射频参数解析
射频调试和射频指标解析

射频调试和射频指标解析射频调试是指对射频电路、器件或系统进行各种测试和调整的过程,以确保其正常工作和达到设计要求。
射频指标解析是指对射频电路、器件或系统的性能指标进行分析和解释,以评估其性能是否符合设计要求。
射频调试的目的是解决射频电路和系统工作过程中出现的各种问题,包括信号干扰、功率损耗、工作频率偏移等。
射频调试主要包括如下几个方面:1.对射频信号进行测试和测量:通过使用频谱分析仪、信号源、射频功率计等测试设备,对射频信号进行各种测量,包括功率、频率、谐波、相位等参数的测量。
2.信号传输和接收性能的调试:调试射频电路和系统的传输性能,包括增益、带宽、幅度平衡、相位平衡等参数的调整。
3.信号干扰和抗干扰性能的调试:通过调整射频电路和器件的工作频率、滤波器的设计和选取等方法,提高射频电路和系统对外部干扰信号的抑制能力。
4.射频电路和设备的校准和校验:校准和校验射频电路和设备的各种性能指标,确保其工作正常和精确。
5.故障排除和维修:对射频电路和设备出现的故障进行诊断和维修,解决各种问题,确保其正常工作。
射频指标解析是对射频电路、器件或系统的性能指标进行详细的分析和解释,以评估其性能是否满足设计要求。
射频指标解析主要包括如下几个方面:1.带宽和中心频率:分析射频电路和系统的带宽和中心频率是否符合设计要求,是否存在频率漂移等问题。
2.增益和损耗:分析射频电路和系统的增益和损耗是否符合设计要求,是否存在功率损耗较大等问题。
3.抗干扰能力:分析射频电路和系统对干扰信号的抑制能力如何,是否存在对外部干扰信号的较强敏感性等问题。
4.相位和时延:分析射频电路和系统的相位和时延是否符合设计要求,是否存在相位不一致等问题。
5.杂散和噪声:分析射频电路和系统产生的杂散和噪声是否符合设计要求,是否存在干扰其他信号的问题。
通过对射频调试和射频指标解析的实施,可以确保射频电路、器件或系统的正常工作和性能达到设计要求。
这将对射频通信、雷达、卫星通信等领域的应用起到重要的支撑作用。
射频参数解析

射频参数1.回波损耗又称反射损耗,是电缆线路由于阻抗不匹配所产生的反射,是一对线自身的反射。
不匹配主要发生在连接器的地方,但也可能发生于电缆中特性阻抗发生变化的地方。
回波损耗是传输线端口的反射功率与入射波功率之比,以对数形式来表示,单位是dB,一般是负值,其绝对值可以成为反射损耗。
回波损耗= —10 lg [(反射功率)/(入射功率)]2.反射系数反射波和入射波电压之比回波损耗= 20|lg(反射系数Γ)|3.驻波比全称电压驻波比,又名VSWR或SWR,英文Voltage Standing Wave Ratio的简写。
指驻波波腹电压与波谷电压幅度之比,又称驻波系数、驻波比.驻波比为1时,表示馈线和天线的阻抗完全匹配,此时高频能量全部被天线辐射出去,没有能量的反射损耗;驻波比为无穷大时表示全反射,能量完全没有辐射出去.驻波比会随着频率而改变在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波谷。
其它各点的振幅值则介于波腹与波谷之间。
这种合成波称为行驻波.驻波比是驻波波腹处的电压幅值Vmax与波谷处的电压幅值Vmin之比驻波比就是一个数值,用来表示天线和电波发射台是否匹配。
如果SWR 的值等于1, 则表示发射传输给天线的电波没有任何反射,全部发射出去,这是最理想的情况.如果SWR 值大于1,则表示有一部分电波被反射回来,最终变成热量,使得馈线升温驻波比反射率:1.00.00%1.10.23%1。
20。
83%1。
31。
70%1.5 4.00%1.7 6.72%1。
88。
16%2。
011.11%2.518.37%3.025.00%4。
036.00%5.044。
44%7。
056.25%1066。
94%1576.56%2081.86%4.天线增益天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。
