吉林省第二实验学校2019-2020学年下期九年级第4次月考数学模拟试卷
2019年吉林省第二实验学校中考数学四模考试试卷 含解析

2019年吉林省第二实验学校中考数学四模试卷一、选择题(共8小题,每小题3分,满分24分)1.下列各数中,比2大的数是()A.πB.﹣1C.1D.2.第四届长春图书博览会在长春国际会展中心开幕,来白全国各地百余家出版单位的350000种出版物登场.350000这个数用科学记数法可以表示为()A.35×101 B.0.35×106C.3.5×106D.3.5×1053.在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是()A.B.C.D.4.下列运算中,正确的是()A.a12÷a4=a3B.a2•a3=a5C.(a5)2=a7D.2a+3b=5ab 5.不等式组的解集是()A.﹣1<x≤1B.﹣1<x<1C.x>﹣1D.x≤16.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.30°B.45°C.60°D.75°7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB =5,则AE的长为()A.4B.6C.8D.108.如图,在平面直角坐标系中,▱OABC的对角线OB在y轴正半轴上,点A,C分别在函数y=(x>0),y=(x<0)的图象上,分别过点A,C作AD⊥x轴于点D,CE ⊥x轴于点E,若|k1|:|k2|=9:4,则AD:CE的值为()A.2:3B.3:2C.4:9D.9:4二、填空题(每题3分,共18分)9.分解因式:a2﹣4b2=.10.关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是.11.如图,把“QQ”笑脸放在平面直角坐标系中,已知眼睛A、B的坐标分别为(﹣2,3),(0,3),则嘴C的坐标是.12.如图,⊙O与正六边形OABCDE的边OA、OE分别交丁点F、G,点M在FG上,则圆周角∠FMG的大小为度.13.在平面直角坐标系中,一次函数y=kx+b(k、b为常数,且k≠0)的图象如图所示,根据图象中的信息可求得关于x的方程kx+b=﹣1的解为.14.某游乐园要建一个圆形喷水池,在喷水池的中心安装一个大的喷水头,高度为m,喷出的水柱沿抛物线轨迹运动(如图),在离中心水平距离4m处达到最高,高度为6m,之后落在水池边缘,那么这个喷水池的直径AB为m.三、解答题(共78分)15.先化简,再求值:4x(x﹣1)﹣(2x﹣1)2+3x,其中.16.在一个不透明的袋子里装有3个乒乓球,球上分别标有数字1,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子里随机摸出1个乒乓球,记下数字后放回,再从袋子里随机摸出1个乒乓球记下数字.请用画树状图(或列表)的方法,求两次摸出的乒乓球数字之和是奇数的概率.17.某市从今年1月l同起调整居民用水价格,每立方米水费上涨20%.小丽家去年12月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3.求该市今年居民用水的价格.18.如图,AB是⊙O的直径,点C、D在⊙O上,过点C作⊙O的切线交AB的延长线于点E.已知⊙O的半径为6,∠CDB=25°.(1)求∠E的度数,(2)求的长.(结果保留π)19.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画一个以线段AC为对角线、周长为20的四边形ABCD,且点B和点D 均在小正方形的顶点上,并求出BD的长;(2)在图2中画一个以线段AC为对角线、面积为10的四边形ABCD,且点B和点D 均在小正方形的顶点上.20.调查作业:了解你所住小区家庭3月份用气量情况小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2~5之间,这300户家庭的平均人数约为3.3.