离散数学06

合集下载

离散数学ppt课件

离散数学ppt课件

02
集合论基础
集合的基本概念
总结词
集合是离散数学中的基本概念, 是研究离散对象的重要工具。
详细描述
集合是由一组确定的、互不相同 的、可区分的对象组成的整体。 这些对象称为集合的元素。例如 ,自然数集、平面上的点集等。
集合的运算和性质
总结词
集合的运算和性质是离散数学中的重要内容,包括集合的交、并、差、补等基本运算,以及集合的确定性、互异 性、无序性等性质。
生,1表示事件一定会发生。
离散概率论的运算和性质
概率的加法性质
如果两个事件A和B是互斥的,那么P(A或B)等于P(A)加上 P(B)。
概率的乘法性质
如果事件A和B是独立的,那么P(A和B)等于P(A)乘以P(B) 。
全概率公式
对于任意的事件A,存在一个完备事件组{E1, E2, ..., En}, 使得P(Ai)>0 (i=1,2,...,n),且E1∪E2∪...∪En=S,那么 P(A)=∑[i=1 to n] P(Ai)P(A|Ei)。
工程学科
离散数学在工程学科中也有着重要的 应用,如计算机通信网络、控制系统 、电子工程等领域。
离散数学的重要性
基础性
离散数学是数学的一个重要分支 ,是学习其他数学课程的基础。
应用性
离散数学在各个领域都有着广泛的 应用,掌握离散数学的知识和方法 对于解决实际问题具有重要的意义 。
培养逻辑思维
学习离散数学可以培养人的逻辑思 维能力和问题解决能力,对于个人 的思维发展和职业发展都有很大的 帮助。
详细描述
邻接矩阵是一种常用的表示图的方法,它是 一个二维矩阵,其中行和列对应于图中的节 点,如果两个节点之间存在一条边,则矩阵 中相应的元素为1,否则为0。邻接表是一 种更有效的表示图的方法,它使用链表来存 储与每个节点相邻的节点。

离散数学试卷06-07(上)A

离散数学试卷06-07(上)A

合肥学院2007至2008学年第二学期《离散数学》课程考试( A )卷计算机 系 06 级 网络工程 专业 学号 姓名一、选择题:(每小题2分,计22分)1.前提,,p q q r r ⌝∨⌝∨⌝的结论是(A.qB.p ⌝C. p q ∨D p q ⌝→2.集合A={1,2,3,4},下列关系R 中不是等价关系的是( ) A. {1,1,2,2,3,3}R =〈〉〈〉〈〉;B.{1,1,2,2,3,3,3,2,2,3}R =〈〉〈〉〈〉〈〉〈〉;C.{1,1,2,2,3,3,1,4}R =〈〉〈〉〈〉〈〉;D.{1,2,2,1,1,3,3,1,2,3,3,2}A R I =〈〉〈〉〈〉〈〉〈〉〈〉⋃。

. 3.下列语句中哪个是命题( )A.我正在说谎。

B. 5x y + 。

C.地球之外还存在有智慧的动物。

D.请勿践踏草地! 4.设F(x):x 是火车,G(x):y 是汽车,H(x,y):x 比y 快。

命题“某些汽车比所有的火车慢”的符号化公式是( ).(()(()(,)))A y G y x F x H x y ∃→∀∧ .(()(()(,)B y G y x F x H x y ∃∧∀→ .(()(()(,)))C x y G y F x H x y ∀∃→∧ .(()(()(,)D y G y x F x H x y ∃→∀→ 5.利用谓词的约束变元的更名规则和自由变元的代人规则,可将公式(()(,))(,)x P x Q x y R x y ∀→∧改写为( )。

.(()(,))(,)A x P y Q x y R z s ∀→∧ .(()(,))(,)B z P z Q z s R x s ∀→∧ .(()(,))(,)C x P s Q x s R x s ∀→∧ .(()(,))(,)D z P s Q z s R z s ∀→∧6.下列公式中正确的等价式是( )。

