第二章方框图及其简化
合集下载
2.第二章方框图及简化(new)

多个输入同时作用于线性系统时,分别考虑 每个输入的影响
• 如考虑扰动的反馈控制系统:
• 只考虑给定输入时:
• 只考虑干扰输入时:
• 如考虑扰动的反馈控制系统:
• 只考虑给定输入时:
• 只考虑干扰输入时:
• 系统总的输出量
扰动的影响将被抑制!!!
若 G1 ( s )G2 ( s ) H ( s ) >> 1 且 G1 ( s) H ( s ) >> 1 ,则:
X o ( s) ≈ 1 X i ( s) H ( s)
• 上式表明,采用反馈控制的系统,适当选 上式表明,采用反馈控制的系统, 择元部件的结构参数, 择元部件的结构参数,可以增强系统抑制 干扰的能力。 干扰的能力。
• 结论 • 闭环系统具有抑制干扰的能力; • 闭环系统输入、输出的取法不同时,其传 递函数不同,但传递函数的分母不变,而 开环系统则不然。
反馈连接及其等效原则前向通道传递函数反馈回路传递函开环传递函数闭环传递函数前向通道反馈通道开环传递函数都只只是闭环系统部分环节或环节组合的传递函数而闭环传递函数才是系统的传递函数
第二章 系统的数学模型
2.3 系统的传递函数方框图及其简化
• 将组成系统的各个环节用传递函数方框表示,并将相应的变 量按信息流向连接起来,就构成系统的传递函数方框图
• 例2-10
• 一定要注意梅逊公式的两个条件; • 若系统不满足两个条件,可先将其方框图 化成满足使用条件的形式,然后再利用梅 逊公式。
多个输入同时作用于线性系统时,分别考虑 每个输入的影响
• 如考虑扰动的反馈控制系统:
• 只考虑给定输入时:ຫໍສະໝຸດ • 只考虑干扰输入时:• 如考虑扰动的反馈控制系统:
第2章 自动控制系统的数学模型

二、一阶惯性环节(一阶滞后环节)
1、数学表达式 :
2、特点 一阶惯性环节含有一个储能元件,输入 量的作用不能立即在输出端全部重现出来, 而是有一个延缓,即有惯性。 3、实例
例2-2 如图2-2所示的RC串联电路,以总电压ur 为输入,电容上电压uC为输出,试建立其微分方程。
图2-2 RC网络
解(1)确定系统的输入、输出变量,如图已知ur为输入,电 容电压uC为输出; (2)列微分方程组: 由基尔霍夫第二定律有: uR +uC =ur ① 由欧姆定律有: uR=R i ② 1 由电容充放电特性,有:uC= ∫idt ③ c (3)消去中间变量
n υ 他激直流电动
五、振荡环节(二阶滞后环节)
1、自动控制原理的研究对象是自动控制系统 的基本结构,这是本章的重点,要求通过实例掌 握自动控制系统各组成部分及其功能。 2、经典控制理论讨论的是按偏差进行控制的 反馈控制系统,应该了解其控制的目的、控制的 对象和控制的过程;熟悉对控制系统动态性能的 基本要求,即稳、快、准;为进一步掌握控制系 统的性能指标打好基础。
d n c(t ) d n 1c(t ) dc(t ) a0 a1 a n 1 a n c(t ) n n 1 dt dt dt d m r (t ) d m 1 r (t ) dr (t ) b0 b1 bm 1 bm r (t ) m m 1 dt dt dt
第2章 线性系统的数学模型
第2章 线性系统的数学模型
六、纯滞后环节(纯延迟环节)
表达式: c(t)=r(t-τ) 特点:输出比输入滞后一个时间τ。 实例:延时继电器。
2-2 传递函数
传递函数是线性定常连续系统最重要的数 学模型之一,是数学模型在复频域内的表示形 式。利用传递函数,不必求解微分方程就可以 求取初始条件为零的系统在任意形式输入信号 作用下的的输出响应,还可以研究结构和参数 的变化对控制系统性能的影响。经典控制理论 的主要研究方法——根轨迹分析法和频域分析 法都是建立在传递函数基础上的。
第二章-系统的传递函数方框图及其简化.

