人教版九年级下册数学开学考试试卷A卷

合集下载

陕西人教版九年级下学期开学数学试卷A卷

陕西人教版九年级下学期开学数学试卷A卷

陕西人教版九年级下学期开学数学试卷A卷一、选择题 (共10题;共20分)1. (2分)如果a和b互为倒数,那么2ab+3的和是()A . 4B . 5C . 6D . 72. (2分)若a+b=﹣3,ab=1,则a2+b2=()A . -11B . 11C . -7D . 73. (2分)由一些大小相同的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A .B .C .D .4. (2分)若两个相似三角形的面积之比为1:4,则它们的周长之比为()A . 1:2B . 1:4C . 1:5D . 1:165. (2分)用配方法解下列方程,其中应在方程的左右两边同时加上4的是()A . -2x=5B . +4x=5C . +2x=5D . 2 -4x=56. (2分)已知关于x的方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范围是()A . k>2B . k>0且k≠1C . k<2且k≠1D . k<27. (2分)面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是()A .B .C .D .8. (2分)如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC =3:5,则AB的长是()A . 4cmB . 6cmC . 8cmD . 10cm9. (2分)在Rt△ABC中,已知∠C=90°,AC=12,BC=5,则cosA等于()A .B .C .D .10. (2分)在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题 (共8题;共8分)11. (1分)若函数是反比例函数,且它的图象在第二、四象限,则m 的值是________12. (1分)如果一个斜坡的坡度,那么该斜坡的坡角为________度.13. (1分)如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形中,,,则的长为________14. (1分)若反比例函数y= 的图象经过点(1,﹣6),则k的值为________.15. (1分)三角形的两边长分别是3和9,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为________.16. (1分)如图,在△ABC中,AB=AC,BC=12,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为________ .17. (1分)方程的根是________18. (1分)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正确的有________。

九年级(下)开学数学试卷(含答案解析)

九年级(下)开学数学试卷(含答案解析)

