数论历届高中数学联赛真题分类汇编含详细答案

合集下载

历年全国高中数学联赛试题及答案76套题

历年全国高中数学联赛试题及答案76套题

历年全国高中数学联赛试题及答案76套题(一)2019年全国高中数学联赛试题及答案1. 小川野升平想在一个边长为6米的正方形的地块上建造一个有一堵墙的房子,墙要用沙发垫、玻璃门中的一种建造,沙发垫墙每平方米需要50元,玻璃门墙每平方米需要80元。

为了满足小川野升平的预算,需要选择合适的方案,可以使花费尽可能少。

请求出该房子沙发垫墙和玻璃门墙各多少平方米,以及花费的最小值。

解:由题意得,房子在四周建墙,所以共4个墙面。

墙面中有一个为门,另外3个可以被沙发垫或玻璃门所替代。

因为墙长宽相等,所以选择沙发垫或玻璃门所用的面积是相等的,即我们只需要考虑使用沙发垫或玻璃门的墙面数量即可。

用$x$表示使用沙发垫的墙面数量,则使用玻璃门的墙面数量为$3-x$,进而可列出花费的表达式:$$f(x)=50x+80(3-x)=80x+240$$为获得花费的最小值,我们需要求出$f(x)$的最小值,即求出$f(x)$的极小值。

因为$f(x)$是$x$的一次函数,所以可求出其导函数$f'(x)=80-30x$。

当$f'(x)=0$时,即$x=\frac83$,此时$f(x)$有极小值$f(\frac83)=400$。

当$x<\frac83$时,$f'(x)>0$,$f(x)$单调递增;当$x>\frac83$时,$f'(x)<0$,$f(x)$单调递减。

所以我们选择使用3个沙发垫的构建方案,所需面积为$3\times6=18m^2$,花费为$50\times18=900$元。

因此,该房子沙发垫墙面积为18平方米,玻璃门墙面积为0平方米,花费最小值为900元。

2. 对于正整数$n$,记$S_n$为$\sqrt{n^2+1}$的小数部分,$T_n$表示$S_1,S_2,\cdots,S_n$的平均值,则$s_n=10T_n-5$。

求$\sum_{k=1}^{2019}s_k$的个位数。

数论历年数学联赛真题WORD版分类汇编含详细答案

数论历年数学联赛真题WORD版分类汇编含详细答案

1,均有 an
M
,而 M

p p p 1 2 12
k 1 k 1

max
1n N /
an
,故
M
不在

an
中出
现,这与假设矛盾!因此,若 m 有 k 个不同的素因子,则 m 一定在数列 an 中出现.
由数学归纳法知,所以正整数均在数列 an 中出现。
2018B 四、(本题满分 50 分)给定整数 a 2 。证明:对任意正整数 n ,存在正整数 k ,使得连续 n 个数 a k 1 , a k 2,, a k n 均是合数。
综上可知,平稳数的个数为 2 6 63 4 75 。
2017B 8、若正整数 a,b, c 满足 2017 10a 100b 1000c ,则数组 (a,b, c) 的个数为
◆答案: 574 ★解析:由条件知 c [ 2017 ] 2 ,当 c 1时,有10 b 20 ,对于每个这样的正整数 b ,由
]

12

3

3

1

1

20

8 27 27 64 64
当 n m 时,由对称性可知,亦有 20 个满足条件的等比数列 a1, a2 , a3, a4 .
综上可知,共有 40 个满足条件的有序数组 (a1, a2 , a3 , a4 ) .
2016A 四、(本题满分 50 分)设 p 与 p 2 均是素数, p 3 ,数列 an 定义为 a1 2 ,
2016 年~2018 年全国高中数学联赛二试试题分类汇编 2、数论部分
2018A 四、(本题满分 50 分)数列 an 定义如下: a1 是任意正整数,对整数 n 1, an1 与

《全国高中数学联赛真题暨答案(2011-2021)

《全国高中数学联赛真题暨答案(2011-2021)
ቤተ መጻሕፍቲ ባይዱ
2011 年全国高中数学联赛二试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2020 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 72 2020 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 78 2020 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 84 2020 年全国高中数学联赛二试答案(B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 89 2019 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 93 2019 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 97 2019 年全国高中数学联赛一试答案(B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 101 2019 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 105 2018 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 109 2018 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 114 2018 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 118 2018 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 122 2017 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 125 2017 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 133 2017 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 141 2017 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 147 2016 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 2016 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 2015 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 2015 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 2014 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 2014 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 2013 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 2013 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 2012 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 2012 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 2011 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 2011 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

高中数学竞赛分类:集合-1981-2018年历年数学联赛48套真题分类汇编含详细答案

高中数学竞赛分类:集合-1981-2018年历年数学联赛48套真题分类汇编含详细答案

1981年--2018年全国高中数学联赛一试试题分类汇编1、集合部分2018A1、设集合{}99,,3,2,1 =A ,集合{}A x x B ∈=|2,集合{}A x x C ∈=2|,则集合C B 的元素个数为24★解析:由条件知,{}48,,6,4,2 =C B ,故C B 的元素个数为24。