系统闭环传递函数
GB (s)
X o (s) Xi (s)
由图可知
X i (s) E(s) G(s)
B(s)
H (s)
X o (s)
E(s) Xi (s) B(s) Xi (s) Xo(s)H (s) Xo(s) G(s)E(s) G(s)[Xi (s) Xo(s)H (s)]
G(s)Xi (s) G(s)Xo(s)H (s) 由此可得:
GK (s) G(s)H (s) E(s)
无量纲.
系统闭环传递函数
GB (s)
X o (s) Xi (s)
注意:我们所指的前向通道的传递函数、反馈回路的
传递函数和开环传递函数都是针对一个闭环系统而
言的。它们都是闭环系统的一部分。系统闭环传递
函数是闭环系统的传递函数。看一个传递函数是什
么具体类型,要从定义出发,而不能只看其符号。
8.分支点和相加点之间等效规则
X1(s)
X1(s) X2(s)
X 2 (s)
X1(s) X2(s)
X1(s)
X 2 (s)
X1(s) X2(s)
X1(s) X2(s)
X 2 (s)
一般应避免分支点和相加点之间的相互移动
三、方框图简化的一般方法 (法1)
1.确定系统的输入量和输出量.若作用在系统上的输 入量或输出量有多个,则必须分别对每一输入量,逐个 进行方框图的简化,以求得各自的传递函数. 2.若方框图中有交叉连接,则利用分支点或相加点的 移动规则,将交叉消除,简化成无交叉的多回路方框图 的形式.(大回路套小回路) 3.对多回路方框图,按照先里后外的顺序依次对各个 回路进行简化. 4.写出系统的传递函数.
Ua (s) 0
2.3系统的方框图及其简化

例:求系统传递函数。
Xi(s) + E(+s)
分
+
支
B(s)
点
前
移 Xi(s) + E(+s)
+
B(s)
G1 +
H2
G2
G3
H1
H2G3
G1 +
G2
G3
H1
Xo(s) Xo(s)
Xi(s) + E(+s)
+
B(s)
G1 +
H2G3 G2
H1
Xo(s) G3
Xi(s) + E(+s) G1
+
B(s)
纲也要相同。 相加点可以有多个输入,
但输出是唯一的。
C
A + A-B+C +
B
(3) 分支点
分支点表示同一信号向不同方向的传递。只传递信号, 不传递能量。
在分支点引出的信号不仅量纲相同,而且数值也相 等。
X(s) X(s) X(s)
2、系统方框图的建立步骤
(1) 建立系统(或元件)的
;
(2) 对这些原始微分方程进行
函数无量纲,而且H(s)的量纲是G(s)的量纲的倒数。
小小总结:
前述三种基本连接形式:串联、并联、反馈
G(s)
①两个环 Xi(s)
节相串联
G1(Gs) 1 ( sX)1G(s)2 (Gs)2(s)
Xo(s)
②两个环节 G(s)
相并联
G1(s) Xo1(s)
Xi(s)
G1(s)
G2
+
(s) +_
G2 (s) Xo2(s)
自动控制原理(2-2)

1 G(s)
B A
B
+
+
C
D
A
+
C
+
D
(a)
(b)
图2-17 相邻相加点的移动
A A
(a)
A A
A A
A A(b)AA源自图2-18 相邻分支点的移动
应当指出,在结构图简化过程中,两个相邻的相加
点和分支点不能轻易交换。 总之,根据实际系统中各环节(子系统)的结构图 和信息流向,可建立系统的结构图。在确定输入量
加,就可得到系统的总输出量。
系统对扰动N(s)的响应CN(s)为:
G2 ( s) CN ( s ) N ( s) 1 G1 ( s)G2 ( s) H ( s)
系统对参考输入量R(s)的响应CR(s)为:
G1 ( s )G2 ( s ) CR ( s ) R( s) 1 G1 ( s )G2 ( s ) H ( s )
X 3 ( s)
X 0 (s)
G1 ( s )G2 ( s )G3 ( s)
(b)
X 3 ( s)
图2-10 串联环节的简化
n个环节(每个环节的传递函数为Gi(s) ,i=1,2,3,…) 串联的等效传递函数等于各传递函数相乘。
G( s) G1 (s)G2 (s) Gn (s)
2.并联环节的简化
上式就是系统输出量C(s)和输入量R(s)之间的传递函 数,称为闭环传递函数。
闭环传递函数将闭环系统的动态特性与前向通道环 节和反馈通道环节的动态特性联系在一起。
G( s) C (s) R( s ) 1 G( s) H ( s)