九年级(下)开学数学试卷(典型题)姓名:得分:日期:一、选择题(本大题共 8 小题,共 24 分)1、(3分) 在如图所示的花坛的图案中,圆形的内部有菊花组成的内接等边三角形,则这个图案()A.是轴对称图形但不是中心对称图形B.既是轴对称图形又是中心对称图形C.是中心对称图形但不是轴对称图形D.既不是轴对称图形又不是中心对称图形2、(3分) 下列事件中发生的可能性为0的是()A.抛一枚均匀硬币,落地后正面朝上B.今天黄冈市最高气温为88℃C.路边抛掷一石头,石头终将落地(空中无任何遮拦)D.不透明袋子中放了大小相同的兵兵球和金属球,从中去摸取出兵兵球3、(3分) 对于抛物线y=(x-1)2+2的说法错误的是()A.抛物线的开口向上B.抛物线的顶点坐标是(1,2)C.抛物线与x轴无交点D.当x<1时,y随x的增大而增大4、(3分) OA,OB是⊙O的两条半径,且∠C=40°,点C在⊙O上,则∠AOB的度数为()A.80°B.40°C.50°D.20°5、(3分) 某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)B.50(1+x)C.50+50(1+x)+50(1+x)D.50(1+x)+50(1+x)2=60 2=120 2=120 2=1206、(3分) 已知抛物线y=(m-1)x2+4x-3(m为常数)与x轴有两个交点,则m的取值范围是()A.m>−13B.m<−13C.m≥−13D.m>−13,且m≠17、(3分) 一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°8、(3分) 如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-2,0)、B(1,0),直线x=-0.5与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC、BC、AD、BD,某同学根据图象写出下列结论:①a-b=0;②当-2<x<1时,y>0;③四边形ACBD是菱形;④9a-3b+c>0你认为其中正确的是()A.②③④B.①②④C.①③④D.①②③二、填空题(本大题共 8 小题,共 24 分)9、(3分) 点(-4,3)关于原点对称的点的坐标是______.10、(3分) 把方程x2+2x-5=0配方后的方程为______.11、(3分) 一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是______.12、(3分) 当宽为3cm 的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm ),那么该圆的半径为______cm .13、(3分) 如图,正六边形内接于⊙O ,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是______.14、(3分) 如图,已知⊙P 的半径为2,圆心P 在抛物线y=12x 2-1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为______.15、(3分) 点A 在双曲线y=3x 上,点B 在双曲线y=k x (k≠0)上,AB∥x 轴,分别过点A 、B 向x 轴作垂线,垂足分别为D 、C ,若矩形ABCD 的面积是6,则k 的值为______.16、(3分) 如图,已知A (2√3,2)、B (2√3,1),将△AOB 绕着点O 逆时针旋转,使点A旋转到点A′(-2,2√3)的位置,则图中阴影部分的面积为______.三、解答题(本大题共 9 小题,共 72 分)17、(8分) 用适当的方法解下列方程(1)x2-4x-5=0;(2)3x2+4x-1=0.18、(6分) 如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.19、(6分) 某超市销售一种饮料,平均每天可售出100箱,每箱利润为120元,为了扩大销量,尽快减少库存,超市准备适当降价,据测算,若每箱降价2元,则每天可多售出4箱.(1)如果要使每天销售该饮料获利14000元,则每箱应降价多少元.(2)每天销售该饮料获利能达到14500元吗?若能,则每箱应降价多少?若不能,请说明理由.20、(6分) 在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=-x+5图象上的概率.21、(6分) 已知关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.22、(8分) 如图,一次函数y=k1x+b与反比例函数y=k2的图象交于A(2,3),B(n,-2)两x点.过点B作BC⊥x轴,垂足为C.(1)求一次函数与反比例函数的解析式;(2)请求出△ABC的面积;图象上的两点,且y1≥y2,求实数p的取值范围.(3)若P(p,y1),Q(-2,y2)是函数y=k2x23、(8分) 如图,AB为⊙O的直径,C为中点,CD⊥BE于D.(1)判断DC与⊙O的位置关系,并说明理由;(2)若DC=3,⊙O半径为5,求DE长.24、(10分) 某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元.(1)请求出y关于x的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润元,厂家如何生产可使每天获利最大?最大利润是多少?降低x10025、(14分) 如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD 交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.九年级(下)开学数学试卷【第 1 题】【答案】A【解析】解:所给图形是轴对称图形,但不是中心对称图形.故选:A.根据轴对称图形与中心对称图形的概念求解.掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.【第 2 题】【答案】B【解析】解:A、抛一枚均匀硬币,落地后正面朝上,是随机事件;B、今天黄冈市最高气温为88℃是不可能事件,可能性为0;C、路边抛掷一石头,石头终将落地(空中无任何遮拦)是必然事件,可能性为1;D、不透明袋子中放了大小相同的乒乓球和金属球,从中去摸取出乒乓球是随机事件;故选:B.根据事件发生的可能性既不是0,也不是100%的事件就是可能发生也可能不发生的事件,即不确定事件,从而得出答案.此题考查了可能性的大小,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.【第 3 题】【答案】D【解析】解:∵a=1>0,∴抛物线开口向上,∵二次函数为y=a(x-h)2+k顶点坐标是(h,k),∴二次函数y=(x-1)2+2的图象的顶点坐标是(1,2),∵抛物线顶点(1,2),开口向上,∴抛物线与x轴没有交点,故A、B、C正确故选:D.根据二次函数的性质,二次函数的顶点式即可判断;此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标是(h,k),解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【第 4 题】【答案】A【解析】解:∵∠C=40°,∴∠AOB=2∠C=80°.故选:A.直接根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,求解即可求得答案.此题考查了圆周角定理.注意熟记定理是解此题的关键.【第 5 题】【答案】D【 解析 】解:设二、三月份每月的平均增长率为x ,则二月份生产机器为:50(1+x ),三月份生产机器为:50(1+x )2;又知二、三月份共生产120台;所以,可列方程:50(1+x )+50(1+x )2=120.故选:D .主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设二、三月份每月的平均增长率为x ,根据“计划二、三月份共生产120台”,即可列出方程.本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.【 第 6 题 】【 答 案 】D【 解析 】解:∵y=(m-1)x 2+4x-3(m 为常数)与x 轴有两个交点,∴△=16-4(m-1)(-3)>0,且m-1≠0 解得m >−13,且m≠1.故选:D .根据b 2-4ac 与0的关系即可判断出二次函数y=(m+1)x 2+4mx+4m-3的图象与x 轴交点的个数.本题考查了二次函数y=ax 2+bx+c 的图象与x 轴交点的个数的判断:(1)当b 2-4ac >0时,二次函数ax 2+bx+c+2=0的图象与x 轴有两个交点;(2)当b 2-4ac=0时,二次函数ax 2+bx+c+2=0的图象与x 轴有一个交点;(3)当b 2-4ac <时,二次函数ax 2+bx+c+2=0的图象与x 轴没有交点.【 第 7 题 】【 答 案 】B【 解析 】解:∵一个扇形的弧长是10πcm ,面积是60πcm 2,∴S=12Rl ,即60π=12×R×10π,解得:R=12,∴S=60π=nπ×122360,解得:n=150°,故选:B .利用扇形面积公式1求出R的值,再利用扇形面积公式2计算即可得到圆心角度数.此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.【第 8 题】【答案】D【解析】解:①∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-2,0)、B(1,0),∴该抛物线的对称轴为x=-b2a =-0.5,∴a=b,a-b=0,①正确;②∵抛物线开口向下,且抛物线与x轴交于点A(-2,0)、B(1,0),∴当-2<x<1时,y>0,②正确;③∵点A、B关于x=0.5对称,∴AM=BM,又∵MC=MD,且CD⊥AB,∴四边形ACBD是菱形,③正确;④当x=-3时,y<0,即y=9a-3b+c<0,④错误.综上可知:正确的结论为①②③.故选:D.①由抛物线与x轴的两交点坐标即可得出抛物线的对称轴为x=-b2a =-0.5,由此即可得出a=b,①正确;②根据抛物线的开口向下以及抛物线与x轴的两交点坐标,即可得出当-2<x<1时,y>0,②正确;③由AB关于x=0.5对称,即可得出AM=BM,再结合MC=MD以及CD⊥AB,即可得出四边形ACBD是菱形,③正确;④根据当x=-3时,y<0,即可得出9a-3b+c<0,④错误.综上即可得出结论.本题考查了二次函数的图象、二次函数的性质以及菱形的判定,解题的关键是逐条分析四条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,根据给定的函数图象结合二次函数的性质逐条分析给定的结论是关键.【第 9 题】【答案】(4,-3)【解析】解:根据关于原点对称的点的坐标的特点,∴点(-4,3)关于原点对称的点的坐标是(4,-3).故答案为(4,-3).平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.本题主要考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数,比较简单.【第 10 题】【答案】(x+1)2=6【解析】解:x2+2x-5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故答案为:(x+1)2=6.移项后配方,再变形,即可得出答案.本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,有直接开平方法、因式分解法、配方法、公式法等.【第 11 题】【答案】45【解析】解:①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360-135=225,∵0<n<180,∴此种情形不合题意,故答案为45分两种情形讨论,分别画出图形求解即可.本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.【 第 12 题 】 【 答 案 】 25 【 解析 】解:连接OA ,过点O 作OD⊥AB 于点D ,∵OD⊥AB ,∴AD=12AB=12(9-1)=4cm ,设OA=r ,则OD=r-3, 在Rt△OAD 中,OA 2-OD 2=AD 2,即r 2-(r-3)2=42,解得r=256cm . 故答案为:256.连接OA ,过点O 作OD⊥AB 于点D ,由垂径定理可知,AD=12AB=12(9-1)=4,设OA=r ,则OD=r-3,在Rt△OAD 中利用勾股定理求出r 的值即可.本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.【 第 13 题 】 【 答 案 】16【 解析 】解:如图所示:连接OA ,∵正六边形内接于⊙O ,∴△OAB ,△OBC 都是等边三角形, ∴∠AOB=∠OBC=60°, ∴OC∥AB ,∴S △ABC =S △OBC , ∴S 阴=S 扇形OBC ,则飞镖落在阴影部分的概率是16; 故答案为:16.根据图形分析可得求图中阴影部分面积实为求扇形部分面积,而扇形面积是圆面积的16,可得结论.此题主要考查了正多边形和圆、几何概率以及扇形面积求法,得出阴影部分面积=S 扇形OBC是解题关键.【 第 14 题 】 【 答 案 】(√6,2)或(-√6,2) 【 解析 】解:依题意,可设P (x ,2)或P (x ,-2).①当P 的坐标是(x ,2)时,将其代入y=12x 2-1,得 2=12x 2-1,解得x=±√6,此时P (√6,2)或(-√6,2);②当P 的坐标是(x ,-2)时,将其代入y=12x 2-1,得 -2=12x 2-1,即-1=12x 2无解.