射频电路理论与设计(第2版)-第1章
ADS射频电路设计基础与典型应用(第2版)

精彩摘录
这是《ADS射频电路设计基础与典型应用(第2版)》的读书笔记模板,可以替换为自己的精彩内容摘录。
谢谢观看
ADS射频电路设计基础与典型应用 (第2版)
读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
ቤተ መጻሕፍቲ ባይዱ
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
本书关键字分析思维导图
电路设计
界面
通信
理论指导
电路
使用
主
第版
书频
工作 第章
视窗
典型
设计
基本操作
射频
自带
功率
放大器
内容摘要
立足实践,重点介绍实际操作中遇到的普遍、典型问题。深入讲解ADS工作界面、使用方法和设计仿真功能 的方方面面。与理论指导书《频电路理论与设计(第2版)》相辅相成。
目录分析
第2章 ADS主视窗
第1章射频电路与 ADS
第3章 ADS设计仿 真视窗
第5章 ADS仿真概 述
第4章 ADS基本操 作
第6章 ADS自带的 仿真实例
第8章定向耦合器 的设计
第7章匹配网络的 设计
第9章功率分配器 的设计
1
第10章低通滤 波器的设计
第11章带通和 2
带阻滤波器的 设计
3
第12章低噪声 放大器的设计
4
第13章功率放 大器的设计
5
第14章振荡器 的设计
第15章混频器 的设计
第16章射频通 信系统级的设 计
作者介绍
这是《ADS射频电路设计基础与典型应用(第2版)》的读书笔记模板,暂无该书作者的介绍。
读书笔记
射频电路设计理论与应用第二版课程设计

射频电路设计理论与应用第二版课程设计一、项目背景本课程设计为《射频电路设计理论与应用》课程的实践环节,旨在通过学生自行设计完成一个小型射频电路,将课堂知识应用到实际中,提升学生的实践能力和综合素质。
二、项目目标1.熟练掌握射频电路设计的基本理论和方法;2.掌握各类射频器件的特性和应用特点;3.能够使用EDA等工具进行电路设计和仿真分析;4.能够按照需求设计符合要求的小型射频电路。
三、项目内容课程设计主要包括以下内容:1. 课程理论部分:•射频电路设计基础知识;•无源器件的特性和应用;•有源器件的特性和应用;•射频电路的匹配设计;•射频电路的噪声与稳定性分析。
2. 课程实践部分:•射频放大器设计;•射频滤波器设计;•射频信号发生器设计;•射频调制解调器设计。
四、设计要求1.设计一个小型的射频电路;2.选择合适的器件进行设计;3.能够满足一定的性能要求;4.设计过程需要记录并撰写设计报告。
五、设计步骤1.确定设计方案:选择设计射频电路的类型、性能指标、器件选型等;2.确定电路拓扑结构:根据设计要求选择电路拓扑;3.确定电路参数:根据电路拓扑确定电路参数,包括无源电路参数和有源电路参数;4.进行电路分析:进行电路仿真分析,包括电路的频率响应、增益、带宽、稳定性等;5.电路优化:根据仿真分析结果进行电路参数的优化;6.绘制电路图:绘制电路原理图和布局图;7.PCB设计:进行PCB设计,包括原理图转化为线路图、布局图、线路仿真、板级仿真等;8.制作原型:将设计完成的电路制成原型设备;9.进行测试:对设计完成的射频电路进行测试、评估性能。
六、预期成果通过本课程设计,学生应达到以下目标:1.掌握射频电路设计的基本方法和理论知识;2.熟练使用EDA等工具进行电路设计和仿真分析;3.能够按照需求设计符合要求的小型射频电路;4.能够撰写电路设计报告。
七、实验仪器与设备1.TC2082系列数字存储示波器;2.PowerStudio物联网开发板等。
(完整版)《射频电路理论与设计》习题参考答案

