matlab绘制系统函数波特图
自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。
使用 matlab 语句表达微分环节的传递函数

使用 Matlab 语句表达微分环节的传递函数1. 介绍微分环节的传递函数在控制系统中,微分环节是一种常见的控制元件,其传递函数通常用来描述输入信号经过微分环节后的输出信号与输入信号之间的关系。
微分环节的传递函数通常具有形式为G(s)=Ks的特点,其中K为增益,s为复变量。
微分环节在控制系统中具有重要的作用,常用于提高系统的动态性能和抑制振荡。
2. 使用 Matlab 表达微分环节传递函数的基本语法在Matlab 中,可以使用一些简单的语句来表达微分环节的传递函数。
要表示一个简单的微分环节传递函数G(s)=Ks,可以使用以下语法:```matlabK = 1; 定义增益值s = tf('s'); 定义复变量 sG = K*s; 表示传递函数```在这个语法中,首先定义了微分环节的增益K,然后使用tf函数定义了复变量s,最后将传递函数G(s)表示为K*s。
3. 使用 Matlab 表达一般形式的微分环节传递函数除了简单的Ks形式外,微分环节的传递函数还可以具有一般形式G(s)=K(s-a),其中a为常数。
在 Matlab 中,可以使用以下语句表达微分环节传递函数的一般形式:```matlabK = 2; 定义增益值a = 3; 定义常数as = tf('s'); 定义复变量 sG = K*(s-a); 表示传递函数```在这个语法中,除了定义增益K和常数a外,其余部分与简单形式的传递函数表达相似。
4. 使用 Matlab 表达多个微分环节的传递函数在实际控制系统中,经常会遇到多个微分环节组成的复杂系统。
在Matlab 中,可以使用一些复杂的语句来表达多个微分环节的传递函数。
一个由两个微分环节组成的传递函数G(s)=Ks^2可以使用以下语句表示:```matlabK = 4; 定义增益值s = tf('s'); 定义复变量 sG = K*s^2; 表示传递函数```在这个语法中,使用s^2表示两个微分环节的乘积。
实验六 基于MATLAB控制系统的Nyquist图及其稳定性分析 实验七 基于MATLAB控制系统的伯德图及其频域分析

实验六 基于MATLAB 控制系统的Nyquist 图及其稳定性分析 一、实验目的1、熟练掌握使用MATLAB 命令绘制控制系统Nyquist 图的方法。
2、能够分析控制系统Nyquist 图的基本规律。
3、加深理解控制系统乃奎斯特稳定性判据的实际应用。
4、学会利用奈氏图设计控制系统。
二、实验原理奈奎斯特稳定性判据(又称奈氏判据)反馈控制系统稳定的充分必要条件是当从变到时,开环系统的奈氏曲线不穿过点且逆时针包围临界点点的圈数R 等于开环传递函数的正实部极点数。
奈奎斯特稳定性判据是利用系统开环频率特性来判断闭环系统稳定性的一个判据,便于研究当系统结构参数改变时对系统稳定性的影响。
1、对于开环稳定的系统,闭环系统稳定的充分必要条件是:开环系统的奈氏曲线不包围点。
反之,则闭环系统是不稳定的。
2、对于开环不稳定的系统,有个开环极点位于右半平面,则闭环系统稳定的充分必要条件是:当从变到时,开环系统的奈氏曲线逆时针包围点次。
三、实验内容1、绘制控制系统Nyquist 图例1、系统开环传递函数,绘制其Nyquist 图。
210()210G s s s =++M-fileclcclear all den=[10]; num=[1 2 10]; sys=tf(den,num) nyquist(sys);2、根据奈氏曲线判定系统的稳定性例2、已知绘制Nyquist 图,判定系统的稳定性。
M-fileclcclear320.5()()20.5G s H s s s s =+++den=[0.5];num=[1 2 1 0.5];sys=tf(den,num);nyquist(sys)roots(num)ans =-1.5652-0.2174 + 0.5217i-0.2174 - 0.5217i【分析】由于系统奈氏曲线没有包围且远离(-1,j 0)点,且p=0,因此系统闭环稳定。
四、实验能力要求1、熟练使用MATLAB绘制控制系统Nyquist曲线的方法,掌握函数nyquist ( )的三种调用格式,并灵活运用。
自动控制原理MATLAB仿真实验报告