小天、小东、小芸各自对该小区家庭3月份用气量情况进行了抽样裯查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1抽样调查小区4户家庭3月份用气量统计表(单位:m3)家庭人数2345用气量14192126表2抽样调查小区15户家庭3月份用气量统计表(单位:m3)家庭人数22233333333334用气量1011151314151517171818182022表3抽样调查小区15户家庭3月份用气量统计表(单位:m3)家庭人数222333333444455用气量101213141717182020212226312831根据以|材料回答问题:(1)小天、小东和小芸三人中,哪位同学抽样调查的数据能较好地反映出该小区家庭3月份用气量情况?请简要说明其他两位同学抽样调查的不足之处.(2)在表3中,调查的15个家庭中使用气量的中位数是m3,众数是m3.(3)小东将表2中的数据按用气量x(m3)大小分为三类.①节约型:10≤x≤13,②适中型:14≤x≤17,③偏高型:18≤x≤22,并绘制成如图扇形统讣图,请帮助他将扇形图补充完整.(4)小芸算出表3中3月份平均每人的用气量为6m3,请估计该小区3月份的总用气量.21.张庄甲、乙两家草莓采摘园的草莓销售价格相同,“春节期间”,两家采摘园将推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,某游客的草莓采摘量为x(千克),在甲园所需总费用为y甲(元),在乙园所需总费用为y乙(元),y甲、y乙与x之间的函数关系如图所示,折线OAB表示y乙与x之间的函数关系.(1)甲采摘园的门票是元,两个采摘园优惠前的草莓单价是每千克元;(2)当x>10时,求y乙与x的函数表达式;(3)游客在“春节期间”采摘多少千克草莓时,甲、乙两家采摘园的总费用相同.22.若四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫做这个四边形的“巧分线”,这个四边形叫“巧妙四边形”,若一个四边形有两条巧分线,则称为“绝妙四边形.(1)下列四边形一定是巧妙四边形的是.(填序号)①平行四边形;②矩形;③菱形;④正方形.【初步应用】(2)如图,在绝妙四边形ABCD中,AC=AD,且AC垂直平分BD,若∠BAD=80°,求∠BCD的度数.【深入研究】(3)在巧妙四边形ABCD中,AB=AD=CD,∠A=90°,AC是四边形ABCD的巧分线,请直接写出∠BCD的度数.23.在△ABC中,AC=5,AB=7,BC=4,点D在边AB上,且AD=3,动点P从点A 出发,以每秒1个单位长度的速度向终点B运动,以PD为边向上作正方形PDMN,设点P运动的时间为t,正方形PDMN与△ABC重叠部分的面积为S.(1)用含有t的代数式表示线段PD的长(2)当点N落在△ABC的边上时,求t的值(3)求S与t的函数关系式(4)当点P在线段AD上运动时,作点N关于CD的对称点N′,当N′与△ABC的某一个顶点所连的直线平分△ABC的面积时,求t的值.24.在平面直角坐标系中,某个函数图象上任意两点的坐标分别为(﹣t,y1)和(t,y2)(其中t为常数且t>0),将x<﹣t的部分沿直线y=y1翻折,翻折后的图象记为G1;将x>t的部分沿直线y=y2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G.例如:如图,当t=1时,原函数y=x,图象G所对应的函数关系式为y=.(1)当t=时,原函数为y=x+1,图象G与坐标轴的交点坐标是.(2)当t=时,原函数为y=x2﹣2x①图象G所对应的函数值y随x的增大而减小时,x的取值范围是.②图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由.(3)对应函数y=x2﹣2nx+n2﹣3(n为常数).①n=﹣1时,若图象G与直线y=2恰好有两个交点,求t的取值范围.②当t=2时,若图象G在n2﹣2≤x≤n2﹣1上的函数值y随x的增大而减小,直接写出n的取值范围.参考答案与试题解析一.选择题(共8小题)1.下列各数中,比2大的数是()A.πB.﹣1C.1D.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣1<1<<2<π,所以各数中,比2大的数是π.故选:A.2.第四届长春图书博览会在长春国际会展中心开幕,来白全国各地百余家出版单位的350000种出版物登场.350000这个数用科学记数法可以表示为()A.35×101 B.0.35×106C.3.5×106D.3.5×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:350000=3.5×105,故选:D.3.