.()()A xA x x A x ∃⇔∃⌝ .()()B xA x x A x ⌝∀⇔∃⌝.(,)(,)C x yA x y y xA x y ∀∃⇔∃∀.(()())(()())D x A x B x x A x B x ∀∧⇔∀∨7.设{},(())A B P P A =∅=,以下不正确的式子是( )。

离散数学_第06章代数结构概念及性质

离散数学_第06章代数结构概念及性质

【例】(1)以实数集 R 为基集,加法运算" +"为二元,运算组成一代数系统,记为〈R, +〉。 (2)以全体n×n实数矩阵组成的集合 M为基集,矩阵加"+"为二元运算,组成一代 数系统,记为〈M,+〉。 (3)设 S A { | 是集合A上的关系}, “ ” 是求复合关系的运算。它们构成代数 系统S A , 。
有了集合上运算的概念后,便可定义代数结
构了。
定义6.1.2 设S是个非空集合且fi是S上的 ni元运算,其中i=1,2,…,m。由S及f1, f2,…,fm组成的结构,称为代数结构,记 作<S,f1,f2,…,fm>。
此外,集合S的基数即|S|定义代数结构 的基数。如果S是有限集合,则说代数结构 是有限代数结构;否则便说是无穷代数结构。
分配律,或者⊙对于○是可左分配的,即
(x)(y)(z)
(x,y,z∈S→x⊙(y○z))=(x⊙y)○(x⊙z))。
运算⊙对于○满足右分配律或⊙对于○是可 右分配的,即(x)(y)(z) (x,y,z∈S→(y○z)⊙x=(y⊙x)○(z⊙x)) 类似地可定义○对于⊙是满足左或右分配律。 若⊙对于○既满足左分配律又满足右分配律, 则称⊙对于○满足分配律或是可分配的。同样可 定义○对于⊙满足分配律。
x为关于⊙的右逆元:=(y)(y∈S∧y⊙x=e);
x为关于⊙可逆的:=(y)(y∈S∧y⊙x=x⊙y=e)
给定<S,⊙>及幺元e;x,y∈S,则 y为x的左逆元:=y⊙x=e
y为x的右逆元:=x⊙y=e
y为x的逆元:=y⊙x=x⊙y=e
显然,若y是x的逆元,则x也是y的逆元,
因此称x与y互为逆元。通常x的逆元表为x-1。

离散数学基本公式

离散数学基本公式

离散数学基本公式离散数学是数学的一个重要分支,它主要研究的是非连续的、分离的对象,如集合、图论、数论、逻辑等。

在这些领域中,一些基本的公式和定理是理解和应用离散数学的关键。

以下是一些离散数学的基本公式:1、德摩根定律德摩根定律是布尔代数中的基本公式之一,它表示对于任何逻辑运算,如果我们把所有的否命题和原命题结合在一起,我们就会得到一个恒等式。

用符号表示为:P ∧ Q) ∨(¬P ∧¬Q) ≡ P ∨ QP ∨ Q) ∧(¬P ∨¬Q) ≡ P ∧ Q2.集合论中的互补律在集合论中,互补律表示对于任何集合A和它的补集A',我们有:A ∪ A' = U,其中U是全集A ∩ A' = ∅,其中∅表示空集3.图论中的欧拉公式欧拉公式是图论中的一个基本公式,它表示对于一个连通无向图G,其顶点数v、边数e和欧拉数euler(G)之间有以下关系:euler(G) = v + e - 2其中euler(G)是图G的欧拉数,v是图G的顶点数,e是图G的边数。

这个公式在计算图的欧拉数或者判断一个图是否连通等方面都有重要应用。

4.数论中的费马小定理费马小定理是数论中的一个重要定理,它表示对于任何正整数n,如果它是质数p的幂次方,那么我们可以找到一个整数x,使得x的n 次方等于1(模p)。