2018B1、设集合{}8,1,0,2=A ,集合{}A a a B ∈=|2,则集合B A 的所有元素之和是◆答案:31★解析:易知{}16,2,0,4=B ,所以{}16,8,4,2,1,0=B A ,元素之和为31.2018B 三、(本题满分50分)设集合{}n A ,,2,1 =,Y X ,均为A 的非空子集(允许Y X =).X 中的最大元与Y 中的最小元分别记为Y X min ,max .求满足Y X min max >的有序集合对),(Y X 的数目。

★解析:先计算满足Y X min max ≤的有序集合对),(Y X 的数目.对给定的X m max =,集合X 是集合{}1,,2,1-m 的任意一个子集与{}m 的并,故共有12-m 种取法.又Y m min ≤,故Y 是{}n m m m ,,2,1, ++的任意一个非空子集,共有121--+m n 种取法.因此,满足Y X min max ≤的有序集合对),(Y X 的数目是:()[]()12122122111111+⋅-=-=-∑∑∑=-==-+-n nm m n m n nm mn m n 由于有序集合对),(Y X 有()()()2121212-=--nnn个,于是满足Y X min max >的有序集合对),(Y X 的数目是()()124122122+-=-+⋅--n n n n n n n 2017B 二、(本题满分40分)给定正整数m ,证明:存在正整数k ,使得可将正整数集+N 分拆为k 个互不相交的子集k A A A ,,,21 ,每个子集i A 中均不存在4个数d c b a ,,,(可以相同),满足m cd ab =-.★证明:取1k m =+,令{(mod 1),}i A x x i m x N +=≡+∈,1,2,,1i m =+ 设,,,i a b c d A ∈,则0(mod 1)ab cd i i i i m -≡∙-∙=+,故1m ab cd +-,而1m m +,所以在i A 中不存在4个数,,,a b c d ,满足ab cd m-=2017B 四、(本题满分50分)。

专题24初等数论(解析版)-备战2021年高中数学联赛之历年真题汇编(1981-2020)

专题24初等数论(解析版)-备战2021年高中数学联赛之历年真题汇编(1981-2020)