射频测量指标参数

射频指标1)频率误差定义 :发射机的频率误差是指测得的实际频率与理论期望的频率之差。
它是通过测量手机的I/Q 信号并通过相位误差做线性回归,计算该回归线的斜率即可得到频率误差。
频率误差是唯一要求在衰落条件下也要进行测试的发射机指标。
测试目的 :通过测量发射信号的频率误差可以检验发射机调制信号的质量和频率稳定度。
频率误差小,则表示频率合成器能很快地切换频率,并且产生出来的信号足够稳定。
只有信号频率稳定,手机才能与基站保持同步。
若频率稳定达不到要求(±0.1ppm),手机将出现信号弱甚至无信号的故障,若基准频率调节范围不够,还会出现在某一地方可以通话但在另一地方不能正常通话的故障。
条件参数 : GSM 频段选 1、62、124 三个信道,功率级别选最大LEVEL5 ;DCS 频段选 512、698、885 三个信道,功率级别选最大LEVEL0 进行测试。
GSM 频段的频率误差范围为+90HZ —— -90HZ ,频率误差小于40HZ 时为最好,大于40HZ 小于 60HZ 时为良好,大于60HZ小于 90HZ 时为一般,大于90HZ 时为不合格; DCS 频段的频率误差范围为 +180HZ ——-180HZ ,频率误差小于 80HZ 时为最好,大于 80HZ 小于 100HZ 时为良好,大于100HZ 小于 180HZ 时为一般,大于180HZ 时为不合格。
2)相位误差定义 :发射机的相位误差是指测得的实际相位与理论期望的相位之差。
理论上的相位轨迹可根据一个已知的伪随机比特流通过0.3 GMSK 脉冲成形滤波器得到。
相位轨迹可看作与载波相位相比较的相位变化曲线。
连续的1 将引起连续的 90 度相位的递减,而连续的0 将引起连续的 90 度相位的递增。
峰值相位误差表示的是单个抽样点相位误差中最恶略的情况,而均方根误差表示的是所有点相位误差的恶略程度,是一个整体性的衡量。
测试目的 :通过测试相位误差了解手机发射通路的信号调制准确度及其噪声特性。
LoRa传输中的射频配置参数介绍

LoRa传输中的射频配置参数介绍在学习LoRa的过程中,有很多的关键字概念需要了解清楚,这样在学习的过程中才能知其所以然。
1、扩频因⼦(SF)LoRa采⽤多个信息码⽚来代表有效负载信息的每个位,扩频信息的发送速度称为符号速率(RS),扩频因⼦ = 码⽚速率/符号速率(RS),其表⽰了每个信息位需要发送的符号数量。
扩频扩频因⼦越⼤,需要的有效数据的编码长度越⼤,导致有效数据的发送速率越⼩,但可以降低误码率,提⾼信噪⽐(信号与噪⾳的⽐值,理论上越⼤越好)⽐如:有效数据位为8bit, 使⽤的扩频因⼦越⼤,实际需要发送的数据位就越⼤(⽐如100bit),就导致同样的有效数据需要实际发送的数据位越多,导致实际有效数据⼤发送速度就越慢了。
通俗的说:扩频时你的数据每⼀位都和扩频因⼦相乘,例如你有1bit数据1需要传输,当扩频因⼦为1时,传输的数据1就⽤1来表⽰;扩频因⼦为6时,这时候数据1,需要⽤111111来表⽰,也就是需要传输的数据量扩⼤了6倍。
这样扩频后传输可以降低误码率,也就是提⾼信噪⽐,但是在同样数据量条件下却减少了可以传输的实际数据,所以,扩频因⼦越⼤,传输的数据速率(⽐特率)就越⼩。
2、编码率编码率,是数据流中有⽤部分的⽐例。
编码率(或信息率)是数据流中有⽤部分(⾮冗余)的⽐例。
也就是说,如果编码率是k/n,则对每k位有⽤信息,编码器总共产⽣n位的数据,其中n-k是多余的。
LoRa采⽤循环纠错编码进⾏前向错误检测与纠错。
使⽤该⽅式会产⽣传输开销。
3、信号带宽信道带宽(BW)是限定允许通过该信道的信号下限频率和上限频率,可以理解为⼀个频率通带。
⽐如⼀个信道允许的通带为1.5kHz⾄15kHz,则其带宽为13.5kHz在LoRa中,增加BW,可以提⾼有效数据速率以缩短传输时间,但是以牺牲部分接受灵敏度为代价。
对于LoRa芯⽚SX127x,LoRa带宽为双边带宽(全信道带宽),⽽FSK调制⽅式的BW是指单边带宽。