综上所述,符合条件的点P 的坐标是(√6,2)或(-√6,2); 故答案是:(√6,2)或(-√6,2).当⊙P 与x 轴相切时,点P 的纵坐标是2或-2,把点P 的坐标坐标代入函数解析式,即可求得相应的横坐标.本题考查了直线与圆的位置关系,二次函数图象上点的坐标特征.解题时,为了防止漏解或错解,一定要分类讨论.【 第 15 题 】 【 答 案 】 9 【 解析 】解:设A (a ,3a ),则B (ak3,3a )∴AB=ak3−a ∵S ABCD =AB×AD∴(ak 3−a )×3a =6 ∴k=9故答案为9设A (a ,3a ),则B (ak 3,3a ),可表示AB 的长.根据矩形ABCD 的面积是6,求得k 的值. 本题考查了反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征.关键是灵活运用反比例函数系数k 的几何意义解决问题.【 第 16 题 】 【 答 案 】34π【 解析 】解:∵A (2√3,2)、B (2√3,1),∴OA=4,OB=√13,∵由A (2√3,2)使点A 旋转到点A′(-2,2√3), ∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,S 【formula error 】=S OBC ,∴阴影部分的面积等于S 扇形A'OA -S 扇形C'OC =14π×42-14π×(√13)2=34π, 故答案为:34π.由A (2√3,2)使点A 旋转到点A′(-2,2√3)的位置易得旋转90°,根据旋转的性质可得,阴影部分的面积等于S 扇形A'OA -S 扇形C'OC ,从而根据A ,B 点坐标知OA=4,OC=OB=√13,可得出阴影部分的面积.此题主要考查了扇形的面积计算及旋转的性质,解答本题的关键是根据旋转的性质得出S OB′C′=S OBC ,从而得到阴影部分的表达式.【 第 17 题 】 【 答 案 】解:(1)(x-5)(x+1)=0, x-5=0或x+1=0, ∴x 1=5,x 2=-1;(2)∵a=3,b=4,c=-1, ∴b 2-4ac=28>0, ∴x=−4±√282×3=−2±√73, ∴x 1=−2+√73,x 2=−2−√73.【 解析 】(1)利用因式分解法解方程;(2)先计算判别式的值,然后利用求根公式法解方程.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法解一元二次方程.【 第 18 题 】 【 答 案 】(1)证明:∵△BAD 是由△BEC 在平面内绕点B 旋转60°而得, ∴DB=CB ,∠ABD=∠EBC ,∠ABE=60°, ∵AB⊥BC , ∴∠ABC=90°,∴∠DBE=∠CBE=30°, 在△BDE 和△BCE 中,∵{DB =CB∠DBE =∠CBE BE =BE,∴△BDE≌△BCE (SAS ); (2)四边形ABED 为菱形; 由(1)得△BDE≌△BCE , ∵△BAD 是由△BEC 旋转而得, ∴△BAD≌△BEC ,∴BA=BE ,AD=EC=ED , 又∵BE=CE ,∴四边形ABED 为菱形.【解析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.本题考查了旋转的性质,解答本题的关键是掌握全等三角形的判定和性质以及菱形的判定,涉及知识点较多,难度较大.【第 19 题】【答案】解:(1)要使每天销售饮料获利14000元,每箱应降价x元,依据题意列方程得,(120-x)(100+2x)=14000,整理得x2-70x+1000=0,解得x1=20,x2=50;∵为了扩大销量,尽快减少库存,∴x=50.答:每箱应降价50元,可使每天销售饮料获利14000元.(2)由题意得:(120-x)(100+2x)=14500,整理得x2-70x+1250=0,∵△=702-4×1250<0,∴此方程无实数根,故该超市每天销售这种饮料的获利不可能达14500元.【解析】(1)此题利用的数量关系:销售每箱饮料的利润×销售总箱数=销售总利润,由此列方程解答即可;(2)根据题意列出方程,然后用根的判别式去验证.本题考查了一元二次方程在实际生活中的应用.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,本题也可利用二次函数求最值.【第 20 题】【答案】解:列表得:1 2 3 4yx(x,y)1 (1,2)(1,3)(1,4)2 (2,1)(2,3)(2,4)3 (3,1)(3,2)(3,4)4 (4,1)(4,2)(4,3)(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=-x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=-x+5图象上的概率为:P=412=13.【解析】(1)首先根据题意画出表格,即可得到P的所以坐标;(2)然后由表格求得所有等可能的结果与数字x、y满足y=-x+5的情况,再利用概率公式求解即可求得答案此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.【第 21 题】【答案】解:(1)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴△=(-6)2-4(m+4)=20-4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=-x2+2④,联立①④解得:x1=-2,x2=8(不合题意,舍去).∴符合条件的m的值为4.【解析】(1)根据方程的系数结合根的判别式,即可得出△=20-4m≥0,解之即可得出结论; (2)由根与系数的关系可得x 1+x 2=6①、x 1•x 2=m+4②,分x 2≥0和x 2<0可找出3x 1=x 2+2③或3x 1=-x 2+2④,联立①③或①④求出x 1、x 2的值,进而可求出m 的值.本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=20-4m≥0;(2)分x 2≥0和x 2<0两种情况求出x 1、x 2的值.【 第 22 题 】 【 答 案 】解:(1)把A (2,3)代入y=k2x ,得k 2=6, ∴反比例函数的解析式是y=6x ;∵B (n ,-2)在反比例函数y=6x 的图象上,∴n=-3,即B 的坐标为(-3,-2),把A (2,3),B (-3,-2)代入y=k 1x+b ,得 {2k 1+b =3−3k 1+b =−2,解得{k 1=1b =1, 即一次函数的解析式为y=x+1;(2)∵BC⊥x 轴,B (-3,-2),A (2,3) ∴BC=2,∴S △ABC =12•BC•|2-(-3)|=12×2×5=5;(3)∵P (p ,y 1),Q (-2,y 2)是函数y=6x 图象上的两点,且y 1≥y 2, ∴当点P 在第三象限时,要使y 1≥y 2,实数p 的取值范围是p≤-2, 当点P 在第一象限时,要使y 1≥y 2,实数p 的取值范围是p >0, 即p 的取值范围是p≤-2或p >0. 【 解析 】(1)根据一次函数y=k 1x+b 与反比例函数y=k 2x 的图象交于A (2,3),B (n ,-2)两点,可以分别求得一次函数与反比例函数的解析式;(2)根据点A 和点B 的坐标可以求得△ABC 的面积; (3)根据反比例函数的性质可以求得p 的取值范围.本题考查反比例函数和一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.【 第 23 题 】 【 答 案 】解:(1)DC与⊙O相切.理由如下:连结AE、OC,它们相交于F点,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵CD⊥BE,∴∠D=90°,∴CD∥AE,又∵C为中点,∴OC⊥AE,AF=EF,∴OC⊥CD,∴CD为⊙O的切线;(2)∵∠D=∠DCF=∠CFE=90°,∴四边形CFED为矩形,∴EF=CD=3,DE=CF,∴AF=3,在Rt△OFA中,OA=5,∴OF=√OA2−AF2=4,∴CF=OC-OF=5-4=1,∴DE=1.【解析】(1)连结AE、OC,它们相交于F点,根据圆周角定理由AB为⊙O的直径得到∠AEB=90°,而CD⊥BE,则CD∥AE,由于C为中点,根据垂径定理的推论得到OC⊥AE,AF=EF,所以OC⊥CD,于是根据切线的判定定理得到CD为⊙O的切线;(2)易得EF=CD=3,DE=DF,则AF=3,再根据勾股定理计算出OF,然后计算出CF,从而可得到DE的长.本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、勾股定理以及垂径定理的推论.【第 24 题】【答案】解:(1)根据题意可得:y=20x+15(600-x)=5x+9000.∴y关于x的函数关系式为y=5x+9000;(2)根据题意,得:50 x+35(600-x)≥26400,解得:x≥360,∵y=5x+9000,5>0,∴y随x的增大而增大,∴当x=360时,y有最小值为10800,∴每天至少获利10800元;(3)根据题意可得:y=(20-x100)x+15(600-x)=-1100(x-250)2+9625,∵−1100<0,∴当x=250时,y有最大值9625,∴每天生产A产品250件,B产品350件获利最大,最大利润为9625元.【解析】(1)根据题意,即可得y关于x的函数关系式为:y=20x+15(600-x),然后化简即可求得答案;(2)首先根据题意可得不等式:50x+35(600-x)≥26400,即可求得x的取值范围,又由一次函数的增减性,即可求得该酒厂每天至少获利多少元;(3)首先表示出获利与x之间的关系进而得出函数最值.此题考查了一次函数与不等式的实际应用、二次函数的应用.解题的关键是理解题意,根据题意列得一次函数解析式与不等式.【第 25 题】【答案】解:(1)由抛物线y=-x 2+bx+c 过点A (-1,0)及C (2,3)得,{−1−b +c =0−4+2b +c =3, 解得{b =2c =3, 故抛物线为y=-x 2+2x+3;又设直线为y=kx+n 过点A (-1,0)及C (2,3),得{−k +n =02k +n =3, 解得{k =1n =1, 故直线AC 为y=x+1;(2)∵y=-x 2+2x+3=-(x-1)2+4,∴D (1,4),当x=1时,y=x+1=2,∴B (1,2),∵点E 在直线AC 上,设E (x ,x+1).①如图2,当点E 在线段AC 上时,点F 在点E 上方,则F (x ,x+3),∵F 在抛物线上,∴x+3=-x 2+2x+3,解得,x=0或x=1(舍去),∴E (0,1);②当点E 在线段AC (或CA )延长线上时,点F 在点E 下方,则F (x ,x-1),∵F 在抛物线上,∴x -1=-x 2+2x+3, 解得x=1−√172或x=1+√172, ∴E (1−√172,3−√172)或(1+√172,3+√172),综上,满足条件的点E 的坐标为(0,1)或(1−√172,3−√172)或(1+√172,3+√172);(3)方法一:如图3,过点P 作PQ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG⊥x 轴于点G ,设Q (x ,x+1),则P (x ,-x 2+2x+3)∴PQ=(-x 2+2x+3)-(x+1)=-x 2+x+2又∵S △APC =S △APQ+S △CPQ=12PQ•AG=12(-x 2+x+2)×3=-32(x-12)2+278, ∴面积的最大值为278;方法二:过点P 作PQ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG⊥x 轴于点G ,如图3, 设Q (x ,x+1),则P (x ,-x 2+2x+3)又∵S △APC =S △APH +S 直角梯形PHGC -S △AGC=12(x+1)(-x 2+2x+3)+12(-x 2+2x+3+3)(2-x )-12×3×3=-32x 2+32x+3=-32(x-12)2+278,∴△APC 的面积的最大值为278. 【 解析 】(1)利用待定系数法求二次函数解析式、一次函数解析式;(2)需要分类讨论:①当点E 在线段AC 上时,点F 在点E 上方,则F (x ,x+3)和②当点E 在线段AC (或CA )延长线上时,点F 在点E 下方,则F (x ,x-1),然后利用二次函数图象上点的坐标特征可以求得点E 的坐标;(3)方法一:过点P 作PQ⊥x 轴交AC 于点Q ;过点C 作CG⊥x 轴于点G ,如图1.设Q (x ,x+1),则P (x ,-x 2+2x+3).根据两点间的距离公式可以求得线段PQ=-x 2+x+2;最后由图示以及三角形的面积公式知S △APC =-32(x-12)2+278,所以由二次函数的最值的求法可知△APC 的面积的最大值;方法二:过点P 作PQ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG⊥x 轴于点G ,如图2.设Q (x ,x+1),则P (x ,-x 2+2x+3).根据图示以及三角形的面积公式知S △APC =S △APH +S 直角梯形PHGC -S △AGC ═-32(x-12)2+278,所以由二次函数的最值的求法可知△APC 的面积的最大值. 本题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数解析式,平行四边形的性质,二次函数的性质,三角形的面积,有一定难度.解答(2)题时,要对点E 所在的位置进行分类讨论,以防漏解.。