备战2021年高中数学联赛之历年真题汇编(1981-2020)专题24初等数论历年联赛真题汇编1.【2008高中数学联赛(第01试)】方程组{x+y+z=0xyz+z=0xy+yz+xz+y=0的有理数解(x,y,z)的个数为( )A.1B.2C.3D.4【答案】B【解析】若z=0,则{x+y=0xy+y=0,解得{x=0y=0或{x=−1y=1,若z≠0,则由xyz+z=0得xy=−1①由x+y+z=0得z=−x−y②将式②代入xy+yz+xz+y=0得x2+y2+xy−y=0③由式①得x=−1y代入式③化简得(y−1)(y3−y−1)=0,易知y3−y−1=0无有理数根,故y=1,由式①得x=-1,由式②得z=0,与z≠0矛盾,故该方程组共有两组有理数解{x=0y=0z=0或{x=−1y=1z=0.故选B..2.【1996高中数学联赛(第01试)】存在整数n使√p+n+√n是整数的质数p( ).A.不存在B.只有一个C.多于一个,但为有限个D.有无穷多个【答案】D【解析】设p为任意奇质数,且p=2k+1,于是n=k2.便有√p+n+√n=√2k+1+k2+√k2=2k+1.所以每个奇质数都有题设的性质.3.【1991高中数学联赛(第01试)】设a是正整数,a<100.并且a3+23能被24整除,那么,这样的a的个数为( )A.4B.5C.9D.10【答案】B【解析】考虑使得24|a3−1成立的a.则a3−1=(a−1)(a2+a+1)=(a−1)[a(a+1)+1].因a (a +1)+1是奇数,若要24|(a 3-1),必有23|(a −1). 若a -1不能被3整除,则3|a(a +1), 从而a (a +1)+1不能被3整除.因此,若要24|(a 3−1),必有3|(a −1), 这样就有24|(a −1),即a =24k +1.由24k +1<100,k 可能取的一切值为0,1,2,3,4,也就是这样的a 有1,25,49,73,97五个. 4.【1987高中数学联赛(第01试)】对任意给定的自然数n ,若n 6+3a 正整数,则( ) A .这样的a 有无穷多个B .这样的a 存在,但只有有限个C .这样的a 不存在D .以上A ,B ,C 的结论都不正确【答案】A【解析】对任何自然数k ,取a =3n 4k +9n 2k 2+9k 2,则n 6+3a =(n 2+3k )3.5.【1983高中数学联赛(第01试)】设p ,q 是自然数,条件甲:p 3-q 3是偶数;条件乙:p +q 是偶数.那么( )A .甲是乙的充分而非必要条件B .甲是乙的必要而非充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】C【解析】就两个自然数p ,q 分别取奇数或偶数的四种情况: (1){p 是奇数q 是奇数 ,(2){p 是偶数q 是偶数,(3){p 是奇数q 是偶数 ,(4){p 是偶数q 是奇数进行讨论,有p 3−q 3⇔{p 是奇数q 是奇数 或{p 是偶数q 是偶数p +q 是偶数.6.【2019高中数学联赛A 卷(第01试)】在1,2,3,…,10中随机选出一个数a 在-1,-2,-3,…,-10中随机选出一个数b ,则a 2+b 被3整除的概率为 .【答案】37100【解析】数组(a ,b )共有102=100种等概率的选法. 考虑其中使a 2+b 被3整除的选法数N .若a 被3整除,则b 也被3整除.此时a ,b 各有3种选法,这样的(a ,b )有32=9组.若a 不被3整除,则a 2≡1( mod 3),从而b ≡−1( mod 3).此时a 有7种选法,b 有4种选法,这样的(a ,b )有7×4=28组. 因此N =9+28=37.于是所求概率为37100.7.【2015高中数学联赛(第01试)】对四位数abcd (1≤a ≤9,0≤b ,c ,d ≤9),若a >b ,b <c ,c >d ,则称abcd 为P 类数:若a <b ,b >c ,c <d ,则称abcd 为Q 类数.用N (P )与N (Q )分别表示P 类数与Q 类数的个数,则N (P )-N (Q )的值为 .【答案】285【解析】分别记P 类数、Q 类数的全体为A ,B ,再将个位数为零的P 类数全体记为A 0,个位数不等于零的P 类数全体记为A 1,对任一四位数abcd ∈A 1,将其对应到四位数dcba ,注意到a >b,b <c,c >d ⩾1,故dcba ∈B ,反之,每个dcba ∈B 唯一对应于A 1中的元素abcd ,这建立了A 1与B 之间的一一对应,因此有N(P)−N(Q)=|A|−|B|=|A 0|+|A 1|−|B|=|A 0|.下面计算|A 0|:对任一四位数abc0∈A 0,b 可取0,1,…,9,对其中每个b ,由b <a ≤9及b <c ≤9知,a 和c 分别有9-b 种取法,从而|A 0|=∑(9−b)29b=0=∑k 29k=1=9×10×196=285.因此N(P)−N(Q)=285.8.【2004高中数学联赛(第01试)】设p 是给定的奇质数,正整数k 使得√k −pk 也是一个正整数,则k =.【答案】(p+1)24【解析】设√k 2−pk =n (n ∈N ∗),则k 2−pk −n 2=0,k =p±√p 2+4n 22.从而p 2+4n 2是平方数,设为m 2,m ∈N *,则(m −2n)(m +2n)=p 2. 因为p 是质数且p ≥3,所以{m −2n =1m +2n =p 2,解得{m =p 2+12n =p 2−14 , 所以k =p±m 2=2p±(p 2+1)4,故k =(p+1)24(负值舍去).9.【1993高中数学联赛(第01试)】整数[10931031+3]的末尾两位数字是 .(先写十位数字,后写个位数字.其中[x ]表示不超过x 的最大整数). 