用数学语言表示为:x^n ≡ x (mod p)其中n是正整数,p是质数,x是整数。

这个定理在密码学、计算机科学等领域都有广泛的应用。

5.逻辑中的排中律和反证法排中律是指对于任何命题P,P或非P必定有一个是真命题。

反证法则是通过假设相反的命题成立来证明原命题的一种方法。

在证明过程中,如果假设的相反命题成立会导致矛盾,那么原命题就一定是正确的。

这些公式和定理只是离散数学中的一小部分,但它们是理解和应用离散数学的基础。

在学习的过程中,我们还需要掌握更多的公式和定理,以及它们的应用方法。

离散数学期末考试题答案

离散数学期末考试题答案

北京交通大学2007-2008学年第二学期《离散数学基础(信科专业)》期末考试卷(A)学院:____________ _专业:___________________ 班级____________姓名:学号:□选修□必修一、填空题(共10分,每空1分)1.在推理理论中,推导过程中如果一个或多个公式重言蕴涵某个公式,则这个公式就可以引入推导过程中,这一推理规则叫做(T规则)。

2.设A={a,{b}},则A的幂集是P (A)= {Φ, a,{b}, {a,{b}};3.设R 是集合A上的二元关系,如果关系R同时具有自反性、反对称性和传递性,则称R是A上的一个偏序关系。

4.既是满射,又是单射的映射称为1-1映射(双射)。

5.设S为非空有限集,代数系统<P(S),∪>的单位元和零元分别为S和φ。

6.具有n个顶点的无向完全图共有n(n-1)/2条边。

7.简单图是指无环、无重边的图。

8.k-正则图是指所有顶点的度数均为k的的图。

9.Hamilton通路是指通过图中所有顶点一次且仅一次的通路。

10.设G=(E,V)是图,如果G是连通的,则P(G)= 1 。

11.命题公式(P→Q) ∧ (P→R)的主析取范式中包含极小项( A )A.P∧Q∧R;B.P∧Q∧⌝R;C .P ∧⌝Q ∧R ;D .P ∧⌝Q ∧⌝R12. 下列谓词公式中( A )不正确。

A .(∃x)(A(x) →B) ⇔ (∃x) A(x) →B ; B .(∃x)(B →A(x)) ⇔ B →(∃x) A(x);C .(∀x)(B →A(x)) ⇔ B →(∀x) A(x);D .(∀x)(A(x)∨B) ⇔(∀x)A(x)∨B ;13. 设S = {2,a ,{3},4},R ={{a},3,4,1},指出下面的写法中正确的是( D )(A )R=S ; (B ){a,3}⊆S ; (C ){a}⊆R ;(D )φ⊆R ;14. 下列命题公式不是重言式的是 C 。

离散数学-详解

离散数学-详解

离散数学-详解离散数学(Discrete Mathematics)目录• 1 什么是离散数学• 2 离散数学的发展• 3 离散数学与现代信息技术• 4 参考文献什么是离散数学离散数学是研究离散量的结构及其相互关系的数学学科,离散数学是数学几个分支的总称,研究基于离散空间而不是连续的数学结构。

更一般地,离散数学被视为处理可数集合(与整数子集基数相同的集合,包括有理数集但不包括整数集)的数学分支。

与光滑变化的实数不同,离散数学的研究对象———例如整数、图和数学逻辑中的命题———不是光滑变化的,而是拥有不等、分立的值。

离散数学中的对象集合可以是有限或者是无限的。

特别是,有限数学一词通常指代离散数学处理有限集合的那些部分,特别是在与商业相关的领域。

包括基本的概率论、线性规划、矩阵和行列式的理论。

离散数学的应用遍及现代科学技术的诸多领域,它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学等必不可少的科研基础。