人教版九年级下学期开学数学试卷A卷

人教版九年级下学期开学数学试卷A卷

人教版九年级下学期开学数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分)二次函数y=x2﹣2的图象的顶点是()A . (2,﹣2)B . (﹣1,0)C . (1,9)D . (0,﹣2)2. (2分)一个圆锥的底面半径为6㎝,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为()A . 9㎝B . 12㎝C . 15㎝D . 18㎝3. (2分)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A . 3步B . 5步C . 6步D . 8步4. (2分)如图,菱形ABCD的对角线BD、AC分别为2、2 ,以B为圆心的弧与AD、DC相切,则阴影部分的面积是()A . 2 ﹣πB . 4 ﹣πC . 4 ﹣πD . 25. (2分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,BC=3,AC=4,则sin∠DCB 的值为()A .B .C .D .6. (2分)如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是()A . 1B .C .D .7. (2分)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中符合题意的个数是()①点D到∠BAC的两边距离相等;②点D在AB的中垂线上;③AD=2CD④AB=2 CDA . 1B . 2C . 3D . 48. (2分)若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A . 抛物线开口向上B . 抛物线的对称轴是C . 当时,y的最大值为4D . 抛物线与x轴的交点为,9. (2分)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4,则△CEF的周长为A . 8B . 9.5C . 10D . 510. (2分)如图,在□ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF :S△BAF=4:25,则DE:AB =().A . 2∶5B . 2∶3C . 3∶5D . 3∶2二、填空题 (共8题;共8分)11. (1分)“任意打开一本200页的数学书,正好是第50页”,这是________事件(选填“随机”,“必然”或“不可能”).12. (1分)如图,△AOB和△ACD均为正三角形,顶点B、D在双曲线y= (x>0)上,线段BC、AD交于点P,则S△OBP=________.13. (1分)抛物线y=﹣x2+3x+4在x轴上截得的线段长度是________.14. (1分)在中,,点为平面内一点,且,若,则 ________.(请用含的代数式来表示)15. (1分)如图,在△ABC中,AD⊥BC于D,如果BD=9,DC=5,cosB=, E为AC 的中点,那么sin∠EDC的值为________ .16. (1分)如图,将边长为2m的正六边形铁丝框ABCDEF変形为以点A为圆心,AB 为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积________.17. (1分)一个正方形的面积是5,那么这个正方形的对角线的长度为________.18. (1分)已知点A为双曲线y= 图象上的点,点O为坐标原点,过点A作AB⊥x 轴于点B,连接OA.若△AOB的面积为5,则k的值为________.三、解答题 (共10题;共117分)19. (10分)计算:(1)sin45°﹣2﹣1+(3.14﹣π)0(2).20. (5分)如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?21. (5分)如图,已知△ABC.只用直尺(没有刻度的尺)和圆规,求作一个△DEF,使得△DEF∽△ABC,且EF=BC.(要求保留作图痕迹,不必写出作法)22. (30分)如图所示,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)画出位似中心点O;(3)直接写出△ABC与△A′B′C′的位似比;(4)直接写出△ABC与△A′B′C′的位似比;(5)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.(6)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.23. (8分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1) ________, ________;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为________°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24. (7分)如图,在⊙O中,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.(1)求证:∠PCA=∠B;(2)填空:已知∠P=40°,AB=12cm,点Q在上,从点A开始以πcm/s的速度逆时针运动到点C停止,设运动时间为ts.①当t=________时,以点A、Q、B、C为顶点的四边形面积最大;②当t=________时,四边形AQBC是矩形.25. (10分)如图,已知反比例函数y= 的图象与直线y=﹣x+b都经过点A(1,4),且该直线与x轴的交点为B.(1)求反比例函数和直线的解析式;(2)求△AOB的面积.26. (12分)将一块a×b×c的长方体铁块(如图1所示,a<b<c,单位:cm)放入一长方体(如图2所示)水槽中,并以速度20cm3/s匀速向水槽注水,直至注满为止.若将铁块a×c面放至水槽的底面,则注水全过程中水槽的水深y (cm)与注水时间t (s)的函数图象如图3所示(水槽各面的厚度忽略不计).已知a为5cm.(1)填空:水槽的深度为________cm,b=________cm;(2)求水槽的底面积S和c的值;(3)若将铁块的b×c面放至水槽的底面,求注水全过程中水槽的水深y(cm)与注水时间t(s)的函数关系,写出t的取值范围,并画出图象.27. (15分)在正方形ABCD中,AB=8,点P在边CD上,tan∠PBC= ,点Q是在射线BP上的一个动点,过点Q作AB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直.(1)如图1,当点R与点D重合时,求PQ的长;(2)如图2,试探索:的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;(3)如图3,若点Q在线段BP上,设PQ=x,RM=y,求y关于x的函数关系式,并写出它的定义域.28. (15分)已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积;(3)在抛物线y=﹣x2﹣2x+a(a>0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共117分) 19-1、19-2、20-1、21-1、22-1、22-2、22-3、22-4、22-5、22-6、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、28-1、28-2、28-3、。

2020届九年级下学期开学数学试卷A卷

2020届九年级下学期开学数学试卷A卷

2020届九年级下学期开学数学试卷A卷一、选择题: (共10题;共20分)1. (2分)二次函数y=x2﹣2x+2的顶点坐标是()A . (1,1)B . (2,2)C . (1,2)D . (1,3)2. (2分)已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为()A . 3B . 4C . 5D . 73. (2分)如图,已知△ABC与△ACD都是直角三角形,∠B=∠ACD=90°,AB=4,BC=3,CD=12。

则△ABC的内切圆与△ACD的内切圆的位置关系是()A . 内切B . 相交C . 外切D . 外离4. (2分)如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A . πB . πC .D .5. (2分)如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A .B .C .D .6. (2分)(2016•温州)一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A .B .C .D .7. (2分)在Rt△ABC中,∠C=90°,sinA= ,BC=6,则AB=()A . 4B . 6C . 8D . 108. (2分)二次函数y=ax2+bx+c的图象如图所示,则点Q(a ,)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分)正方形ABCD、正方形BEFG和正方形DMNK的位置如图所示,点A在线段NF 上,AE=8,则△NFP的面积为().A . 30B . 32C . 34D . 3610. (2分)如图,已知矩形的顶点分别落在轴、轴,则点的坐标是()A .B .C .D .二、填空题 (共8题;共8分)11. (1分)下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是________.(填序号)12. (1分)如图,点A是反比例函数y=﹣的图象上一点,过点A作AB⊥y轴于点B,点P是x轴上的一个动点,则△ABP的面积为________.13. (1分)(2017•青岛)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是________.14. (1分)如图,量角器的直径与直角三角尺ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3°的速度旋转,CP 与量角器的半圆弧交于点E,则第20秒点E在量角器上对应的读数是________°.15. (1分)如图,正方形ABCD中,E为CD上一点,以AE为对称轴将△ADE翻折得到△AFE,延长EF交BC于G,若BG=CG,则sin∠EGC=________.16. (1分)如图,在平行四边形ABCD中,AB=5,AD=2,∠B=60°,以点B为圆心,BC为半径的圆弧交AB于点E,连接DE,则图中阴影部分的面积为________.(结果保留π)17. (1分)如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于________.18. (1分)如图,▱AOBC中,对角线交于点E,双曲线经过A、E两点,若▱AOBC的面积为12,则k=________.三、解答题 (共10题;共96分)19. (5分)计算:()﹣1+16÷(﹣2)3+(2016﹣)0﹣tan60°.20. (5分)(2017•荆门)金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)21. (5分)网格中每个小正方形的边长都是1.(1)将图1中画一个格点三角形DEF,使得△DEF≌△ABC(2)将图2中画一个格点三角形MNL,使得△MNL∽△ABC,且相似比为2:1(3)将图3中画一个格点三角形OPQ,使得△OPQ∽△ABC,且相似比为:122. (6分)如图,在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系,请按要求完成下面的问题:(1)以图中的点O为位似中心,将△ABC作位似变换且同向放大到原来的两倍,得到△A1B1C1;(2)若△ABC内一点P的坐标为(a,b),则位似变化后对应的点P′的坐标是________.23. (8分)我市某中学艺术节期间,向学校学生征集书画作品.九年级美术李老师从全年级14个班中随机抽取了A、B、C、D 4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)李老师采取的调查方式是________(填“普查”或“抽样调查”),李老师所调查的4个班征集到作品共________件,其中B班征集到作品________,请把图2补充完整.(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)24. (15分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.25. (10分)如图,反比例函数y= 的图象与过两点A(0,﹣2),B(﹣1,0)的一次函数的图象在第二象限内相交于点M(m,4).(1)求反比例函数与一次函数的表达式;(2)在双曲线(x<0)上是否存在点N,使MN⊥MB,若存在,请求出N点坐标,若不存在,说明理由.26. (12分)(2017•咸宁)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是________件,日销售利润是________元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?27. (15分)如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),t an∠DBA= .(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.28. (15分)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A(﹣1,0)、B(3,0),与y轴负半轴交于点C.(1)若△ABD为等腰直角三角形,求此时抛物线的解析式;(2)a为何值时△ABC为等腰三角形?(3)在(1)的条件下,抛物线与直线y= x﹣4交于M、N两点(点M在点N的左侧),动点P从M点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点N,若使点P运动的总路径最短,求点P运动的总路径的长.参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共96分) 19-1、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、28-1、28-2、28-3、。

2023-2024学年人教版九年级下册数学开学测试试题

2023-2024学年人教版九年级下册数学开学测试试题

2023-2024学年人教版九年级下册数学开学测试试题一、单选题1.下面四个实数,你认为是无理数的是( )A .13 B C .3 D .0.32.甲、乙两位学生各进行5次一分钟跳绳训练,经统计两人的平均成绩相同,方差分别为223.2 1. 8S S ==甲乙,,则成绩更为稳定的是( )A .甲B .乙C .甲、乙成绩一样稳定D .无法确定 3.()1,2-关于原点对称的点的坐标为( )A .()1,2--B .()1,2C .()1,2-D .()1,2- 4.下列计算正确的是( )A .2a •a 2=2a 3B .3a 3÷2a =a 2C .(2a 2)3=6a 5D .5a 2﹣2a =3a 5.如图,A ,B ,C 是O e 上的三点,20OAB ∠=︒,则C ∠的度数是( )A .40︒B .70︒C .110︒D .140︒6.甲、乙两位同学去图书馆参加整理书籍的志愿活动,已知甲每小时比乙多整理5本,甲整理80本书所用的时间与乙整理70本书所用的时间相同,设乙每小时整理x 本书,根据题意列方程得( )A .80705x x =+B .80705x x =-C .80705x x =-D .80705x x =+二、填空题7x 的取值范围是.8.计算:32-=.9.因式分解:39mx my -=.10.一次函数2(1)1y k x k =-+-的图象经过原点,则y 随x 的增大而 .(填“增大”或“减小”)三、解答题11.已知()2211202a ab b H a b b a ab -+⎛⎫=-÷≠≠ ⎪⎝⎭. (1)化简H ;(2)若点(),P a b 在直线2y x =-上,求H 的值.12.已知二次函数的图象的顶点是()1,2--,且经过点30,2⎛⎫- ⎪⎝⎭ (1)求二次函数的解析式;(2)直接写出图象位于x 轴下方时,自变量x 的取值范围.13.如图,在ABCD Y 中,对角线AC ,BD 交于点O ,AB AC ⊥,AH BD ⊥于点H ,若2AB =,BC =AO 与AH 的长.14.如图已知AB 是O e 的直径,ACD ∠是»AD 所对的圆周角,30ACD ∠=︒.(1)求DAB ∠的度数;(2)过点D 作DE AB ⊥,垂足位E ,DE 的延长线交O e 于点F ,若4AB =,求AD ,DF 的长.15.如图,在ABC V 中,90ABC ∠=︒,12cm AB =,2BC AB =,动点P 从点A 开始沿边AB 向点B 以2cm/s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以4cm/s 的速度移动,如果P ,Q 两点分别从A ,B 两点同时出发,那么BPQ V 的面积S 随出发时间t 而变化.(1)求出S关于t的函数解析式,写出t的取值范围;(2)当t取何值时,S最大?最大值是多少?。