【答案】08 【解析】[10931031+3]=[(1031)3+33−331031+3]=(1031)2−3×1031+32−1=(1031)(1031−3)+8,所以它的末尾两位数字是08.10.【1991高中数学联赛(第01试)】19912000除以106,余数是.【答案】80001【解析】19912000=(1+1990)2000=1+2000×1990+12×2000×1999×19902+⋯+19902000.依照上述展式,只需考虑前三项的和除以106的余数,故余数为80001.11.【1987高中数学联赛(第01试)】若k是大于1的整数,a是x2-kx+1=0的根,对于大于10的任意自然数n,a2n+a−2n的个位数字总是7,则k的个位数字是.【答案】3或5或7【解析】显然a≠0,因为a是x2−kx+1=0的根,所以a+1a =k(1a是另一根),则a2+a−2=(a+1a )2−2=k2−2,a22−a−22=(k2−2)2−2,a23−a−23=[(k2−2)2−2]2−2,……,a2n+a−2n=(a2n−1+a−2n−1)2−2.当k为偶数时,易看出a2n+a−2n的个位数字只能是偶数;当k的个位数字是1时,a2n+a−2n的个位数字为9;当k的个位数字为3时,a2n+a−2n的个位数字为7;当k的个位数字为5时,对于n>1,a2n+a−2n的个位数字也是7;当k的个位数字是7时,a2n+a−2n的个位数字也是7;当k的个位数字是9时,a2n+a−2n的个位数字是9.故当k>1时,对于任何大于10的自然数n,使a2n+a−2n的个位数字总是7,则k的个位数字是3或5或7.12.【1985高中数学联赛(第01试)】方程2x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=3的非负整数解共有组.【答案】174【解析】显然x1只能取1或0.当x1=1时,原方程有9组解,当x1=0时,原方程的解中含有数字3的有9组,不含3而含有2的有72组,只含有1和0的有C93=84组,所以非负整数解总共有174组.13.【1985高中数学联赛(第01试)】在已知数列1,4,8,10,16,19,21,25,30,43中,相邻若干数之和能被11整除的数组共有组.【答案】7【解析】由于是考虑被11整除的问题,故可先把各项减去11的倍数,使数字变小而便于运算,由此可得到如下数列1,4,−3,−1,5,−3,−1,3,−3,−1.设S n为它的前n项和,则S1=1,S2=5,S3=2,S4=1,S5=6,S6=3,S7=2,S8=5,S9=2,S10=1.其中相等的有S1=S4=S10=1,S2=S8=5,S3=S7=S9=2.所以S4−S1,S10−S1,S10−S4,S8−S2,S7−S3,S9−S3,S9−S7共7组能被11整除.优质模拟题强化训练1.对任意正整数n,定义Z(n)为使得1+2+⋅⋅⋅+m是n的倍数的最小正整数m.关于下列三个命题:①若p为奇质数,则Z(p)=p−1;②对任意正整数a,都有Z(2a)>2a;③对任意正整数a,都有Z(3a)=3a−1.其中所有真命题的序号为().A.①②B.①③C.②③D.①②③【答案】D【解析】注意到1+2+⋅⋅⋅+m=m(m+1)2.在①中,使得p|m(m+1)2,即2p|m(m+1),注意到p为奇质数,有p|m或者p|m+1,从而m的最小值为p−1,因此①正确.在②中,由2a|m(m+1)2知2a+1|m(m+1),注意到(m,m+1)=1,于是有2a+1|m或者2a+1|(m+1),故Z(2a)= 2a+1−1>2a,因此②正确.在③中,由3a|m(m+1)2知2⋅3a|m(m+1),注意到2|m(m+1)及(2,3)=1,因此等价于3a|m(m+1),又注意到(m,m+1)=1,于是有3a|m或者3a|m+1,故Z(3a)=3a−1,因此③正确.故答案为:D2.关于x、y的方程1x +1y+1xy=12006的正整数解(x,y)的对数为().A.16B.24C.32D.48 【答案】D【解析】由1x +1y+1xy=12006,得xy−2006x−2006y−2006=0.整理得(x−2006)(y−2006)=2006×2007=2×32×17×59×223.从而,原方程的正整数解有(1+1)(2+1)(1+1)(1+1)(1+1)=48(组). 故答案为:D3.方程1x +1y=17的整数解(x,y)的个数为().A.5B.6C.7D.8【答案】A【解析】(x,y)=(−42,6),(6,−42),(8,56),(14,14),(56,8)共5组.当x=7时无解;当x≠7时y=7xx−7,故x−7|7x,所以x−7|49,所以x=−42,6,8,14,56.综上共5组解.故答案为A4.设S n、T n分别是等差数列{a n}与{b n}的前n项和,对任意正整数n,都有S nT n =2n+6n+1.若a mb m为质数,则正整数m的值为().A.2B.3C.5D.7【答案】A【解析】由条件可设S n=kn(2n+6),T n=kn(n+1),则m=1时,a1b1=S1T1=82=4,不满足题意,舍去.当m≥2时,a mb m =S m−S m−1T m−T m−1=4m+42m=2+2m,于是仅在m=2时,a mb m=3为质数.所以,所求的正整数m=2.故答案为:A5.对任意的整数n,代数式n2−n+4的值被9除的余数不会是()A.0B.1C.6D.7【答案】A当n=3时,余数可以为1;当n=4时,余数可以为7;当n=5时,余数可以为6.下面证明:n2−n+4不能被9整除.若不然,有9|[(n−2)2+3n].①.因为3|3n,所以3|(n−2)2.但3为质数,故3|(n−2).②从而,9|(n −2)2.③.由①、③得9|3n⇒3|n.④.由②、④矛盾得n2−n+4不能被9整除。