射频电缆的参数理论

射频电缆的参数理论射频电缆是一种用于传输高频信号的特殊电缆,它在通信、广播、军事、航空航天以及科学研究领域都得到了广泛应用。
射频电缆的参数理论主要包括电气参数、物理参数和传输参数等方面的内容。
接下来将分别介绍这些参数。
1.电气参数:-电阻:射频电缆的电阻是指单位长度内的电阻,通常用欧姆/米(Ω/m)来表示。
电缆的电阻对信号的传输质量有直接影响,较小的电阻可以减小信号损耗。
-电感:射频电缆中电流变化会引起磁场,进而产生电感,其单位为亨利/米(H/m)。
电感会导致信号的相位延迟,因此电缆中的电感必须被控制在合理范围内。
-电容:射频电缆中的导体和绝缘体之间会产生电场,产生电容,其单位为法拉/米(F/m)。
电缆的电容会导致信号的频率响应和波形扭曲。
2.物理参数:- 外径:射频电缆的外径通常用毫米(mm)来表示,它反映了电缆的几何尺寸。
外径的大小会直接影响电缆的弯曲半径和机械强度等特性。
-绝缘体:射频电缆的绝缘体通常由聚乙烯、聚四氟乙烯等材料制成。
绝缘体的性能和质量对于电缆的电气特性以及信号传输质量具有重要影响。
-屏蔽:为了抑制电磁干扰和减小信号的串扰,射频电缆在绝缘体外通常还有一层金属屏蔽,如铜箔屏蔽或网状铜屏蔽。
3.传输参数:-带宽:射频电缆的带宽指的是电缆能够传输的最高频率范围,通常用兆赫兹(MHz)或千兆赫兹(GHz)来表示。
带宽决定了电缆能够传输的最大数据量和信号质量。
-驻波比:驻波比是衡量信号反射的程度,它可以通过电缆的特性阻抗和负载阻抗之间的比值来计算。
较小的驻波比表示较好的信号匹配和传输质量。
-损耗:射频电缆在信号传输过程中会有一定的损耗,通常以分贝/米(dB/m)来表示。
损耗与电缆的电阻、电容、电感等参数密切相关,较小的损耗可以提高信号传输的效率。
为了提高射频电缆的性能,需要根据具体的应用需求选择适当的型号和参数。
不同型号的电缆在电气参数、物理参数和传输参数上可能有所不同,因此需要根据具体的应用场景来选择合适的射频电缆。
射频pa关键参数

射频pa关键参数
射频PA的关键参数主要包括以下几个方面:
1. 增益:指射频PA的功率放大能力,通常用dB(分贝)表示。
增益越大,PA的功率放大能力越强。
2. 噪声系数:指PA的噪声性能,通常用dB表示。
噪声系数越小,PA的
噪声性能越好。
3. 线性度:指PA的线性放大能力,通常用AM-AM和AM-PM曲线来衡量。
线性度越高,PA的信号失真越小。
4. 效率:指PA的功率转换效率,通常用百分比表示。
效率越高,PA的能
耗越低。
5. 频率范围:指PA的工作频率范围,即PA能够放大信号的频率范围。
频
率范围越宽,PA的应用范围越广。
6. 输出功率:指PA的输出功率,通常用W或dBm表示。
输出功率越大,PA的信号覆盖范围越广。
7. 散热性能:指PA的散热能力,通常用温度表示。
散热性能越好,PA的
工作稳定性越高。
8. 可靠性:指PA的耐用程度,通常用MTBF(平均故障时间)表示。
可靠性越高,PA的使用寿命越长。
9. 封装尺寸:指PA的封装尺寸大小,通常用mm×mm表示。
封装尺寸越小,PA的应用灵活性越高。
这些参数对射频PA的性能和应用至关重要,需要根据具体的应用场景和需求进行选择和优化。
ntn卫星通信 射频参数

ntn卫星通信射频参数
NTN卫星通信是一种通过卫星进行数据传输和通信的技术。
在NTN 卫星通信中,射频参数起着重要的作用,它决定了信号的传输质量和通信效果。
射频参数中的一个重要指标是频率。
频率决定了信号的传输速率和传输距离。
在NTN卫星通信中,频率通常被分为上行频率和下行频率。
上行频率是指从地面站向卫星发送信号的频率,而下行频率是指从卫星向地面站发送信号的频率。
另一个重要的射频参数是功率。
功率决定了信号的强度和传输距离。
在NTN卫星通信中,地面站和卫星通常需要具备一定的功率以保证信号的传输质量。