自动控制原理实验报告学 院 电子信息与电气工程学院实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、系统的动态性能指标有哪些?三、实验方法 (一) 四种典型响应 1、阶跃响应: 阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点;3、利用roots 求分母多项式的根来确定系统的极点(三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2.用Matlab求出253722)(2342++++++=s s s s s s s G 的极点。
MATLAB应用-传递函数与画图

用MATLAB求系统的零点、极点 及特征多项式
• 部分分式展开
n−1 +⋅⋅⋅+bn−1s +bn M(s) num b0sn +bs 1 = = 考虑传递函数:N(s) den a sn +asn−1 +⋅⋅⋅+a s +a 0 1 n−1 n
带有选项的曲线绘制命令的调用格式: plot(x1,y1,s1,x2,y2,s2,…)
用MATLAB绘制二维图形
• 子图的命令
MATLAB允许将一个图形窗口按矩阵形式分成多个子 窗口,分别显示多个图形,需要用到subplot( )函数。 该函数把一个图形窗口分割成m*n个子绘图区域。调 用格式:subplot (m, n, k) 例如:subplot(4,3,6)表示将窗口分割成4*3个部 分,在第6 个部分上绘制图像。 通过参考数 k 可以调用各个绘图区域,子绘图区域按 注意:MATLAB最多允许9*9的分割。 行从左到右从上到下编号。
10s + 5 G2 ( s ) = s
H (s) =
1 0.01s + 1
用MATLAB建立传递函数模型
• 多项式模型TF和零极点模型ZPK的转换 • TF对象转换成ZPK对象 调用格式为:G1=zpk(G) 例
6.8s 2 + 61.2 s + 95.2 G (s) = 4 s + 7.5s 3 + 22 s 2 + 19.5s
用MATLAB建立传递函数模型
• 多项式模型—TF对象(单入—单出系统) 线性时不变(LTI)系统的传递函数模型:
用MATLAB绘制Nyquist图

据,不带输出变量时,则绘出奈奎斯特
曲线。也可用指定频率向量w指定所要绘
制的曲线范围。
2021/1/20
用MATLAB绘制NY.yXquinisgt图
2
(a) z=1,p=2
n=[0 0 1 1] m=[1 2 0 0] sys=tf(n,m) nyquist(sys)
2021/1/20
用MATLAB绘制NY.yXquinisgt图
用MATLAB绘制Nyquist图
用MATLAB绘制Nyquist图
MATLAB命令
nyquist命令可以求得连续系统的奈奎斯特 曲线。
命令格式:
[ re,im,w ] = nyquist(num,den)
[ re,im,w ] = nyquist(num,den,w)
当带有输出变量时,可得到相应的一组数
%求函数ejw的虚部,结果不显示
[ a,b ] = nyquist(n,d,w); %求指定频率范围内的奈氏值,不显示结果
n1 = 26;
%取k = 26
d1 = d;
%保留原分母矢量
[ a1,b1 ] = nyquist(n1,d1,w); %求k = 0.5时的奈氏值,结果不显示
n2 = 50;
用MATLAB绘制Nyquist图
幅值裕度和相位裕度
n = 10;
%取k = 10时的值
d = conv([1 2],[1 2 5]);
w = [ 0:0.01:10 ];
%确定频率范围
e = exp(j*w);
%给出指数函数ejw
r = real(e);
%求指数函数的实部,结果不显示
i = imag(e);
用MATLAB绘制Nyquist图
使用Matlab进行控制系统设计的基本步骤