九年级(下)开学数学试卷(含答案解析)

九年级(下)开学数学试卷(含答案解析)

九年级(下)开学数学试卷姓名:得分:日期:一、选择题(本大题共 8 小题,共 24 分)1、(3分) 在如图所示的花坛的图案中,圆形的内部有菊花组成的内接等边三角形,则这个图案()A.是轴对称图形但不是中心对称图形B.既是轴对称图形又是中心对称图形C.是中心对称图形但不是轴对称图形D.既不是轴对称图形又不是中心对称图形2、(3分) 下列事件中发生的可能性为0的是()A.抛一枚均匀硬币,落地后正面朝上B.今天黄冈市最高气温为88℃C.路边抛掷一石头,石头终将落地(空中无任何遮拦)D.不透明袋子中放了大小相同的兵兵球和金属球,从中去摸取出兵兵球3、(3分) 对于抛物线y=(x-1)2+2的说法错误的是()A.抛物线的开口向上B.抛物线的顶点坐标是(1,2)C.抛物线与x轴无交点D.当x<1时,y随x的增大而增大4、(3分) OA,OB是⊙O的两条半径,且∠C=40°,点C在⊙O上,则∠AOB的度数为()A.80°B.40°C.50°D.20°5、(3分) 某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)B.50(1+x)C.50+50(1+x)+50(1+x)D.50(1+x)+50(1+x)2=60 2=120 2=120 2=1206、(3分) 已知抛物线y=(m-1)x2+4x-3(m为常数)与x轴有两个交点,则m的取值范围是()A.m>−13B.m<−13C.m≥−13D.m>−13,且m≠17、(3分) 一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°8、(3分) 如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-2,0)、B(1,0),直线x=-0.5与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC、BC、AD、BD,某同学根据图象写出下列结论:①a-b=0;②当-2<x<1时,y>0;③四边形ACBD是菱形;④9a-3b+c>0你认为其中正确的是()A.②③④B.①②④C.①③④D.①②③二、填空题(本大题共 8 小题,共 24 分)9、(3分) 点(-4,3)关于原点对称的点的坐标是______.10、(3分) 把方程x2+2x-5=0配方后的方程为______.11、(3分) 一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是______.12、(3分) 当宽为3cm 的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm ),那么该圆的半径为______cm .13、(3分) 如图,正六边形内接于⊙O ,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是______.14、(3分) 如图,已知⊙P 的半径为2,圆心P 在抛物线y=12x 2-1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为______.15、(3分) 点A 在双曲线y=3x 上,点B 在双曲线y=k x (k≠0)上,AB∥x 轴,分别过点A 、B 向x 轴作垂线,垂足分别为D 、C ,若矩形ABCD 的面积是6,则k 的值为______.16、(3分) 如图,已知A (2√3,2)、B (2√3,1),将△AOB 绕着点O 逆时针旋转,使点A旋转到点A′(-2,2√3)的位置,则图中阴影部分的面积为______.三、解答题(本大题共 9 小题,共 72 分)17、(8分) 用适当的方法解下列方程(1)x2-4x-5=0;(2)3x2+4x-1=0.18、(6分) 如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.19、(6分) 某超市销售一种饮料,平均每天可售出100箱,每箱利润为120元,为了扩大销量,尽快减少库存,超市准备适当降价,据测算,若每箱降价2元,则每天可多售出4箱.(1)如果要使每天销售该饮料获利14000元,则每箱应降价多少元.(2)每天销售该饮料获利能达到14500元吗?若能,则每箱应降价多少?若不能,请说明理由.20、(6分) 在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=-x+5图象上的概率.21、(6分) 已知关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.22、(8分) 如图,一次函数y=k1x+b与反比例函数y=k2的图象交于A(2,3),B(n,-2)两x点.过点B作BC⊥x轴,垂足为C.(1)求一次函数与反比例函数的解析式;(2)请求出△ABC的面积;图象上的两点,且y1≥y2,求实数p的取值范围.(3)若P(p,y1),Q(-2,y2)是函数y=k2x23、(8分) 如图,AB为⊙O的直径,C为中点,CD⊥BE于D.(1)判断DC与⊙O的位置关系,并说明理由;(2)若DC=3,⊙O半径为5,求DE长.24、(10分) 某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元.(1)请求出y关于x的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润元,厂家如何生产可使每天获利最大?最大利润是多少?降低x10025、(14分) 如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD 交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.九年级(下)开学数学试卷【第 1 题】【答案】A【解析】解:所给图形是轴对称图形,但不是中心对称图形.故选:A.根据轴对称图形与中心对称图形的概念求解.掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.【第 2 题】【答案】B【解析】解:A、抛一枚均匀硬币,落地后正面朝上,是随机事件;B、今天黄冈市最高气温为88℃是不可能事件,可能性为0;C、路边抛掷一石头,石头终将落地(空中无任何遮拦)是必然事件,可能性为1;D、不透明袋子中放了大小相同的乒乓球和金属球,从中去摸取出乒乓球是随机事件;故选:B.根据事件发生的可能性既不是0,也不是100%的事件就是可能发生也可能不发生的事件,即不确定事件,从而得出答案.此题考查了可能性的大小,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.【第 3 题】【答案】D【解析】解:∵a=1>0,∴抛物线开口向上,∵二次函数为y=a(x-h)2+k顶点坐标是(h,k),∴二次函数y=(x-1)2+2的图象的顶点坐标是(1,2),∵抛物线顶点(1,2),开口向上,∴抛物线与x轴没有交点,故A、B、C正确故选:D.根据二次函数的性质,二次函数的顶点式即可判断;此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标是(h,k),解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【第 4 题】【答案】A【解析】解:∵∠C=40°,∴∠AOB=2∠C=80°.故选:A.直接根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,求解即可求得答案.此题考查了圆周角定理.注意熟记定理是解此题的关键.【第 5 题】【答案】D【 解析 】解:设二、三月份每月的平均增长率为x ,则二月份生产机器为:50(1+x ),三月份生产机器为:50(1+x )2;又知二、三月份共生产120台;所以,可列方程:50(1+x )+50(1+x )2=120.故选:D .主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设二、三月份每月的平均增长率为x ,根据“计划二、三月份共生产120台”,即可列出方程.本题可根据增长率的一般规律找到关键描述语,列出方程;平均增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.【 第 6 题 】【 答 案 】D【 解析 】解:∵y=(m-1)x 2+4x-3(m 为常数)与x 轴有两个交点,∴△=16-4(m-1)(-3)>0,且m-1≠0 解得m >−13,且m≠1.故选:D .根据b 2-4ac 与0的关系即可判断出二次函数y=(m+1)x 2+4mx+4m-3的图象与x 轴交点的个数.本题考查了二次函数y=ax 2+bx+c 的图象与x 轴交点的个数的判断:(1)当b 2-4ac >0时,二次函数ax 2+bx+c+2=0的图象与x 轴有两个交点;(2)当b 2-4ac=0时,二次函数ax 2+bx+c+2=0的图象与x 轴有一个交点;(3)当b 2-4ac <时,二次函数ax 2+bx+c+2=0的图象与x 轴没有交点.【 第 7 题 】【 答 案 】B【 解析 】解:∵一个扇形的弧长是10πcm ,面积是60πcm 2,∴S=12Rl ,即60π=12×R×10π,解得:R=12,∴S=60π=nπ×122360,解得:n=150°,故选:B .利用扇形面积公式1求出R的值,再利用扇形面积公式2计算即可得到圆心角度数.此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.【第 8 题】【答案】D【解析】解:①∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-2,0)、B(1,0),∴该抛物线的对称轴为x=-b2a =-0.5,∴a=b,a-b=0,①正确;②∵抛物线开口向下,且抛物线与x轴交于点A(-2,0)、B(1,0),∴当-2<x<1时,y>0,②正确;③∵点A、B关于x=0.5对称,∴AM=BM,又∵MC=MD,且CD⊥AB,∴四边形ACBD是菱形,③正确;④当x=-3时,y<0,即y=9a-3b+c<0,④错误.综上可知:正确的结论为①②③.故选:D.①由抛物线与x轴的两交点坐标即可得出抛物线的对称轴为x=-b2a =-0.5,由此即可得出a=b,①正确;②根据抛物线的开口向下以及抛物线与x轴的两交点坐标,即可得出当-2<x<1时,y>0,②正确;③由AB关于x=0.5对称,即可得出AM=BM,再结合MC=MD以及CD⊥AB,即可得出四边形ACBD是菱形,③正确;④根据当x=-3时,y<0,即可得出9a-3b+c<0,④错误.综上即可得出结论.本题考查了二次函数的图象、二次函数的性质以及菱形的判定,解题的关键是逐条分析四条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,根据给定的函数图象结合二次函数的性质逐条分析给定的结论是关键.【第 9 题】【答案】(4,-3)【解析】解:根据关于原点对称的点的坐标的特点,∴点(-4,3)关于原点对称的点的坐标是(4,-3).故答案为(4,-3).平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.本题主要考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数,比较简单.【第 10 题】【答案】(x+1)2=6【解析】解:x2+2x-5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故答案为:(x+1)2=6.移项后配方,再变形,即可得出答案.本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,有直接开平方法、因式分解法、配方法、公式法等.【第 11 题】【答案】45【解析】解:①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360-135=225,∵0<n<180,∴此种情形不合题意,故答案为45分两种情形讨论,分别画出图形求解即可.本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.【 第 12 题 】 【 答 案 】 25 【 解析 】解:连接OA ,过点O 作OD⊥AB 于点D ,∵OD⊥AB ,∴AD=12AB=12(9-1)=4cm ,设OA=r ,则OD=r-3, 在Rt△OAD 中,OA 2-OD 2=AD 2,即r 2-(r-3)2=42,解得r=256cm . 故答案为:256.连接OA ,过点O 作OD⊥AB 于点D ,由垂径定理可知,AD=12AB=12(9-1)=4,设OA=r ,则OD=r-3,在Rt△OAD 中利用勾股定理求出r 的值即可.本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.【 第 13 题 】 【 答 案 】16【 解析 】解:如图所示:连接OA ,∵正六边形内接于⊙O ,∴△OAB ,△OBC 都是等边三角形, ∴∠AOB=∠OBC=60°, ∴OC∥AB ,∴S △ABC =S △OBC , ∴S 阴=S 扇形OBC ,则飞镖落在阴影部分的概率是16; 故答案为:16.根据图形分析可得求图中阴影部分面积实为求扇形部分面积,而扇形面积是圆面积的16,可得结论.此题主要考查了正多边形和圆、几何概率以及扇形面积求法,得出阴影部分面积=S 扇形OBC是解题关键.【 第 14 题 】 【 答 案 】(√6,2)或(-√6,2) 【 解析 】解:依题意,可设P (x ,2)或P (x ,-2).