可见,闭环系统的输出量取决于闭环传递函数和输 入量的性质。
控制工程-系统传递函数方块图及其简化

南华大学
§2推-导4:系统传递函数方块图及其简化
X 0 ( s ) = G ( s ) E ( s ) = G ( s)[ X i ( s) - X B ( s)] = G ( s )[ X i ( s ) - X 0 ( s ) H ( s )] = X i (s)G (s) - X 0 (s) G (s) H (s)
GK (s) =
X B(s) E (s)
=
X B(s) X 0(s)
X 0(s) = G(s) H (s) E(s)
可理解为: 相加点断开后,以E(s)为输入, XB (s) 为输出的传递函数。
5、闭环传递函数 GB(s) :
GB (s) =
X 0 (s) X i (s)
=
G (s)
1 + G(s)H (s)
对于单位反馈:H(s)=1
Xi(s)
+ -
G(s) 1
X0(s)
G (s) G B(s) = 1 + G (s)
§ 系统传递函数方块图及其简化
南华大学
四、具有干扰信号的系统传递函数
扰动
各种电器设备对电视机的干扰
§2-4 系统传递函数方块图及其简化
南华大学
扰动(干扰信号):
在控制系统中,除控制信号(输入给定值)外,其它对 输出能产生影响的信号。
有的干扰因素是由于环境造成的,如影响自行车行驶速度的 变化的自然风等;
有的干扰因素是人为原因所致,如影响飞机导航信号的手机 信号等。
§2-4 系统传递函数方块图及其简化
南华大学
考虑扰动的反馈控制系统的典型方框图如下:
Xi(s) +
-
G1(s)
N (s)
自动控制原理第二章方框图

R1C2s
(R1C1s 1)(R2C2s 1) R1C2s
(R1C1s 1)(R2C2s 1)
解法二:
ui (s)
-
1 I1(s) - 1 u(s)
R1
I (s) C1s
-
1
1 uo (s)
R2 I2(s) C2s
ui (s) 1
R1
ui (s) 1
R1
-
1
-
C1s
1 R1
-
1
-
C1s
1 R1
1
自动控制原理第二章方框图自动控制方框图闭环控制系统方框图串级控制系统方框图前馈控制系统方框图控制系统方框图单回路控制系统方框图过程控制系统的方框图自动调节系统方框图控制方框图
传递函数的表达形式
有理分式形式:G(s)
b0 s m a0 s n
b1s m1 a1s n1
bm1s an1s
bm an
H3
相加点移动 G3 G1
G3 G1
向同无类用移功动
G2
错!
G2
H1
G(s) G1G2 G2G3 1 G1G2 H1
G2
G1 H1
总的结构图如下:
ui (s)
-
1 I1(s) - 1 u(s)
R1
I (s) C1s
-
1
1 uo (s)
R2 I2(s) C2s
ui (s)
-
C2s
1 I1(s) - 1 u(s)
X 2 (s)
X (s) G(s) Y (s)
X 2 (s)
X1(s)
相加点和分支点在一般情况下,不能互换。
X 3 (s)
X (s)
机械工程控制基础-第二章-传递函数

华中科技大学材料学院
典型环节
比例环节 惯性环节 微分环节 积分环节 振荡环节 延时节例
华中科技大学材料学院
比例环节
1、传递函数函:G(s) K (放大环节)
2、特性:输入输出成正比,无惯性,不失真, 无延迟 X(s) Y(s) K 3、参数:K 4、单位阶跃响应:输出按比值复现输入, 无过渡过程。
华中科技大学材料学院
4)方框图不唯一。由于研究角度不一样,传递函数 列写出来就不一样,方框图也就不一样。 5) 研究方便。对于一个复杂的系统可以画出它的方 框图,通过方框图简化,不难求得系统的输入、输出 关系,在此基础上,无论是研究整个系统的性能,还 是评价每一个环节的作用都是很方便的。
华中科技大学材料学院
n 2
2
p1 p2 n , p1 p2 2n 2 1
n e p t e p t y (t ) 1 ( ) 2 p1 p2 2 1
1 2
华中科技大学材料学院
p1 p2 ,当 1时, p1 p2
则
n e p t y (t ) 1 2 2 1 p2
华中科技大学材料学院
延迟环节
1. 传函
W ( s) e
s
x
y
1
t
1