专题29初等数论(解析版)-备战2021年高中数学联赛之历年真题汇编(1981-2020)

专题29初等数论(解析版)-备战2021年高中数学联赛之历年真题汇编(1981-2020)

备战2021年高中数学联赛之历年真题汇编(1981-2020)专题29初等数论历年联赛真题汇编1.【2020高中数学联赛B卷(第02试)】设a,b为不超过12的正整数,满足:存在常数C,使得a n+b n+9≡C(mod13 )对任意正整数n成立.求所有满足条件的有序数对(a,b).【答案】(1,1),(4,4),(10,10),(12,12)【解析】解法1:由条件知,对任意正整数n,有a n+b n+9≡a n+3+b n+12(mod13). ①注意到13为素数,a,b均与13互素,由费马小定理知a2≡b2≡1(mod13).因此在①中取n=12,化简得1+b9≡a3+1(mod13),故b9≡a3(mod13).代入①,得a n+a3b n≡a n+3+b n+12≡a n+3+b n(mod13),即(a n−b n)(1−a3)≡0(mod13). ②分两种情况讨论.(ⅰ)若a3≡1(mod13),则b3≡a3b3≡b12≡1(mod13),又a,b∈{1,2,⋯,12},经检验可知a,b∈{1,3,9}.此时a n+b n+9≡a n+b n(mod13).由条件知a+b≡a3+b3≡2(mod13),从而只能是a=b=1.经检验,当(a,b)=(1,1)时,对任意正整数n,a n+b n+9模13余2为常数,满足条件.(ⅱ)若a3≡1(mod13),则由②知,对任意正整数n,有a n≡b n(mod13).特别地,a≡b(mod13),故a=b.所以a3≡b9=a9(mod13),即a3(a3−1)(a3+1)≡0(mod13),故a3≡−1(mod13).通过检验a≡±1,±2,⋯,±6(mod13),可知a=4,10,12.经检验,当(a,b)=(4,4),(10,10),(12,12)时,对任意正整数n,有a n+b n+9=a n+a n+9=a n(1+(a3)3)≡0(mod13),满足条件.综上,所求的有序数对(a,b)为(1,1),(4,4),(10,10),(12,12).解法2:由条件知,对任意正整数n,有(a n+b n+9)(a n+2+b n+11)≡(a n+1+b n+10)2(mod13),化简得a n b n+11+a n+2b n+9≡2a n+1+b n+10(mod13),即a n b n+9(a−b)2≡0(mod13).由于13为素数,a,b∈{1,2,⋯,12},故13|(a−b)2,进而a=b.第5页共27页。

全国高中数学联赛分类汇编(初等数论)

全国高中数学联赛分类汇编(初等数论)

2000-2012全国高中数学联赛分类汇编(初等数论)1、(2005一试6)记集合},4,3,2,1,|7777{},6,5,4,3,2,1,0{4433221=∈+++==i T a a a a a M T i 将M 中的元素按从大到小的顺序排列,则第2005个数是( )A .43273767575+++B .43272767575+++C .43274707171+++D .43273707171+++【答案】C【解析】用p k a a a ][21 表示k 位p 进制数,将集合M 中的每个数乘以47,得32123412347{777|,1,2,3,4}{[]|,1,2,3,4}.i i M a a a a a T i a a a a a T i '=⋅+⋅+⋅+∈==∈= M '中的最大数为107]2400[]6666[=。

在十进制数中,从2400起从大到小顺序排列的第2005个数是2400-2004=396。

而=10]396[7]1104[将此数除以47,便得M 中的数.74707171432+++故选C 。

2、(2006一试6)数码1232006,,,,a a a a 中有奇数个9的2007位十进制数12320062a a a a 的个数为( ) A .200620061(108)2+ B .200620061(108)2- C .20062006108+ D .20062006108- 【答案】B【解析】出现奇数个9的十进制数个数有12005320032005200620062006999A C C C =+++。

又由于2006200620062006(91)9kkk C-=+=∑以及20062006200620060(91)(1)9kk k k C -=-=-∑,从而得 12005320032005200620062006200620061999(108)2A C C C =+++=-。

14数论1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

14数论1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

1981年~2019年全国高中数学联赛二试试题分类汇编数论部分2019A 5、在1,2,3,,10 中随机选出一个数a ,在1,2,3,,10---- 中随机选出一个数b ,则2a b +被3整除的概率为 .◆答案:37100★解析:首先数组(),a b 有1010100⨯= 种等概率的选法. 考虑其中使2a b +被3整除的选法数N .①若a 被 3 整除,则b 也被 3 整除.此时,a b 各有3种选法,这样的(),a b 有339⨯=组.若a 不被 3 整除,则()21mod3a ≡,从而()1mod3b ≡-.此时a 有7 种选法,b 有4种选法,这样的(),a b 有7428⨯=组. 因此92837N =+=.于是所求概率为37100。