①当P 的坐标是(x ,2)时,将其代入y=12x 2-1,得 2=12x 2-1,解得x=±√6,此时P (√6,2)或(-√6,2);②当P 的坐标是(x ,-2)时,将其代入y=12x 2-1,得 -2=12x 2-1,即-1=12x 2无解.综上所述,符合条件的点P 的坐标是(√6,2)或(-√6,2); 故答案是:(√6,2)或(-√6,2).当⊙P 与x 轴相切时,点P 的纵坐标是2或-2,把点P 的坐标坐标代入函数解析式,即可求得相应的横坐标.本题考查了直线与圆的位置关系,二次函数图象上点的坐标特征.解题时,为了防止漏解或错解,一定要分类讨论.【 第 15 题 】 【 答 案 】 9 【 解析 】解:设A (a ,3a ),则B (ak3,3a )∴AB=ak3−a ∵S ABCD =AB×AD∴(ak 3−a )×3a =6 ∴k=9故答案为9设A (a ,3a ),则B (ak 3,3a ),可表示AB 的长.根据矩形ABCD 的面积是6,求得k 的值. 本题考查了反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征.关键是灵活运用反比例函数系数k 的几何意义解决问题.【 第 16 题 】 【 答 案 】34π【 解析 】解:∵A (2√3,2)、B (2√3,1),∴OA=4,OB=√13,∵由A (2√3,2)使点A 旋转到点A′(-2,2√3), ∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,S 【formula error 】=S OBC ,∴阴影部分的面积等于S 扇形A'OA -S 扇形C'OC =14π×42-14π×(√13)2=34π, 故答案为:34π.由A (2√3,2)使点A 旋转到点A′(-2,2√3)的位置易得旋转90°,根据旋转的性质可得,阴影部分的面积等于S 扇形A'OA -S 扇形C'OC ,从而根据A ,B 点坐标知OA=4,OC=OB=√13,可得出阴影部分的面积.此题主要考查了扇形的面积计算及旋转的性质,解答本题的关键是根据旋转的性质得出S OB′C′=S OBC ,从而得到阴影部分的表达式.【 第 17 题 】 【 答 案 】解:(1)(x-5)(x+1)=0, x-5=0或x+1=0, ∴x 1=5,x 2=-1;(2)∵a=3,b=4,c=-1, ∴b 2-4ac=28>0, ∴x=−4±√282×3=−2±√73, ∴x 1=−2+√73,x 2=−2−√73.【 解析 】(1)利用因式分解法解方程;(2)先计算判别式的值,然后利用求根公式法解方程.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法解一元二次方程.【 第 18 题 】 【 答 案 】(1)证明:∵△BAD 是由△BEC 在平面内绕点B 旋转60°而得, ∴DB=CB ,∠ABD=∠EBC ,∠ABE=60°, ∵AB⊥BC , ∴∠ABC=90°,∴∠DBE=∠CBE=30°, 在△BDE 和△BCE 中,∵{DB =CB∠DBE =∠CBE BE =BE,∴△BDE≌△BC E (SAS ); (2)四边形ABED 为菱形; 由(1)得△BDE≌△BCE , ∵△BAD 是由△BEC 旋转而得, ∴△BAD≌△BEC ,∴BA=BE ,AD=EC=ED , 又∵BE=CE ,∴四边形ABED 为菱形.【解析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.本题考查了旋转的性质,解答本题的关键是掌握全等三角形的判定和性质以及菱形的判定,涉及知识点较多,难度较大.【第 19 题】【答案】解:(1)要使每天销售饮料获利14000元,每箱应降价x元,依据题意列方程得,(120-x)(100+2x)=14000,整理得x2-70x+1000=0,解得x1=20,x2=50;∵为了扩大销量,尽快减少库存,∴x=50.答:每箱应降价50元,可使每天销售饮料获利14000元.(2)由题意得:(120-x)(100+2x)=14500,整理得x2-70x+1250=0,∵△=702-4×1250<0,∴此方程无实数根,故该超市每天销售这种饮料的获利不可能达14500元.【解析】(1)此题利用的数量关系:销售每箱饮料的利润×销售总箱数=销售总利润,由此列方程解答即可;(2)根据题意列出方程,然后用根的判别式去验证.本题考查了一元二次方程在实际生活中的应用.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,本题也可利用二次函数求最值.【第 20 题】【答案】解:列表得:1 2 3 4yx(x,y)1 (1,2)(1,3)(1,4)2 (2,1)(2,3)(2,4)3 (3,1)(3,2)(3,4)4 (4,1)(4,2)(4,3)(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=-x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=-x+5图象上的概率为:P=412=13.【解析】(1)首先根据题意画出表格,即可得到P的所以坐标;(2)然后由表格求得所有等可能的结果与数字x、y满足y=-x+5的情况,再利用概率公式求解即可求得答案此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.【第 21 题】【答案】解:(1)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴△=(-6)2-4(m+4)=20-4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=-x2+2④,联立①④解得:x1=-2,x2=8(不合题意,舍去).∴符合条件的m的值为4.【解析】(1)根据方程的系数结合根的判别式,即可得出△=20-4m≥0,解之即可得出结论; (2)由根与系数的关系可得x 1+x 2=6①、x 1•x 2=m+4②,分x 2≥0和x 2<0可找出3x 1=x 2+2③或3x 1=-x 2+2④,联立①③或①④求出x 1、x 2的值,进而可求出m 的值.本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=20-4m≥0;(2)分x 2≥0和x 2<0两种情况求出x 1、x 2的值.【 第 22 题 】 【 答 案 】解:(1)把A (2,3)代入y=k2x ,得k 2=6, ∴反比例函数的解析式是y=6x ;∵B (n ,-2)在反比例函数y=6x 的图象上,∴n=-3,即B 的坐标为(-3,-2),把A (2,3),B (-3,-2)代入y=k 1x+b ,得 {2k 1+b =3−3k 1+b =−2,解得{k 1=1b =1, 即一次函数的解析式为y=x+1;(2)∵BC⊥x 轴,B (-3,-2),A (2,3) ∴BC=2,∴S △ABC =12•BC•|2-(-3)|=12×2×5=5;(3)∵P (p ,y 1),Q (-2,y 2)是函数y=6x 图象上的两点,且y 1≥y 2, ∴当点P 在第三象限时,要使y 1≥y 2,实数p 的取值范围是p≤-2, 当点P 在第一象限时,要使y 1≥y 2,实数p 的取值范围是p >0, 即p 的取值范围是p≤-2或p >0. 【 解析 】(1)根据一次函数y=k 1x+b 与反比例函数y=k 2x 的图象交于A (2,3),B (n ,-2)两点,可以分别求得一次函数与反比例函数的解析式;(2)根据点A 和点B 的坐标可以求得△ABC 的面积; (3)根据反比例函数的性质可以求得p 的取值范围.本题考查反比例函数和一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.【 第 23 题 】 【 答 案 】解:(1)DC与⊙O相切.理由如下:连结AE、OC,它们相交于F点,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵CD⊥BE,∴∠D=90°,∴CD∥AE,又∵C为中点,∴OC⊥AE,AF=EF,∴OC⊥CD,∴CD为⊙O的切线;(2)∵∠D=∠DCF=∠CFE=90°,∴四边形CFED为矩形,∴EF=CD=3,DE=CF,∴AF=3,在Rt△OFA中,OA=5,∴OF=√OA2−AF2=4,∴CF=OC-OF=5-4=1,∴DE=1.【解析】(1)连结AE、OC,它们相交于F点,根据圆周角定理由AB为⊙O的直径得到∠AEB=90°,而CD⊥BE,则CD∥AE,由于C为中点,根据垂径定理的推论得到OC⊥AE,AF=EF,所以OC⊥CD,于是根据切线的判定定理得到CD为⊙O的切线;(2)易得EF=CD=3,DE=DF,则AF=3,再根据勾股定理计算出OF,然后计算出CF,从而可得到DE的长.本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、勾股定理以及垂径定理的推论.【第 24 题】【答案】解:(1)根据题意可得:y=20x+15(600-x)=5x+9000.∴y关于x的函数关系式为y=5x+9000;(2)根据题意,得:50 x+35(600-x)≥26400,解得:x≥360,∵y=5x+9000,5>0,∴y随x的增大而增大,∴当x=360时,y有最小值为10800,∴每天至少获利10800元;(3)根据题意可得:y=(20-x100)x+15(600-x)=-1100(x-250)2+9625,∵−1100<0,∴当x=250时,y有最大值9625,∴每天生产A产品250件,B产品350件获利最大,最大利润为9625元.【解析】(1)根据题意,即可得y关于x的函数关系式为:y=20x+15(600-x),然后化简即可求得答案;(2)首先根据题意可得不等式:50x+35(600-x)≥26400,即可求得x的取值范围,又由一次函数的增减性,即可求得该酒厂每天至少获利多少元;(3)首先表示出获利与x之间的关系进而得出函数最值.此题考查了一次函数与不等式的实际应用、二次函数的应用.解题的关键是理解题意,根据题意列得一次函数解析式与不等式.【第 25 题】【答案】解:(1)由抛物线y=-x 2+bx+c 过点A (-1,0)及C (2,3)得,{−1−b +c =0−4+2b +c =3, 解得{b =2c =3, 故抛物线为y=-x 2+2x+3;又设直线为y=kx+n 过点A (-1,0)及C (2,3),得{−k +n =02k +n =3, 解得{k =1n =1, 故直线AC 为y=x+1;(2)∵y=-x 2+2x+3=-(x-1)2+4,∴D (1,4),当x=1时,y=x+1=2,∴B (1,2),∵点E 在直线AC 上,设E (x ,x+1).①如图2,当点E 在线段AC 上时,点F 在点E 上方,则F (x ,x+3),∵F 在抛物线上,∴x+3=-x 2+2x+3,解得,x=0或x=1(舍去),∴E (0,1);②当点E 在线段AC (或CA )延长线上时,点F 在点E 下方,则F (x ,x-1),∵F 在抛物线上,∴x -1=-x 2+2x+3, 解得x=1−√172或x=1+√172, ∴E (1−√172,3−√172)或(1+√172,3+√172),综上,满足条件的点E 的坐标为(0,1)或(1−√172,3−√172)或(1+√172,3+√172);(3)方法一:如图3,过点P 作PQ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG⊥x 轴于点G ,设Q (x ,x+1),则P (x ,-x 2+2x+3)∴PQ=(-x 2+2x+3)-(x+1)=-x 2+x+2又∵S △APC =S △APQ+S △CPQ=12PQ•AG=12(-x 2+x+2)×3=-32(x-12)2+278, ∴面积的最大值为278;方法二:过点P 作PQ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG⊥x 轴于点G ,如图3, 设Q (x ,x+1),则P (x ,-x 2+2x+3)又∵S △APC =S △APH +S 直角梯形PHGC -S △AGC=12(x+1)(-x 2+2x+3)+12(-x 2+2x+3+3)(2-x )-12×3×3=-32x 2+32x+3=-32(x-12)2+278,∴△APC 的面积的最大值为278. 【 解析 】(1)利用待定系数法求二次函数解析式、一次函数解析式;(2)需要分类讨论:①当点E 在线段AC 上时,点F 在点E 上方,则F (x ,x+3)和②当点E 在线段AC (或CA )延长线上时,点F 在点E 下方,则F (x ,x-1),然后利用二次函数图象上点的坐标特征可以求得点E 的坐标;(3)方法一:过点P 作PQ⊥x 轴交AC 于点Q ;过点C 作CG⊥x 轴于点G ,如图1.设Q (x ,x+1),则P (x ,-x 2+2x+3).根据两点间的距离公式可以求得线段PQ=-x 2+x+2;最后由图示以及三角形的面积公式知S △APC =-32(x-12)2+278,所以由二次函数的最值的求法可知△APC 的面积的最大值;方法二:过点P 作PQ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG⊥x 轴于点G ,如图2.设Q (x ,x+1),则P (x ,-x 2+2x+3).根据图示以及三角形的面积公式知S △APC =S △APH +S 直角梯形PHGC -S △AGC ═-32(x-12)2+278,所以由二次函数的最值的求法可知△APC 的面积的最大值. 本题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数解析式,平行四边形的性质,二次函数的性质,三角形的面积,有一定难度.解答(2)题时,要对点E 所在的位置进行分类讨论,以防漏解.。