较高的功率可以提高信号的传输距离和穿透能力,但同时也会增加能耗和成本。
除了频率和功率,还有其他一些射频参数需要考虑。
例如,调制方式决定了信号的编码方式和调制方式,对于提高信号的抗干扰能力和传输速率非常重要。
而调制深度则决定了信号的动态范围和传输的信息量。
天线也是射频参数中的重要组成部分。
天线的增益决定了信号的接收和发送能力,较高的增益可以增强信号的强度和接收范围。
而天线的方向性决定了信号的传输方向和覆盖范围。
NTN卫星通信中的射频参数对于信号的传输质量和通信效果至关重
要。
合理选择和配置射频参数可以提高通信系统的性能和可靠性。
在实际应用中,需要结合具体的通信需求和环境条件来确定合适的射频参数,以达到最佳的通信效果。
射频s参数问题回答

射频s参数
射频S参数,也被称为散射参数,是指微波网络中用于描述功率传输
和波的反射和传输的参数。
在射频工程中,S参数是基本的测量参数,用于衡量微波电路的性能和设计。
S参数有四个参数值,也称为S11、S21、S12和S22。
其中,S11代表入射波对网络的反射,S21代表从端口1向端口2的传输,S12代
表从端口2向端口1的传输,S22代表从端口2的反射。
S参数是由
一组标准化的测量数据,通常表示为dB,计算出来的。
在射频电路设计中,S参数是非常重要的。
通过测量S参数,可以了
解微波网络中的不同元件的性能,搭建射频网络,评估微波器件性能
和工作情况,并优化电路设计。
另外,S参数也用于无线通信,包括手机、无线路由器和Wi-Fi设备中。
通过测量和优化S参数,可以改善无线通信设备的性能和数据传输速率。
总之,S参数是射频电路设计和无线通信的基础,对于射频工程师来说非常重要。
通过测量S参数并对其进行分析,可以优化微波网络的性
能和可靠性,提高无线通信设备的性能和数据传输速率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盛年不重来,一日难再晨。
及时宜自勉,岁月不待人。
射频参数
1.回波损耗
又称反射损耗,是电缆线路由于阻抗不匹配所产生的反射,是一对线自身的反射。
不匹配主要发生在连接器的地方,但也可能发生于电缆中特性阻抗发生变化的地方。
回波损耗是传输线端口的反射功率与入射波功率之比,以对数形式来表示,单位是dB,一般是负值,其绝对值可以成为反射损耗。
回波损耗= -10 lg [(反射功率)/(入射功率)]
2.反射系数
反射波和入射波电压之比
回波损耗= 20|lg(反射系数Γ)|
3.驻波比
全称电压驻波比,又名VSWR或SWR,英文Voltage Standing Wave Ratio的简写。
指驻波波腹电压与波谷电压幅度之比,又称驻波系数、驻波比。
驻波比为1时,表示馈线和天线的阻抗完全匹配,此时高频能量全部被天线辐射出去,没有能量的反射损耗;驻波比为无穷大时表示全反射,能量完全没有辐射出去。
驻波比会随着频率而改变
在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波谷。
其它各点的振幅值则介于波腹与波谷之间。
这种合成波称为行驻波。
驻波比是驻波波腹处的电压幅值Vmax与波谷处的电压幅值Vmin之比
驻波比就是一个数值,用来表示天线和电波发射台是否匹配。
如果SWR 的值等于
1,则表示发射传输给天线的电波没有任何反射,全部发射出去,这是最理想的情况。
如果SWR 值大于1,则表示有一部分电波被反射回来,最终变成热量,使得馈线升温
驻波比反射率:
1.00.00%
1.10.23%
1.20.83%
1.3 1.70%
1.5 4.00%
1.7 6.72%
1.88.16%
2.011.11%
2.518.37%
3.025.00%
4.036.00%
5.044.44%
7.056.25%
1066.94%
1576.56%
2081.86%
4.天线增益
天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。