引言0.3 解:利用公式l jZ Z in λπ2tan 0=进行计算(1)m n n l l jZ Z in 6660102)12(32106)12(21062tan⨯+=⨯⨯+=∞=⨯=πππ 可见l 至少应该是1500Km(2)m n n l l jZ Z in 222010)12(875.12105.72)12(105.72tan---⨯+=⨯⨯+=∞=⨯=πππ l 至少是1.875cm 。
0.4 解:利用公式CX L X C L ωω1,-==进行计算 (1)Hz f 40=所以ππω802==f791051.210999.080--⨯=⨯⨯=πL X121210360.0100111.0801⨯-=⨯⨯-=-πC X (2)Hz f 9104⨯=,991081042⨯=⨯⨯=ππω3129991047.3100111.0108109.2510999.0108⨯-=⨯⨯⨯-==⨯⨯⨯=--ππC L X X 可见在低频时分布电感和分布电容可以忽略,但在射频时分布电感和分布电容却不能忽略。
0.5解:集肤效应是指当频率升高时,电流只集中在导体的表面,导体内部的电流密度非常小。
而趋肤深度是用来描述集肤效应的程度的。
利用公式μσπδf 1=来计算。
已知铜的磁导率m H /1047-⨯=πμ,电导率m S /108.57⨯=σ(1)m 00854.0108.510460177=⨯⨯⨯⨯⨯=-ππδ(2)m m μππδ21.110121.0108.510410315779=⨯=⨯⨯⨯⨯⨯⨯=--由计算数据可得,用铜线传输电能时,60Hz 时是不需要考虑集肤效应的,但是当传输射频信号时,3GHz 时需要考虑集肤效应。
0.6 解:利用公式DC RF R a R δ2≈,μσπδf 1=计算 已知铜的磁导率m H /1047-⨯=πμ,电导率m S /108.57⨯=σ(1)m 57761000.3108.5104105001--⨯=⨯⨯⨯⨯⨯⨯=ππδ7.161000.3210153=⨯⨯⨯≈--DC RF R R (2)m 67791031.3108.51041041--⨯=⨯⨯⨯⨯⨯⨯=ππδ 1.1511031.3210163=⨯⨯⨯≈--DC RF R R 通过计算数据结果说明在射频状况下,电阻损耗很大。
Chap1_绪论

第一章 绪论
射频电路设计Chap1 # 1
射频?
射频电路设计Chap1 # 2
数字: 模拟: 射频: 微波: 毫米波: 太赫兹波: 红外: 光波: 紫外: X射线: γ射线:
0 频谱
射频电路设计Chap1 # 3
0 频谱
频段
电气和电子工程师学会(IEEE) 频谱
射频电路设计Chap1 # 40
在多数情况下导体的μr=1,故趋肤厚度随着频率 的升高迅速降低。
1
0.9
σCu=64.516×106S/m
0.8 0.7
Al
σAl=40.0×106S/m
0.6 0.5
σAu=48.544×106S/m Au
0.4 0.3
0.2 Cu
铜、铝、金的趋肤厚 度与频率的关系曲线
VHF/UHF为典型的电视工作波段,其波长已经与电子系统的实际尺寸 相当,在有关的电子线路中必须考虑电流和电压的波动性质。
RF范围:VHF—SHF波段。MW范围:X波段及以上。
射频电路设计Chap1 # 4
美国:无线电频率划分图
射频电路设计Chap1 # 5
中华人民共和国:无线电频率划分图
射频电路设计Chap1 # 6
射频电路设计Chap1 # 32
我们的学习
集成电路基础:
➢ 器件基础
• 无源器件: • 有源器件:
➢ 理论及工具
• 传输线理论: • Smith圆图: • 散射参数:
➢ 设计方法
• 偏置网络: • 匹配网络:
射频单元电路分析
➢ 滤波器: ➢ 振荡器: ➢ 放大器: ➢ 振荡器: ➢ 混频器:
射频IC工程分析、设计和 测试
射频2-1-1

1
9
电压谐振
α(谐振曲线和通频带) V S R R Z 1 V S Z R j ( ωL ) ωC R 1 1 1 ω L ω ω0 ω ω0 1 jξ j 0 ( ) 1 jQ ( ) R ωO ω ωO ω 10