在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项图形分析判断后即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.4.下列运算中,正确的是()A.a12÷a4=a3B.a2•a3=a5C.(a5)2=a7D.2a+3b=5ab 【分析】根据同底数幂的除法底数不变指数相减,可判断A,根据同底数幂的乘法底数不变指数相加,可判断B,根据幂的乘方,可判断C,根据合并同类项,可判断D.【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B正确;C、底数不变指数相乘,故C错误;D、不是同类项不能合并,故D错误;故选:B.5.不等式组的解集是()A.﹣1<x≤1B.﹣1<x<1C.x>﹣1D.x≤1【分析】分别求出不等式的解集,再找到其公共部分即可.【解答】解:,由①得,x>﹣1,由②得,x≤1,故不等式组的解集为﹣1<x≤1,故选:A.6.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.30°B.45°C.60°D.75°【分析】根据三角形的内角和求出∠2=45°,再根据对顶角相等求出∠3=∠2,然后根据三角形的一个外角等于与它不相邻的两个内角的和计算即可.【解答】解:∵∠2=90°﹣45°=45°(直角三角形两锐角互余),∴∠3=∠2=45°,∴∠1=∠3+30°=45°+30°=75°.故选:D.7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB =5,则AE的长为()A.4B.6C.8D.10【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选:C.8.如图,在平面直角坐标系中,▱OABC的对角线OB在y轴正半轴上,点A,C分别在函数y=(x>0),y=(x<0)的图象上,分别过点A,C作AD⊥x轴于点D,CE ⊥x轴于点E,若|k1|:|k2|=9:4,则AD:CE的值为()A.2:3B.3:2C.4:9D.9:4【分析】依据S△AOB=S△COB,可得EO=DO,依据反比例函数系数k的几何意义,可得S△AOD=|k1|,S△COE=|k2|,依据|k1|:|k2|=9:4,即可得到AD:CE的值.【解答】解:∵▱OABC的对角线OB在y轴正半轴上,∴S△AOB=S△COB,又∵AD⊥x轴于点D,CE⊥x轴于点E,∴CE∥BO∥AD,∴EO=DO,∵点A,C分别在函数y=(x>0),y=(x<0)的图象上,∴S△AOD=|k1|,S△COE=|k2|,∴=,即=,∴=,故选:D.二.填空题(共6小题)9.分解因式:a2﹣4b2=(a+2b)(a﹣2b).【分析】直接用平方差公式进行分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣4b2=(a+2b)(a﹣2b).故答案为:(a+2b)(a﹣2b).10.关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是k>﹣1且k≠0.【分析】由方程有两个不等实数根可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:由已知得:,即,解得:k>﹣1且k≠0.故答案为:k>﹣1且k≠0.11.如图,把“QQ”笑脸放在平面直角坐标系中,已知眼睛A、B的坐标分别为(﹣2,3),(0,3),则嘴C的坐标是(﹣1,1).【分析】首先根据左眼,右眼坐标,得到嘴唇C的坐标,如何根据平移的性质即可得到结论.【解答】解:∵左眼A的坐标是(﹣2,3),右眼B的坐标为(0,3),∴嘴唇C的坐标是(﹣1,1),故答案为:(﹣1,1).12.如图,⊙O与正六边形OABCDE的边OA、OE分别交丁点F、G,点M在FG上,则圆周角∠FMG的大小为度120°.【分析】在优弧FG上取一点T,连接TF,TG.利用圆内接四边形对角互补解决问题即可.【解答】解:在优弧FG上取一点T,连接TF,TG.