(t ) 2.单位阶跃响应 y(t ) L1[es 1 s ] 1 3.参数 延迟时间 4.特性:能充分复现输入,只是相差 ,该环节
t
是线性的,他对系统稳定性不利。然而过程控制中,
系统多数都存在延迟环节,常用带延迟环节的一阶
x(t )
1
y(t )
K
t
t
比例环节实例
1)分压器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统方块图-也是系统数学模型的一种。
例2-8 画出下列RC电路的方块图。
R
解:
ui
ui iR uo idt uo c
对其进行拉氏变换得:
i
C (a)
uo
(1) U i ( s ) I ( s ) R U o ( s ) U ( s ) I ( s ) (2) o sC
U i ( s) U o ( s) I ( s) R I ( s) U o ( s) sC
(1) (2)
U i ( s) U o ( s) I ( s) R I ( s) U o ( s) sC
(1) (2)
Ui (s)
-
I(s)
Uo (s) (b)
1、串联连接
xi ( s)
G1 (s)
U1 (s)
G2 (s)
U 2 ( s) G3 (s)
( xo s)
Xi ( s) G s) ( (b)
Xo( s)
(a)
图2-23 环节的串联连接
xi ( s)
G1 (s)
U1 (s) (a)
G2 (s)
U 2 ( s) G3 (s)
( xo s)
特点:前一环节的输出量就是后一环节的输入量。
+
C(s)
Q(s)
Q(s) G(s)
C ( s) R( s)G ( s) Q( s) Q( s ) [ R( s ) ]G ( s) G( s)
C ( s) [ R( s) Q( s)]G ( s) R( s)G( s) Q( s)G( s)
图2-26 比较点移动示意图
联立并削去 中间变量
X o s Gs s X i s 1 Gs H s -
4、比较点和分支点(引出点)的移动
R(s) G(s)
+
R(s)
G(s) 比较点前移
+
C(s) Q(s)
C(s) 比较点后移 Q(s)
R(s) G(s)
+
C(s)
R(s) G(s)
图2-27 分支点移动示意图
相邻相加点的移动
相邻分支点的移动
相邻的分支点和相加点不能随便换位
例:
Xi(S)
G2 1 G1G2G3
XO(S)
例:
1/G1
Xi(S)
G1G2G3 1 G1G2 H1 G2G3 H 2 G1G2G3
XO(S)
前向通道传递函数之积 GB (s) 1 (每一反馈回路开环传递 函数)
1 1 1 1 1 1 U o s R1 C1s R2 C2 s U i s 1 1 1 1 1 1 R1C1s R2C1s R2C2 s R1C1s R2C2 s
1 P Pk k k
Xi
G6
G2
G7
G3
G4
H1
G1
G5
Xo
1 G4 H1 G2G7 H 2 G6G4G5 H 2 G2G3G4G5 H 2 G2G7 H 2 G4 H1
+ - E(s) B(s)
G(s)
xo (s)
H(s)
(a)
B( s ) Gk ( s) G( s) H ( s) E ( s)
(4)闭环传递函数 :输出信号Xo(s)与输入信号Xi(s)之比。
X o ( s) G( s) GB ( s) X i ( s) 1 H (s)G( s)
H2
1 G4 H1 G2G7 H 2 G6G4G5 H 2 G2G3G4G5 H 2 G2G7 H 2G4 H1
X o s G1G2G3G4G5 G1G6G4G5 G1G2G7 1 G4 H1 X i s 1 G4 H1 G2G7 H 2 G6G4G5 H 2 G2G3G4G5 H 2 G2G7 H 2G4 H1
k 为第k条前向通路特征式的余 因子,即对于
为流图特征式
1 P Pk k k
b ,c d ,e , f
1 La Lb Lc
a
L L L
d e
f
所有不同回路的 传递函数之和
每两个互不接触回路 每三个互不接触回路 传递函数乘积之和 传递函数乘积之和
R(s) P(s) G2 (s) P(s) 图2-16 分支点示意图 C(s)
G1 (s)
注意:同一位置引出的信号大小和性质完全一样。
2.4.2 方框图的绘制
(1)考虑负载效应分别列写系统各元部件的
微分方程
(2)对各原始方程进行拉氏变换,根据因果
