的计算方式,直接从回收的热量进行计算,在运行中消耗的饱和蒸汽的焓值已全部转化成热量.未计入蒸汽价格及运行费用。

1.5 初投资与回报期计算
即4年可回收成本。

2 热泵机组简介
2.1吸收式热泵供暖机组
1)可利用的废热:标准可以使用温度在20℃~70℃的废热水、单组分或多组分气体或液体,可做非标。

2)可提供的热媒:提供采暖或工艺用热水,不超过100℃的热媒。

3)驱动热源:0.8MPa以下蒸汽。

4)制热COP在1.6~1.8左右:就是利用1MW的驱动热源可以得到1.8MW左右的生产生活需要的热量。

5)废热水进出水温度越高获得的热媒温度越高,效率越高。

6)吸收式热泵属于真空设备,无爆炸危险;内部填充溴化锂溶液近似食盐水,对环境及人体无污染。

2.2溴化锂吸收式热泵采暖技术特点
1) 能源利用效率高,电厂利用溴化锂吸收式热泵回收冷凝热,提供电能的同时提供采暖热能,能源整体利用效率大大提升。

2) 系统流程简单,改造施工方便,不影响原有发电系统。

3) 节约大量的燃煤,煤属于不可再生资源,重要的化工原料和能源,造福后代。

4) 运行费用低,投资回收期短,长期受益。

5) 环保效果显著,减少了冷凝热对环境的影响,减少大量的二氧化碳等排放。

6)溴化锂吸收式热泵技术成熟。

2.3 标志性案例介绍
1)
用户介绍:沈阳某供热有限公司是建立在于新城23平方公里地域内唯一一家供热企业。

按沈阳市供热总体规划,公司最终将形成1500万平方米的供热能力。

节能环保是公司的核心经营特点,充分利用中水的热能资源,是国内领先
的污水源热泵技术、集供热、供冷为一体的环保型热源企业。

废热来源:污水处理厂处理后污水(15℃-10℃)
热水用途:供暖(40℃-50℃)
节能分析:采用本形式供热,污水源的供热量占总供热量的40%,与通常的热水锅炉方案相比较,年节约标煤7000吨,年减少二氧化硫排放量11吨,年减
少烟尘排放量6吨,年减少锅炉灰渣排放量2200吨,社会效益非常显著。

机组选型:单机制热量:1475万大卡/小时。

台数:1台
2)
用户介绍:南通某纺织股份有限公司是一家集纺纱、染色、织造、整理、印染、制衣于一体的大型纺织企业。

产品销往全国20多个省市,出口日本、美国、
英国、意大利等36个国家和地区,公司生产色织布占国内比重为2.04%,
占全国出口量5.4%. 拥有8家控股子公司,包括发热电有限公司。

废热来源:空压机循环冷却水。

热水用途:除氧器及低温加热器补水。

节能分析:用蒸汽加热除氧器补水COP值小于1,设定为0.95;而热泵的COP值为
1.7,节能性高达40%以上。

并且由于热量从空压机冷却水中提取,也避
免了这部分水的蒸发损失。

此方案的节能性、经济效益都非常可观。

年节省蒸汽19180t,折合节省标煤近2000t/年。

机组选型:单机制热量:330万大卡/小时。

台数:1台
3)
用户介绍:北京某热电厂现装机4x200MW,全部为供热机组,承担北京地区3200万平方米的供热任务。

据2009-2010年供热季节运行数据显示,四台机
组整个采暖季平均抽气量已接近额定抽汽量。

在严寒期已达到甚至超过额
定抽汽量,说明电厂供热能力已经受限,现在由于热负荷增加,必须增加
新热源。

废热来源:凝汽器循环冷却水(31.5℃- 27℃ )。

热水用途:供暖。

节能分析:实施循环水余热利用,从循环水中提取了热量83MW,解决了电厂供热能力不足问题,由于回收凝气余热用于供热,整个采暖季节约标煤约3.4万
吨。

减少SO2排放285.6吨/年、减少NOx排放248.6吨/年、减少CO2
排放8.8万吨/年、灰渣排放8227吨/年。

此外由于吸收式热泵机组采用
闭式循环冷却水直接冷却汽机凝汽,采暖季可减少冷却水塔冷却水损失约
21.6万吨。

机组选型:单机制热量:20MW。

台数:8台。

相关文档
最新文档