它定量地描述一个天线把输入功率集中辐射的程度。
增益与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。
天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。
一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。
表示天线增益的参数有dBd和dBi,dBi是相对于点源天线的增益,在各方向上的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。
相同条件下,增益越高,电波传播的距离越远
5.天线辐射方向图(XY、XZ、YZ三个平面)
6.天线尺寸(微带天线—单极子天线等)
7.接收灵敏度
8.辐射边界条件
9.天线上的电流分布
10.阻抗匹配
反应输入电路与输出电路的功率传输关系,当电路实现阻抗匹配时,将获得最大的功率传输(50%),当阻抗失配时,不但得不到最大的功率传输,还可能对电路产生损害在高频电路中,必须考虑反射问题。
当信号频率很高时,信号的波长就很短,当波长短的跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。
如果传输线的特征阻抗跟负载阻抗不匹配(不相等)时,在负载端就会产生反射,降低能量传输效率。
天线电路中常留一个π型网络以做阻抗匹配用
阻抗匹配的方法(不同领域):
1)考虑使用变压器来做阻抗转换。
如电视机的阻抗转换器(即传输线变压器),将300
Ω的阻抗变换成75Ω的阻抗
2)使用串联/并联电容或电感的方法,常用在射频电路
3)使用串/并联电阻的方法。
如485总线接收器,常在数据线终端并联120Ω的匹配电
阻。
(一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联的一个几十欧姆的电阻。
而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120Ω的匹配电阻)
11.射频电阻阻抗
射频电路阻抗一般为50欧姆的标准阻抗,天线和电路阻抗匹配到理想值(50Ω时),天线就可以将能量最大限度的转换为电磁波传递出去、
12.特征阻抗
特征阻抗(又名特性阻抗)是相对于传输线而言的,不是导线电阻。
它表征了传输线某截面上的电压和电流的关系(无反射条件下)。
50Ω特征阻抗的传输线具有传输能量密度和效率的综合优势
在高频范围内,信号传输过程中,信号沿到达的地方,信号线和参考平面(电源或
地平面)间由于电场的建立,会产生一个瞬间电流,如果传输线是各向同性的,那么只要信号在传输,就始终存在一个电流I,如果信号的输出电平为V,在信号传输过程中,传输线就会等效成一个电阻,大小为V/I,把这个等效的电阻称为传输线的特性阻抗Z。
特性阻抗是信号线没处的电压和电流的比值,是一个“点的概念”
信号在传输过程中,如果传输路径上的特性阻抗发生变化,信号就会在阻抗不连续的结点产生反射。
影响特性阻抗的因素有:介电常数、介质厚度、线宽、铜箔厚度
13.输入阻抗
14.其它
HFSS中的参数设置
1.phi角、thera角
phi:XY平面上的夹角
thera:垂直方向上与Z轴的夹角
thera从0到180°画出来的图形不对称,所以就从-180°到180°;phi一般是对称的,所以取90°的也行,但是为了图形好看,一般是0到360°
2.坐标
3.板材、板厚
常用材质:FR4(介电常数:标准4.2(因生产厂家而异))
4.介质参数
5.辐射边界条件
6.空气盒子(Airbox)
7.参考地尺寸、层数
如Gnd_top、Gnd_bottom上下两层
8.天线尺寸(微带线天线)
9.其它
Smith chart 1.输入阻抗
Z = R + jx 串联电感、电容时,实部R值不变2.导纳
电导和电纳
单位:西门子(S)
Y = G + jx 并联电感、电容时,实部G值不变3.其它。