人教版2020届九年级下册数学开学考试试卷A卷

人教版2020届九年级下册数学开学考试试卷A卷

人教版2020届九年级下册数学开学考试试卷A卷一、单选题 (共10题;共20分)1. (2分)tan60°的值等于A . 1B .C .D . 22. (2分)二次函数y=x2+5x+4,下列说法正确的是()A . 抛物线的开口向下B . 当x>﹣3时,y随x的增大而增大C . 二次函数的最小值是﹣2D . 抛物线的对称轴是x=﹣3. (2分)下列说法中正确的是()A . “任意画出一个等边三角形,它是轴对称图形”是必然事件B . 任意掷一枚质地均匀的硬币20次,正面向上的一定是10次C . “概率为0.00001的事件”是不可能事件D . “任意画出一个平行四边形,它是中心对称图形”是随机事件4. (2分)若2x=3y,则的值为()A .B .C .D .5. (2分)在同一平面直角坐标系中,有两条抛物线y1=a(x+1)(x﹣5)和y2=mx2+2mx+1,其中am<0,要使得两条抛物线构成轴对称图形,下列变换正确的是()A . 将抛物线y1向右平移3个单位B . 将抛物线y1向左平移3个单位C . 将抛物线y1向右平移1个单位D . 将抛物线y1向左平移1个单位6. (2分)已知正六边形的边长为2,则它的内切圆的半径为()A . 1B .C . 2D . 27. (2分)已知二次函数y=ax2+bx+c的y与c的部分对应值如下表则下列判断中正确的是().A . 抛物线开口向上B . 抛物线与y轴交于负半轴C . 当x=3时,y<0D . 方程ax2+bx+c=0有两个相等实数根8. (2分)对于锐角α,sinα的值不可能为()A .B .C .D . 29. (2分)如图(1)是一个水平摆放的小正方体木块,图(2),(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是()个.A . 25B . 66C . 91D . 12010. (2分)用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第13个“口”字需用棋子颗数为()A . 52B . 50C . 48D . 46二、填空题 (共6题;共7分)11. (1分)计算:(4x2y﹣2xy2)÷2xy=________.12. (1分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为________度.13. (1分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=98°,∠C′=42°,则∠B的度数为________.14. (2分)如图,点A1、A2、A3、…,点B1、B2、B3、…,分别在射线OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1 ,A2A3=3OA1 ,A3A4=4OA1 ,….那么A2B2=________,AnBn=________.(n为正整数)15. (1分)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则cosD=________.16. (1分)如图,抛物线y=ax2﹣2与y轴交于点A,过点A与x轴平行的直线交抛物线y=﹣ x2于点B,C,则S△BOC=________.三、解答题 (共7题;共70分)17. (20分)今年端午前夕,某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整),请根据统计图解答下列问题:(1)参加抽样调查的居民有多少人?(2)将两幅不完整的统计图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数.(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小韦吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.18. (5分)画图:(1)如图,已知△ABC和点O.将△ABC绕点O顺时针旋转90°得到△A1B1C1 ,在网格中画出△A1B1C1;(2)如图,AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺(只能画线)按要求画图.(ⅰ)在图1中,画出△ABC的三条高的交点;(ⅱ)在图2中,画出△ABC中AB边上的高.19. (5分)小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的长.(结果保留小数点后一位)参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.20. (15分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y= (m≠0)的图象交于A,B两点,与x轴交于C点,与y轴交于D点;点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)求△AOB的面积.21. (5分)已知关于x的一元二次方程mx2﹣3(m+1)x+2m+3=0.(1)如果该方程有两个不相等的实数根,求m的取值范围;(2)在(1)的条件下,当关于x的抛物线y=mx2﹣3(m+1)x+2m+3与x轴交点的横坐标都是整数,且|x|<4时,求m的整数值.22. (10分)如图,在等腰△ABC中,AB=BC,以BC为直径的⊙O与AC相交于点D,过点D作DE⊥AB交CB延长线于点E,垂足为点F.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径R=5,tanC= ,求EF的长.23. (10分)已知抛物线y=﹣x2+2x+3交x轴于A、B两点,与y轴交于C点.A在B 的左侧,点M是直线BC上方的抛物线上一动点.(1)当点M运动到什么位置时,四边形ABMC的面积最大?并求出此时M点的坐标和四边形ABMC的最大面积.(2)点P(1,﹣3)是抛物线对称轴上的一点,在线段OC上有一动点M,以每秒2个单位的速度从O向C运动,过点M作MH∥BC,交x轴于点H,设点M的运动时间为t秒,试把△PMH的面积S表示成t的函数,当t为何值时,S有最大值,并求出最大值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共70分) 17-1、17-2、17-3、17-4、18-1、19-1、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、。