2019A 三、(本题满分 50 分)设m 为整数,2m ≥.整数数列12,,a a 满足:12,a a 不全为零,且对任意正整数n ,均有21n n n a a ma ++=-.证明:若存在整数,r s , (2r s >≥ )使得1r s a a a ==,则r s m -≥.★解析:证明:不妨设12,a a 互素(否则,若()12,1a a d =>,则12,1a a d d ⎛⎫=⎪⎝⎭互素,并且用12,,a a d d代替12,,a a ,条件与结论均不改变).由数列递推关系知()234mod a a a m ≡≡≡. ①以下证明:对任意整数3n ≥,有()()2123mod n a a a n a m m ≡-+-⎡⎤⎣⎦. ② ………10 分 事实上,当3n =时②显然成立.假设n k =时②成立(其中k 为某个大于2的整数),注意到①,有()212mod k ma ma m -≡,结合归纳假设知()()()21122221232mod k k k a a ma a k a m ma a a k a m +-≡-≡+--=-+-⎡⎤⎡⎤⎣⎦⎣⎦,即1n k =+时②也成立.因此②对任意整数3n ≥均成立. ………………20 分注意,当12a a =时,②对2n =也成立. 设整数,r s , (2r s >≥ ),满足1r s a a a ==. 若12a a =,由②对2n ≥均成立,可知()()()221221233mod r s a a r a m a a a a s a m m -+-≡≡≡-+-⎡⎤⎡⎤⎣⎦⎣⎦即()()()121233mod a r a a s a m +-≡+-,即 ()()20mod r s a m -≡. ③ 若12a a ≠,则12r s a a a a ==≠故3r s >≥.此时由于②对3n ≥均成立, 故类似可知③仍成立. ………………30 分 我们证明2,a m 互素.事实上,假如2a 与m 存在一个公共素因子p ,则由①得p 为23,,a a 的公因子,而12,a a 互素,故/|p 1a ,这与1r s a a a ==矛盾.因此,由③得()0mod r s m -≡.又r s >,所以r s m -≥. ………………50分2018A 四、(本题满分50分)数列{}n a 定义如下:1a 是任意正整数,对整数1≥n ,1+n a 与∑=ni ia1互素,且不等于n a a a ,.,,21 的最小正整数,证明:每个正整数均在数列{}n a 中出现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数论部分2018A 四、(本题满分50分)数列{}n a 定义如下:1a 是任意正整数,对整数1≥n ,1+n a 与∑=ni ia1互素,且不等于n a a a ,.,,21 的最小正整数,证明:每个正整数均在数列{}n a 中出现。

★证明:显然11=a 或者12=a .下面考虑整数1>m ,设m 有k 个不同的素因子,我们对k 归纳证明m 在{}n a 中出现.记n n a a a S +++= 21,1≥n .1=k 时,m 是素数方幂,记αp m =,其中0>α,p 是素数.假设m 不在{}n a 中出现.由于{}n a 各项互不相同,因此存在正整数N ,当N n ≥时,都有αp a n >.若对某个N n ≥,n S p |/,那么αp 与n S 互素,又n a a a ,.,,21 中无一项是αp ,故有数列定义知αp a n ≤+1,但是αp a n >+1,矛盾!因此对每个N n ≥,都有n S p |.又1|+n S p ,可得1|+n a p ,从而1+n a 与n S 不互素,这与1+n a 的定义矛盾!假设2≥k ,且结论对1-k 成立.设m 的标准分解为k k p p p m ααα2121=.假设m 不在{}n a 中出现,于是存在正整数/N ,当/N n ≥时,都有m a n >.取充分大的正整数121,,-k βββ ,使得n N n k a p p p M k /1211121max ≤≤->=-βββ .我们证明,对/N n ≥,有M a n ≠+1.对于任意/N n ≥,若n S 与k p p p 21互素,则m 与n S 互素,又m 在n a a a ,.,,21 中均未出现,而m a n >+1,这与数列的定义矛盾,因此我们得到:对于任意/N n ≥,n S 与k p p p 21不互素*, ⑴若存在i (11-≤≤k i ),使得n i S p |,则()1,1=+n n S a ,故1|+/n i a p ,从而M a n ≠+1(因为M p i |)。

⑵若对每个i (11-≤≤k i ),均有n i S p |/,则由*知,必有n k S p |.于是1|+/n k a p ,进而1|++/n n k a S p ,即1|+/n k S p .故由*知:存在0i (110-≤≤k i ),使得1|0+n i S p ,再由n n n a S S +=+1及前面的假设n i S p |/,可知1|0+/n i a p ,故M a n ≠+1。

因此,对1/+≥N n ,均有M a n ≠,而n N n k a p p p M k /1211121max ≤≤->=-βββ ,故M 不在{}n a 中出现,这与假设矛盾!因此,若m 有k 个不同的素因子,则m 一定在数列{}n a 中出现.由数学归纳法知,所以正整数均在数列{}n a 中出现。

2018B 四、(本题满分50分)给定整数2≥a 。

证明:对任意正整数n ,存在正整数k ,使得连续n个数1+k a ,,,2 +ka n a k+均是合数。

★证明:设r i i i <<< 21是n ,,2,1 中与a 互素的全体整数,则n i ≤≤1,{}r i i i i ,,,21 ∉,无论正整数k 如何取值,i a k +均与a 不互素且大于a ,故i a k+为合数。

对任意r j ,,2,1 =,因1>+j i a ,故j i a +有素因子j p .我们有()1,=a p j (否则,因j p 是素数,故j p a |,但j p j i a +|,从而j p |j i ,即a 与j i 不互素,与j i 的取法矛盾).因此,由费马小定理知,()i p p amod 11≡-现取()()()111121+---=r p p p k ,对任意r j ,,2,1 =,注意到()1mod 1-≡j p k ,故有()j j j k p i a i a mod 0≡+=+.又j j j k p i a i a ≥+>+,故j k i a +为合数。