(4) 串联谐振电路通频带的公式
29 30
5
刘布民
H j 1 jQ 1 1 j
0 0
0
;
1
1 jQ
1 2 0
Q
0 0 Q 2
0 0
0
广义失谐
31
H j
1 1 2
32
实际应用中
2
1、串联谐振电路的技术指标
【1】总阻抗的辐模(幅频特性):
Z j ω R 2 ( ωL 1 2 ) ωC
【4】谐振:
满足谐振条件下,回路总阻抗呈纯阻性,电 路的该运行状态称为谐振。
【2】总阻抗的辐角(相频特性): 1 L X C arctg arctg R R 电路的总阻抗是频率的函数。所以电路中常写成 Z(jω), 电感的感抗值ωL随信号频率升高而增大,电容的容抗 值1/ωC随 信号频率升高而小。 【3】谐振条件: 在某一特定频率时电感的感抗等于电容的容抗, 即使得回路总阻抗的虚部为零的条件,称为谐振条件。
20
α
GP 1 1 ωpc ω ωP GP j ωC 1 j ωL GP ωP ω 1 1 ω ωP 1 jξ 1 jQP ωP ω
V V P
3)归一化幅频特性
V VP
射频电路设计--第1章 引言

分贝表示法
• 绝对电压的分贝表示
⎛ V ⎞ V ( dBμV ) = 20 log10 ⎜ ⎟ ⎝ 1μV ⎠
表 2-3 使用 dBμV 表示的一些典型电压值 V V(dBμV) 0.01μV -40dBμV 0.1μV -20dBμV 1μV 0dBμV 10μV 20dBμV 100μV 40dBμV 1mV 60dBμV
λ /8 设计准则
例1
例 1-3:某 CPU 的内部核心电路尺寸为 5mm 左 右,时钟频率达到了 2GHz。请判断 CPU 内部电路设 计是否需按照传输线理论进行分析和设计。 解:2GHz 信号对应的波长为
c λ = = 0.15 ( m ) f
计算得到
l = 5mm <
λ
8
≈ 19mm 。 按 照 λ/8 的 设 计 准 则 ,
BW ( Hz ) = f H − f L
以频率作为单位表示的带宽是指绝对带宽。 例如: 射频放大电路的工作频率范围为1GHz— 2GHz,则带宽为1GHz PAL制式的电视广播的图像信号带宽为 6MHz
相对带宽
– 百分比法
• 定义为绝对带宽占中心频率的百分数
– 倍数法(又称覆盖比法) – 定义为高端截止频率fH与低端截止频率fL的比 值
《射频通信电路》第一章---文本资料

射频通信电路设计
西安邮电学院 电工学院微波技术教研室 常树茂
《射频通信电路》常树茂
课程的要求和说明
教材:射频通信电路设计,刘长军,科学出版社 参考书1:《微波技术基础》,廖承恩,西电出版社
参考书2:
《微波工程》,Pozar,电子工业出版社
参考书3:《射频电路设计—理论与应用》,Reinhold ,电子出版社
高频 HF 甚高频 VHF 特高频 UHF 超高频 SHF 极高频 EHF
《射频通信电路》常树茂
移动通讯系统
系统名称 频带 (上行) MHz 频带 (下行) MHz 频带宽度 通道选择 信道宽 信道/载波 通道数 用户数 双工方式 通道比特率 调制 移动峰值功率 移动平均功率 IS-54 869~894 824~849 50MHz TDMA/ FDMA 30kHz 3 832 2496 FDD 48.6kbps
《射频通信电路》常树茂
1.3.2l/8设计准则
线路板 > l/8
射频电路设计 考虑分布参数
考虑传输线效应
线路板 < l/8
低频电路设计
《射频通信电路》常树茂
l/8设计准则 例1
例 1-3:某 CPU 的内部核心电路尺寸为 5mm 左 右,时钟频率达到了 2GHz。请判断 CPU 内部电路设 计是否需按照传输线理论进行分析和设计。 解:2GHz 信号对应的波长为
《射频通信电路》常树茂
1.2
射频通信系统
利用更宽的频带和更高的信息容量;