人教版2019年九年级下学期开学考试数学试题A卷

人教版2019年九年级下学期开学考试数学试题A卷

人教版2019年九年级下学期开学考试数学试题A卷姓名:________ 班级:________ 成绩:________一、单选题1 . 已知抛物线经过E(4,5),F(2,-3),G(-2,5),H(1,-4)四个点,选取其中两点用待定系数法能求出该抛物线解析式的是()A.E,F B.F,G C.F,H D.E,G2 . 若二次函数(,为常数)的图象如图,则的值为()A.1B.C.D.-23 . 如图,∠D=∠B,补充下列条件之一,不一定能判定△ABC和△ADE相似的是()A.∠ACB=∠AED B.∠CAE=∠BAD C.∠BED=∠EACD.4 . 在⊙O中,弦AB所对的圆心角的度数为80°,则弦AB所对的圆周角的度数为()A.B.C.或D.或5 . 两个实根之和为的一元二次方程是()A.B.C.D.6 . 如图是一个几何体的三视图,则这个几何体的全面积是A.B.C.D.7 . 若反比例函数y=的图象位于第二、四象限,则k的取值可以是()A.0B.1C.2D.以上都不是8 . 如图是二次函数的图象,对于下列结论:①;②;③;④;⑤若点,在二次函数的图象上,则,其中正确的是()A.①②④B.①③④C.②③④D.③④⑤9 . 图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2,现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束,在整个运动过程中,点C运动的路径长是()B.2πC.4-2D.10-4A.π二、填空题10 . 如图,△ABC中,AB=AC=13,BC=10,AD⊥BC,BE⊥AC,P为AD上一动点,则PE+PC的最小值为__________.11 . 如图,平行四边形OABC的顶点O,B在y轴上,顶点A在反比例函数y=上,顶点C在反比例函数y=上,则平行四边形OABC的面积是____________.12 . 方程的解是______.13 . 如图,为的直径,为延长线上的一点,切于点,,则的直径等于____________.14 . 如图,点、、在一条直线上,与相交于点,,若,则________.15 . 如图,于,交于点,,则___________________.16 . 如图,已知反比例函数y=(x>0)与正比例函数y=x(x≥0)的图象,点A(1,4),点A'(4,b)与点B'均在反比例函数的图象上,点B在直线y=x上,四边形AA'B'B是平行四边形,则B点的坐标为______.17 . 已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1y2.(填不等号)18 . 已知关于的方程的两个根分别是和,则________.三、解答题19 . 如图,点C是以AB为直径的圆O上一点,直线AC与过点B的切线相交于点D,D点E是BD的中点,直线CE交直线AB与点.(1)求证:CF是⊙O的切线;(2)若ED=,tanF=,求⊙O的半径.20 . (1)解方程:;(2)解不等式组:21 . 解方程:.22 . 2010年5月1日,第41届世博会在上海举办,世博知识在校园迅速传播.小明同学就本班学生对世博知识的了解程度进行了一次调查统计,下图是他采集数据后绘制的两幅不完整的统计图(A:不了解,B:一般了解,C:了解较多,D:熟悉).请你根据图中提供的信息解答以下问题:(1)求该班共有多少名学生;(2)在条形统计图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;(4)从该班中任选一人,其对世博知识的了解程度为“熟悉”的概率是多少?23 . 在△ABC中,AB=AC,点D是射线CB上的一个动点(不与点B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CA.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).24 . 空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.25 . 已知关于x的方程x2﹣2(m+1)x+m2=0(1)当m取何值时,方程有两个相等的实数根;(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个根.26 . 关于x的方程x2-2x+k-1=0有两个不相等的实数根.(1)求k的取值范围;(2)若k-1是方程x2-2x+k-1=0的一个解,求k的值.27 . 如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:(1)用2B铅笔画AD∥BC(D为格点),连接CD;(2)线段CD的长为;(3)请你在△ACD的三个内角中任选一个锐角,若你所选的锐角是,则它所对应的正弦函数值是;(4)若E为BC中点,则tan∠CAE的值是.28 . 如图所示,港口A位于灯塔C的正南方向,港口B位于灯塔C的南偏东60°方向,且港口B在港口A的正东方向的135公里处.一艘货轮在上午8时从港口A出发,匀速向港口B航行.当航行到位于灯塔C的南偏东30°方向的D处时,接到公司要求提前交货的通知,于是提速到原来速度的1.2倍,于上午12时准时到达港口B,顺利完成交货.求货轮原来的速度是多少?参考答案一、单选题1、2、3、4、5、6、7、8、9、二、填空题1、2、3、4、5、6、7、8、9、三、解答题1、2、3、4、5、6、7、8、9、10、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级下册数学开学考试试卷A卷
一、单选题 (共5题;共10分)
1. (2分)y=﹣的比例系数是()
A . 4
B . ﹣4
C .
D . ﹣
2. (2分)下列函数中,y是x的反比例函数的是()
A .
B .
C . y=3x
D . y=x2
3. (2分)下列函数中,不是反比例函数的是()
A . x=
B . y=(k≠0)
C . y=
D . y=﹣
4. (2分)下列函数中,是反比例函数的是()
A . y=x﹣1
B .
C .
D .
5. (2分)下列函数中,图象经过点(2,﹣3)的反比例函数关系式是()
A . y=-
B . y=
C . y=
D . y=-
二、填空题 (共6题;共8分)
6. (1分)一盒冰淇淋售价16元,内装冰淇淋9支,请写出冰淇淋售价y(元)与所购冰淇淋x(支)之间的关系式________ .
7. (1分)反比例函数y=的图象经过点(﹣2,3),则k的值为________
8. (2分)已知反比例函数y=,当x=﹣1时,y=________;y=6时,x=________.
9. (1分)如图,已知双曲线y= (k>0)经过Rt△OAB的直角边AB的中点C,与斜边OB相交于点D,若OD=1,则BD=________.
10. (1分)当m=________ 时,是反比例函数.
11. (2分)某公司有500吨煤,这些煤所用天数y(天)与平均每天用煤量x(吨)的函数解析式为________ ,自变量x的取值范围是________ .
三、解答题 (共5题;共28分)
12. (10分)如果用c表示摄氏温度,f表示华氏温度,则c与f之间的关系为:c= (f﹣32),试分别求:
(1)当f=68和f=﹣4时,c的值;
(2)当c=10时,f的值.
13. (8分)给出下列四个关于是否成反比例的命题,判断它们的真假.
(1)面积一定的等腰三角形的底边长和底边上的高成反比例;
(2)面积一定的菱形的两条对角线长成反比例;
(3)面积一定的矩形的两条对角线长成反比例;
(4)面积一定的直角三角形的两直角边长成比例.
14. (5分)已知:如图,直角梯形ABCD中,AD∥BC,∠A=90°,△BCD为等边三角形,且AD=,求梯形ABCD的周长
15. (0分)如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
16. (5分)已知y=y1+y2 , y1与x成正比例,y2与x成反比例,并且当x=1时y=4;当x=3时,y=5.求当x=4时,y的值.
解:∵y1与x成正比例,y2与x成反比例,可以设y1=kx,y2= .
又∵y=y1+y2 ,
∴y=kx+ .
把x=1,y=4代入上式,解得k=2.
∴y=2x+ .
∴当x=4时,y=2×4+ =8 .
阅读上述解答过程,其过程是否正确?若不正确,请说明理由,并给出正确的解题过程.
参考答案一、单选题 (共5题;共10分)
1-1、
2-1、
3-1、
4-1、
5-1、
二、填空题 (共6题;共8分)
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
三、解答题 (共5题;共28分)
12-1、
12-2、
13-1、
13-2、
13-3、
13-4、
14-1、
15、答案:略
16-1、。

相关文档
最新文档