使用Matlab进行控制系统设计的基本步骤控制系统设计是一项重要的工程任务,它涉及到系统建模、控制器设计和系统分析等方面。
而Matlab作为一款强大的数学工具软件,提供了丰富的功能和工具,可以帮助工程师实现控制系统设计的各个环节。
本文将介绍使用Matlab进行控制系统设计的基本步骤。
一、系统建模控制系统设计的第一个关键步骤是系统建模。
系统建模是将实际的物理系统或过程转化为数学方程的过程。
Matlab提供了多种建模方法,可以根据实际需求选择适合的方法。
1.1 时域建模时域建模是一种基于微分方程和代数方程的建模方法,适合描述连续系统的动态特性。
可以使用Matlab的Simulink工具箱进行时域建模,通过拖拽模块和连接线的方式,构建系统模型。
1.2 频域建模频域建模是一种基于频率响应的建模方法,适合描述系统的幅频、相频特性。
可以使用Matlab的控制系统工具箱进行频域建模,通过输入系统的传递函数或状态空间矩阵,得到系统的频域特性。
1.3 时频域建模时频域建模是一种综合了时域和频域特性的建模方法,适合描述非线性和时变系统。
可以使用Matlab的Wavelet工具箱进行时频域建模,通过连续小波变换或离散小波变换,得到系统的时频域特性。
二、控制器设计在系统建模完成后,接下来是设计控制器。
控制器设计的目标是使得系统具有所需的稳定性、响应速度和鲁棒性等性能。
2.1 经典控制器设计Matlab提供了经典控制器的设计函数,如比例控制器(P控制器)、比例积分控制器(PI控制器)和比例积分微分控制器(PID控制器)等。
可以根据系统的特性和性能要求,选择合适的控制器类型和调节参数。
2.2 线性二次调节器设计线性二次调节(LQR)是一种优化控制方法,可以同时优化系统的稳态误差和控制能量消耗。
在Matlab中,可以使用lqr函数进行LQR控制器的设计,通过调整权重矩阵来获得不同的控制性能。
2.3 非线性控制器设计对于非线性系统,经典控制器往往无法满足要求。
控制系统的波特图.pdf

实验4 控制系统的波得图一.实验目的1.利用计算机作出开环系统的波得图;2. 观察记录控制系统的开环频域性能;3.控制系统的开环频率特性分析。
二.实验步骤1.在Windows界面上用鼠标双击matlab图标,即可打开MATLAB命令平台。
2. 练习相关M函数波德图绘图函数:bode(sys)bode(sys,{wmin,wmax})bode(sys,w)[m,p,w]=bode(sys)函数功能:对数频率特性作图函数,即波得图作图。
格式1:给定开环系统的数学模型对象sys作波得图,频率向量w自动给出。
格式2:给定变量w的绘图区间为{wmin,wmax}。
格式3:频率向量w由人工给出。
w的单位为[弧度]/秒,可以由命令logspace得到对数等分的w值。
格式3:返回变量格式,不作图。
m为频率特性G(jω)的幅值向量,m=︱G(jω)︱。
p为频率特性G(jω)的幅角向量,p=arg[ G(jω)],单位为角度(°)。
w为频率向量,单位为[弧度]/秒。
更详细的命令说明,可键入“help bode”在线帮助查阅。
例如,系统开环传递函数为作图程序为num=[10];den=[1 2 10];bode(num,den);绘制波得图如图11所示。
或者给定人工变量w=logspace(-1,1,32);bode(num,den,w);对数分度函数:logspace(d1,d2)logspace(d1,d2,n)函数功能:产生对数分度向量。
格式1:从到101d到102d之间作对数等分分度,产生50个元素的对数等间隔向量。
格式2:从101d到102d之间作对数等分分度,给定等分数n。
半对数绘图函数:semilogx(…)函数功能:半对数绘图命令。
使用格式:横坐标为对数等分分度,其它与plot()命令的使用格式相同。
例如,已知传递函数为作对数幅频特性。
程序为w=logspace(-1,1,32); % w范围和点数nmag=10./((i*w).^2+2.*(i*w)+10); % 计算模值L=20*log(abs(mag)); %模取对数semilogx(w,L); %半对数作图grid % 画网格线幅频特性作图如图12所示。