离散数学的发展历史上,离散数学涉及各个领域的一系列挑战性问题。

在图论中,大量研究的动机是企图证明四色定理。

这些研究虽然从1852年开始,但是直至1976年四色理论才得到证明,是由肯尼斯·阿佩尔和沃尔夫冈·哈肯大量使用计算机辅助来完成的。

在逻辑领域,大卫·希尔伯特于1900年提出的公开问题清单的第二个问题是要证明算术公理是一致的。

1931年,库尔特·哥德尔的第二不完备定理证明这是不可能的———至少算术本身不可能。

大卫·希尔伯特的第十个问题是要确定某一整系数多项式丢番图方程是否有一个整数解。

1970年,尤里·马季亚谢维奇证明这不可能做到。

第二次世界大战时盟军基于破解纳粹德军密码的需要,带动了密码学和理论计算机科学的发展。

英国的布莱切利园因而发明出第一部数字电子计算器———巨像计算机。

离散数学课件-绪论

离散数学课件-绪论
离散数学课件-绪论
目录
• 离散数学的概述 • 离散数学的主要分支 • 离散数学的基本概念 • 离散数学的研究方法 • 离散数学的学习意义和价值
01
离散数学的概述
离散数学的定义
• 离散数学:离散数学是研究数学结构中非连续、分离对象的数 学分支。它主要关注集合论、图论、逻辑、组合数学等领域, 用于描述和研究离散对象之间的关系和性质。
在离散数学中,形式化方法常用于描述集合、关系、图等数学对象,如集合论中的集合定义和关系定 义。
归纳法
归纳法是从个别到一般的推理方法, 通过对一些具体实例的分析,归纳出 一般规律或性质。
VS
在离散数学中,归纳法常用于证明一 些关于自然数的性质和定理,如归纳 法在证明阶乘性质中的应用。
反证法
反证法是一种间接证明方法,通过假设与要 证明的命题相矛盾的命题成立,推出矛盾, 从而证明原命题成立。
逻辑学
01
逻辑学是研究推理和论证的规则 和结构的数学分支。逻辑学为离 散数学的各个分支提供了推理和 证明的工具和方法。
02
逻辑学中的基本概念包括命题、 量词、推理规则、证明等,这些 概念为离散数学的各个分支提供 了推理和证明的工具和方法。
组合数学
组合数学是研究计数、排列和组合问题的数学分支。组合数学在计算机科学、统 计学和运筹学等领域有广泛应用。
离散数学的起源和发展
起源
离散数学的起源可以追溯到古代数学中的一些研究,如几何学和逻辑学。随着 时间的推移,离散数学的各个分支逐渐形成和发展,成为一门独立的学科。
发展
离散数学的发展与计算机科学的发展密切相关。随着计算机科学的兴起,离散 数学在理论和实践方面都得到了广泛的应用和发展。
离散数学的应用领域

离散数学第六章的课件

离散数学第六章的课件

05 离散随机变量
随机变量的定义与性质
随机变量定义
随机变量是从样本空间到实数的可测 函数,用于描述随机现象的结果。
随机变量性质
随机变量具有可测性、可加性和可数 性等性质,这些性质在概率论和统计 学中具有重要应用。
离散概率分布
离散概率分布定义
离散概率分布描述的是随机变量取离散值时的概率规律,通 常用概率质量函数或概率函数表示。
离散概率分布性质
离散概率分布具有非负性、归一性和可数性等性质,这些性 质是离散概率分布的基本要求。
期望与方差
期望定义
期望是随机变量所有可能取值 的概率加权和,是描述随机变 量取值“平均水平”的重要指
标。
期望性质
期望具有线性性、可加性和正 定性等性质,这些性质在概率 论和统计学中具有重要应用。
方差定义
感谢您的观看
THANKS
方差是描述随机变量取值分散 程度的重要指标,是随机变量 与期望之差的平方的期望。
方差性质
方差具有非负性、归一性和可 加性等性质,这些性质是方差
的基本要求。
06 离散概率论的应用
蒙提霍尔问题
总结词
蒙提霍尔问题是一个著名的概率论问题,涉 及到概率论中的独立性概念和组合数学。
详细描述
蒙提霍尔问题是一个经典的组合数学问题, 它涉及到概率论中的独立性概念。该问题问 的是,如果有n个盒子,每个盒子被选中的 概率是1/2,那么在最优策略下,选中至少 一个盒子的最有可能的盒子数是多少?这个 问题涉及到概率论中的独立性概念和组合数
学。
抓阉问题
要点一
总结词
抓阉问题是一个经典的离散概率论问题,涉及到概率论中 的随机性和独立性概念。
要点二
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档