通信设备的体积进一步减小; 解决频率资源日益紧张的问题;
通信信道频率间隙增大,减小干扰;
小尺寸天线,高增益,移动通信系统
射频电路理论与设计

13、无耗传输线上通过任意点的传输功率等于该点的入射 波功率与反射波功率之差。
14、TEM传输线(即传输TEM波的传输线)无色散。色 散是指电磁波的传播速度与频率有关。TEM传输线上电 磁波的传播速度与频率无关。
在已知传输线始端电压 V 1 和始端电流 I 2 的前提下:
V (z)V 1I1 Z 0ejz V 1I1 Z 0ejz
2
2
I(z)V 1I1Z0ejzV 1I1Z0ejz
2Z0
2Z0
5、反射系数
(z')V V ((zz''))II ((zz''))V V 22 2 II22Z Z00eej jzz'' V V2 2 ej2z' Lej2z' LejLej2z' Lej(L2z') 2
终端短路的一段传输线可以等效为集总元件的电感,
等效关系为jX LjLjZ 0ta4 nff(0)S0 Z
终端开路的一段的传输线可以等效为集总元件的电
6、容科,洛等达效规关j则B C 系 为P14j7表C 6.6jY 0tan 4ff(0)S0Y
科洛达规则是利用附加的传输线段,得到在实际上 更容易实现的滤波器。利用科洛达规则既可以将 串联短截线变换为并联短截线,又可以将短截线 在物理上分开。附加的传输线称为单位元件。
二、并联谐振电路
1、谐振频率 0 2、品质因数
1 LC
无载品质因数 Q R
0L
有载品质因数
外部品质因数
Qe
RL 0L
Q L0L(R R LR RL),Q 1LQ 1Q 1e
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.4 集肤效应
在电路中信号是通过导体传输的,导体存在集肤
效应。所谓集肤效应是指当频率升高时,电流只集中在
导体的表面,导体内部的电流密度非常小。集肤效应使 导线的有效导电横截面积减小,交流电阻增加。集肤效 应如图1.3所示。
《射频电路理论与设计(第2版)》
射频电路理论与设计 (第2版)
《射频电路理论与设计(第2版)》
第1 章 引言
《射频电路理论与设计(第2版)》
在射频频段,电路出现了许多独 特的性质,这些性质在常用的低频电路 中从未遇到,因此需要建立新的射频电 路理论体系。射频电路理论是电磁场理
论与传统电子学的融合,它将电磁场的
2
l
(1.2)
图1.1 终端短路的传输线
《射频电路理论与设计(第2版)》
式中Z0为常数,Z0的取值范围一般为几十到几百 之间。式(1.2)改变了低频电路理论的观点,因为低频 电路理论会认为Zin=0。下面对式(1.2)加以数值分析。
《射频电路理论与设计(第2版)》
《射频电路理论与设计(第2版)》
《射频电路理论与设计(第2版)》
为了有效地传输信息,无线通信系统需要采用高 频率信号,这种需要主要由下面3个因素导致。 (1)工作频率越高,带宽越大。 (2)工作频率越高,天线尺寸越小。 (3)射频电路中电感和电容等元器件的尺寸较小, 这使得射频设备的体积进一步减小。
《射频电路理论与设计(第2版)》
众多,对频谱的划分有多种方式,而今较为通用的频谱
分段法是由IEEE建立的,见表1.1。
《射频电路理论与设计(第2版)》
表1.1
《射频电路理论与设计(第2版)》
表1.1(续)
《射频电路理论与设计(第2版)》
一般认为,当频率高于30MHz时电路的设计就需考 虑射频电路理论;而射频电路理论应用的典型频段为几 百MHz至4GHz,在这个频率范围内,电路需要考虑分布 参数的影响,低频的基尔霍夫电路理论不再适用。 需要说明的是,随着射频电路的广泛应用和不断发
1.2.3 射频电路的分布参数
低频电路理论称为集总参数电路理论;射频电路理 论称为分布参数电路理论,分布参数是射频电路的最大 特色。
《射频电路理论与设计(第2版)》