综上所述,当()()()111121+---=r p p p k 时,1+k a ,,,2 +ka n a k+均是合数。

2017A 4、若一个三位数中任意两个相邻数码的差均不超过1,则称其为“平稳数”,则平稳数的个数 是 ◆答案: 75★解析:考虑平稳数abc 。

①若0=b ,则1=a ,{}1,0∈c ,有2个平稳数;②若1=b ,则{}2,1∈a ,{}2,1,0∈c ,有632=⨯个平稳数; ③若[]8,2∈b ,则a ,{}1,,1+-∈b b b c ,有63337=⨯⨯个平稳数; ④若9=b ,则{}9,8,∈c a ,有422=⨯个平稳数;综上可知,平稳数的个数为7546362=+++。

2017B 8、若正整数c b a ,,满足c b a 1000100102017≥≥≥,则数组),,(c b a 的个数为 ◆答案:574★解析:由条件知2017[]21000c ≤=,当1c =时,有1020b ≤≤,对于每个这样的正整数b ,由10201b a ≤≤知,相应的a 的个数为20210b -,从而这样的正整数组的个数为2010(1022)11(20210)5722b b =+⨯-==∑, 当2c =时,由201720[]100b ≤≤,知,20b =,进而2017200[]20110a ≤≤=, 故200,201a =,此时共有2组(,,)abc .综上所述,满足条件的正整数组的个数为5722574+=.2016A 8、设4321,,,a a a a 是100,,3,2,1 中的4个互不相同的数,满足()()2433221242322232221)(a a a a a a a a a a a a++=++++,则这样的有序数组),,,(4321a a a a 的个数为 ◆答案:40★解析:由柯西不等式知,2433221242322232211)())((a a a a a a a a a a a a ++≥++++,等号成立的充分必要条件是433221a a a a a a ==,即4321,,,a a a a 成等比数列.于是问题等价于计算满足{1,2,3,},,,{4321⊆a a a a …,100}的等比数列4321,,,a a a a 的个数.设等比数列的公比1≠q ,且q 为有理数.记mnq =,其中n m ,为互素的正整数,且n m ≠. 先考虑m n >的情况.此时331314)(m n a m n a a ==,注意到33,n m 互素,故31m a l =为正整数. 相应地,4321,,,a a a a 分别等于l n l mn nl m l m 3223,,,,它们均为正整数.这表明,对任意给定的1>=mnq ,满足条件并以q 为公比的等比数列4321,,,a a a a 的个数,即为满足不等式1003≤l n 的正整数l 的个数,即]100[3n. 由于10053>,故仅需考虑34,4,23,3,2=q 这些情况,相应的等比数列的个数为 20113312]64100[]64100[]27100[]27100[]8100[=++++=++++. 当m n <时,由对称性可知,亦有20个满足条件的等比数列4321,,,a a a a . 综上可知,共有40个满足条件的有序数组),,,(4321a a a a .2016A 四、(本题满分50分)设p 与2+p 均是素数,3>p ,数列{}n a 定义为21=a ,⎥⎦⎤⎢⎣⎡+=--n pa a a n n n 11, ,3,2=n ,这里[]x 表示不小于实数x 的最小整数。

证明:对1,,4,3-=p n ,均有)1(|1+-n pa n 成立。

★证明:首先注意到,数列{}n a 是整数数列。

对n 用数学归纳法。

当3=n 时,由条件知p a +=22,故()2211+=+p pa ,又p 与2+p 均是素数,且3>p ,故必须1|3+p ,因此1|32+pa ,即3=n 时,结论成立。

对13-≤<p n ,设1,,4,3-=n k 时结论成立,即1|1+-k pa k ,此时k pa k pa k k 111+=⎥⎦⎤⎢⎣⎡--, 故()()11111111222221--++=+⎪⎭⎫⎝⎛-+=+⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡-+=+------k k p pa k pa a p k pa a p pa k k k k k k故对13-≤<p n 时,有()()()()()==+--+--+=+--+=+--- 122111111321n n n pan n p n n p pan n p pa()()()()nn p C p n p p n pap n n p n n p ++++=++--+--+=)2)(()1(213322112,显然)1)(2)((|1+++-n pa p n p n ,★因为p n <,p 是素数,故1),(),(==+p n p n n ,又2+p 是大于n 的自然数,故1)2,(=+p n ,从而n 与)2)((++p p n 互素,故由★可知)1(|1+-n pa n 。