关系将它们用方框(块)表示。 (3)根据各元部件的信号流向,用信号线依 次将各方框连接起来,便可得到系统的方框图。
2.4.4 方块图的简化——等效变换 为了由系统的方块图方便地写出它的闭环传递函 数,通常需要对方块图进行等效变换。方块图的等效 变换必须遵守一个原则,即变换前后各变量之间的传 递函数保持不变。在控制系统中,任何复杂系统主要 由响应环节的方块经串联、并联和反馈三种基本形式 连接而成。三种基本形式的等效法则一定要掌握。
R(s)
G(s)
C(s) C(s)
R(s)
G(s)
分支点(引出点)后移
分支点(引出点)前移
R(s)
R(s) G(s) G(s) C(s) C(s)
G(s) R(s) R(s) C(s)
1 R( s) R( s)G( s) R( s ) 右 G( s)
C (s) R(s)G(s) 左
3、反馈连接
xi(s)
E(s) + - B(s)
G(s) H(s)
xo(s)
(a)
(1)前向通路传递函数:输出Xo(s)与偏差E(s)之比
X o (s) G ( s) E (s)
(2)反馈回路传递函数 :主反馈信号B(s)与输出信号Xo(s)之比。
B( s) H (s) X o (s)
(3)开环传递函数 :主反馈信号B(s)与偏差信号E(s)之比 xi ( s )
2.4 系统的传递函数方框图及其简化
控制系统的方块图是系统各元件特性、系统结构和 信号流向的图解表示法。
2.4.1
方框图元素
(1)函数方框(Block Diagram):表示输入到输出
单向传输间的函数关系。
t
Xi ( s)
G s) (
Xo( s)
信号线
方框
信号线:带有箭头的直线,箭头表示 信号的流向,在直线旁标记信号象函 数。
G( s) Gi ( s)
i 1 n
n为相串联的环节数
结论:串联环节的等效传递函数 等于所有传递函数的乘积。
2、并联连接
G1 (s) R(s) C2 (s) G2 (s) G3 (s) (a) C3 (s) C1 (s) C(s)
R(s) G(s) (b)
C(s)
图2-24 环节的并联连接
R(s)
G2 (s) G3 (s) (a)
G ( s ) Gi ( s )
i 1 n
C ( s) G1 ( s) G2 ( s) G3 ( s) G ( s) R( s )
n为相并联的环节数,当然还有“-”的情况。
结论:并联环节的等效传递函数等于 所有并联环节传递函数的代数和。
1 P Pk k k
Ui
1 R1
1
1 C1s
1
1 R2
1 C2 s
1
1 1
Uo1Biblioteka 1 1 1 1 1 1 R C s R C s R C s R C s R C s 2 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 P 1 R1C1s R2C1s R2C2 s R1C1s R2C2 s R1 C1s R2 C2 s
P G1G2G3G4G5 1 1 1 P2 G1G6G4G5 2 1 P3 G1G2G7
特点:各环节的输入信号是相同的,均为R(s), 输出C(s)为各环节的输出之和.
G1 (s)
C1 (s) C2 (s) C(s) C3 (s)
C ( s) C1 ( s) C2 (s) C3 ( s) G1 ( s) R(s) G2 ( s) R( s) G3 (s) R( s) [G1 ( s) G2 ( s) G3 (s)]R( s)
推导
X i s
E s
Gs
X i s + B s E s E s G s X o s s X o s H s Bs Xo
+- Bs
X i s
H s
s
X o s
U1 ( s) G1 ( s) xi ( s) U 2 ( s) G2 ( s)U1 (s) G2 ( s)G1 (s) xi (s) xo (s) G3 ( s)U 2 ( s) G3 ( s)G2 ( s)G1 ( s) xi (s)
xo ( s) G1 ( s)G2 ( s)G3 ( s) G( s) xi ( s)
1 1
E s
输入节点 (源点)
H s
输出节点 支路上的箭头表明了信 (阱点) 号的流向,各支路上还标明 了增益,即支路上的传递函 数。
从输入变量到输出变量的系统传 流图的特征式 ,将与第k条前向通路相接触的回 递函数可由梅逊公式求得: 第k条前向通路 系统总传递函数