从正弦交流(AC)电路分析中可以知道,电感L 和电容C的电抗XL和XC与频率有关,XL和XC与频率的关 系是
式中,ω为角频率,ω=2πf。下面考察当电感 L=1nH和电容C=1pF时的电抗XL和XC。
《射频电路理论与设计(第2版)》
1.2.1 频率与波长
众所周知,在自由空间工作频率与工作波长的乘
积等于光的速度,也即
fλ= c = 3×108m/s
(1.1)
式中,f为工作频率;λ为工作波长;c为光的速度。
式(1.1)的结论是:频率越高波长越短。射频频段有很
高的频率,所以射频的工作波长很短。
《射频电路理论与设计(第2版)》
《射频电路理论与设计(第2版)》
1.2.2 低频电路理论是射频电 路理论的特例
低频电路理论只适用于低频电路设计,射频电路 理论有更大的适用范围,低频电路理论是射频电路理论 的特例。
《射频电路理论与设计(第2版)》
图1.1所示的是终端短路传输线,根据射频电路理 论会得到距离短路终端l处的阻抗为
Z in jZ 0 tan
展,射频的频率范围还在向更高的频率延伸,已有资料
将射频的高端频率定为大于4GHz。
《射频电路理论与设计(第2版)》
延伸阅读
《射频电路理论与设计(第2版)》
延伸阅读
《射频电路理论与设计(第2版)》
为什么要关注射频电路?
目前移动通信(GSM、3G和4G)、全球定位(GPS)、无线局域 网(WLAN)、宽带无线接入系统(WIMAX)和射频识别(RFID)等领域, 工作频率都已经达到GHz频段。近年来欧洲、美国、日本、澳大利亚和中 国等国家相继在60GHz附近划分出免许可的ISM频段,其中我国开放了 59GHz~64GHz频段。这使得与上述应用相匹配的射频(RF)电路得到了 广泛的应用,并具有良好的前景。
Frequency)没有一个严格的频率范围定义,广义地说,
可以向外辐射电磁信号的频率称为射频;而在电路设计 中,当频率较高、电路的尺寸可以与波长相比拟时,电 路可以称为射频电路。
《射频电路理论与设计(第2版)》
对于电磁频谱,按照频率从低到高(波长从长到 短)的次序,可以划分为不同的频段,电子通信的发展 历程,实际上就是所使用的载波频率由低到高的发展过 程。电通信的容量几乎与所使用的频率成正比,对通信 容量的要求越高,使用的频率就越高。由于应用领域的
《射频电路理论与设计(第2版)》
《射频电路理论与设计(第2版)》
1. 传输线上的分布参数
射频电路认为传输线上到处都分布着电感和电 容,所以射频电路也称为分布参数电路。
图1.2 一段传输线
《射频电路理论与设计(第2版)》
由于分布参数的存在,传输线上电压、电流和阻 抗的分布与低频电路完全不同,射频传输线上信号出现 了波动性,并导致反射产生,因此需要建立射频电路理 论体系。
波பைடு நூலகம்理论引入电子学,形成了射频电路 的理论体系和设计方法。
《射频电路理论与设计(第2版)》
1.1
射频概念
射频电路的特点 射频系统 本书安排
1.2
1.3
1.4
《射频电路理论与设计(第2版)》
1.1 射频概念
在电子通信领域,信号采用的传输方式和信号的
传输特性是由工作频率决定的。目前射频(Radio
1.2 射频电路的特点
基尔霍夫电路理论只能用于直流和低频电路的设 计,不能用于射频电路的设计。低频频率与射频频率有 很大差异,正是由于这种频率的差异,导致低频电路理 论与射频电路理论不同。 下面将在不同频率下对电路进行讨论,从中可以 看出低频电路与射频电路显著不同,对于目前广泛使用 的射频频段,必须采用全新的方法加以分析。
《射频电路理论与设计(第2版)》
2. 无源器件的寄生参数
分布参数的存在还会导致无源器件产生寄生参数, 改变无源器件的参量。电阻、电感或电容的引线都存在 寄生电感和寄生电容,寄生参数使电阻、电感或电容的 等效电路变得复杂,例如低频下的电阻在射频时可能会 产生感性或容性。
《射频电路理论与设计(第2版)》