由数学归纳法知,对1,,4,3-=p n ,均有)1(|1+-n pa n 成立。

2016B 8、设正整数n 满足2016≤n ,且312642=⎭⎬⎫⎩⎨⎧+⎭⎬⎫⎩⎨⎧+⎭⎬⎫⎩⎨⎧+⎭⎬⎫⎩⎨⎧n n n n .这样的n 的个数为 .这里{}[]x x x -=,其中[]x 表示不超过x 的最大整数.◆答案:168★解析:由于对任意整数n ,有135113,2461224612n n n n ⎧⎫⎧⎫⎧⎫⎧⎫+++≤+++=⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭等号成立的充分必要条件是()1mod12n ≡-,结合12016n ≤≤知,满足条件的所有正整数为()1211,2,,168,n k k =-=共有168个.★解析:首先注意到,若m 为正整数,则对任意整数,x y ,若()mod x y m ≡,则.x y m m ⎧⎫⎧⎫=⎨⎬⎨⎬⎩⎭⎩⎭这是因为,当()mod x y m ≡时,x y mt =+,这里t 是一个整数,故.x x x y mt y mt y y y y y t t m m m m m m m m m m ++⎧⎫⎡⎤⎡⎤⎡⎤⎡⎤⎧⎫=-=-=+-+=-=⎨⎬⎨⎬⎢⎥⎢⎥⎢⎥⎢⎥⎩⎭⎣⎦⎣⎦⎣⎦⎣⎦⎩⎭因此,当整数12,n n 满足()12mod12n n ≡时,11112222.2461224612n n n n n n n n ⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫+++=+++⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭容易验证,当正整数满足112n ≤≤时,只有当11n =时,等式324612n n n n ⎧⎫⎧⎫⎧⎫⎧⎫+++=⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭才成立.而201612168=⨯,故当12016n ≤≤时,满足324612n n n n ⎧⎫⎧⎫⎧⎫⎧⎫+++=⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭正整数n 的个数为168.2016B 一、(本题满分40分)非负实数201621,,,x x x 和实数201621,,,y y y 满足:(1)122=+k k y x ,2016,,2,1 =k ;(2)201621y y y +++ 是奇数. 求201621x x x +++ 的最小值.★解析:由已知条件(1)可得:1,1,1,2,,2016,k k x y k ≤≤=于是(注意0i x ≥)()2016201620162016201622211111120162016.kkkkk k k k k k x xy yy =====≥=-=-≥-∑∑∑∑∑ ①不妨设112016,,0,,,0,02016,m m y y y y m +>≤≤≤则201611,2016.mk k k k m y m y m ==+≤-≤-∑∑若11mk k y m =>-∑,并且201612015,k k m y m =+->-∑令2016111,2015,m kk k k m ym a y m b ==+=-+-=-+∑∑则0,1,a b <<于是()201620161111201522016,mkkk k k k m y yy m a m b m a b ===+=+=-+--+=-+-∑∑∑由条件(2)知,20161k k y =∑是奇数,所以a b -是奇数,这与0,1a b <<矛盾.因此必有11m k k y m =≤-∑,或者201612015,k k m y m =+-≤-∑则201620161112015.m k k k k k k m y y y ===+=-≤∑∑∑于是结合①得201611.k k x =≥∑又当122015201612201520160,1,1,0x x x x y y y y ==========时满足题设条件,且使得不等式等号成立,所以122016x x x +++的最小值为1.2016B 二、(本题满分40分)设k n ,是正整数,且n 是奇数.已知n 2的不超过k 的正约数的个数为奇数,证明:n 2有一个约数d ,满足k d k 2≤<证明:记{n d d A 2||=,d 是奇数,} 0k d ≤<,{n d d A 2||=,d 是偶数,} 0k d ≤<,则φ=B A ,n 2的不超过k 的正约数的集合是B A★证明:记{}||2,0,A d d n d k d =<≤是奇数,{}||2,0,B d d n d k d =<≤是偶数,则,2A B n =∅的不超过k 的正约数的集合是.AB若结论不成立,我们证明.A B =对d A ∈,因为d 是奇数,故2|2d n ,又22d k ≤,而2n 没有在区间(],2k k 中的约数,故2d k ≤,即2d B ∈,故.A B ≤反过来,对d B ∈,设2d d '=,则|d n ',d '是奇数,又2kd k '≤<,故,d A '∈从而.B A ≤ 所以.A B =故2n 的不超过k 的正约数的个数为偶数,与已知矛盾.从而结论成立.∴ 145=-=AM ,945=+=BM ,835=+=CN 235=-=DN . 若设2=q ,则同法可得3=u ,4=v ,与v u >矛盾,舍去. 又证:在得出q p ,互质且其中必有一为偶数之后. 由于()1,=nm qp ,故必存在互质的正整数b a ,(b a >),使n q b a=-22,m p ab =2,r b a =+22.或m p b a =-22,n q ab =2,r b a =+22.若mp ab =2,得2=p ,ma 2|,mb 2|,故λ2=a ,μ2=b ,由b a ,互质,得0=μ,∴1=b ,12-=m a .()()1212121122-+=-=---m m m n q .故αq m =+-121,βq m =--121,(n =+βα,且βα>).∴ ()12-=-=-βαββαqq q q .由q 为奇数,得0=β,12-=n q ,3=n q ,从而2,2,4,1,32=====m a a n q .仍得上解.。

相关文档
最新文档