∵ABCDEF是正六边形,∴∠AOE=120°∵∠T=∠FOG,∴∠T=60°,∵∠FMG+∠T=180°,∴∠FMG=120°,故答案为120°.13.在平面直角坐标系中,一次函数y=kx+b(k、b为常数,且k≠0)的图象如图所示,根据图象中的信息可求得关于x的方程kx+b=﹣1的解为x=﹣2.【分析】先求出函数的解析式,再把y=﹣1代入,即可求出x.【解答】解:把(0,1)和(2,3)代入y=kx+b得:,解得:k=1,b=1,即y=x+1,当y=﹣1时,x+1=﹣1,解得:x=﹣2,故答案为:x=﹣2.14.某游乐园要建一个圆形喷水池,在喷水池的中心安装一个大的喷水头,高度为m,喷出的水柱沿抛物线轨迹运动(如图),在离中心水平距离4m处达到最高,高度为6m,之后落在水池边缘,那么这个喷水池的直径AB为20m.【分析】直接利用顶点式求出二次函数解析式进而得出答案,利用y=0时,进而得出x 的值即可得出答案.【解答】解:∵喷出的水柱中心4m处达到最高,高度为6m,∴抛物线的顶点坐标为(4,6)或(﹣4,6),∵在喷水池的中心安装一个大的喷水头,高度为m,∴抛物线与y轴的交点坐标为(0,),设抛物线解析式为y=a1(x﹣4)2+6或y=a2(x+4)2+6,由x=0,y=得,16a1+6=,解得a1=﹣,由x=0,y=得,16a2+6=,解得a2=﹣,所以,函数解析式为y=﹣(x﹣4)2+6或y=﹣(x+4)2+6,当y=0时,0=﹣(x﹣4)2+6,解得:x=10,即这个喷水池的直径AB为20m,故答案为:20.三.解答题(共10小题)15.先化简,再求值:4x(x﹣1)﹣(2x﹣1)2+3x,其中.【分析】首先利用整式的乘法公式和完全平方公式打开括号,然后合并同类项,最后代入数值计算即可求解.【解答】解:原式=4x2﹣4x﹣(4x2﹣4x+1)+3x=4x2﹣4x﹣4x2+4x﹣1+3x=3x﹣1.当时,3x﹣1=﹣2.16.在一个不透明的袋子里装有3个乒乓球,球上分别标有数字1,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子里随机摸出1个乒乓球,记下数字后放回,再从袋子里随机摸出1个乒乓球记下数字.请用画树状图(或列表)的方法,求两次摸出的乒乓球数字之和是奇数的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的乒乓球标号数字之和是奇数的情况,再利用概率公式即可求得答案即可.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的乒乓球标号数字之和是奇数有4种情况,∴两次摸出的乒乓球标号数字之和是奇数概率=.17.某市从今年1月l同起调整居民用水价格,每立方米水费上涨20%.小丽家去年12月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3.求该市今年居民用水的价格.【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.【解答】解:设去年居民用水价格为x元/m3,根据题意列方程:﹣=5,解得:x=2,经检验:x=2是原方程的根,∴(1+20%)x=2.4,答:该市今年居民用水的价格是每立方米2.4元.18.如图,AB是⊙O的直径,点C、D在⊙O上,过点C作⊙O的切线交AB的延长线于点E.已知⊙O的半径为6,∠CDB=25°.(1)求∠E的度数,(2)求的长.(结果保留π)【分析】(1)连接切点和圆心,构造直角三角形,利用圆周角定理先求出∠COB的度数,即可求出∠E;(2)利用弧长公式即可解决问题.【解答】解:(1)如图,连结OC.∵CE是⊙O的切线,∴OC⊥CE.∴∠OCE=90°.∵∠COB=2∠CDB,∠CDB=25°,∴∠COB=50°.∴∠E=40°.(2)∵∠COE=50°,半径为6,的长为.19.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画一个以线段AC为对角线、周长为20的四边形ABCD,且点B和点D 均在小正方形的顶点上,并求出BD的长;(2)在图2中画一个以线段AC为对角线、面积为10的四边形ABCD,且点B和点D 均在小正方形的顶点上.【分析】(1)作一边长为5的菱形即可得;(2)作一边长为5、且这条边上的高为2的平行四边形可得.【解答】解:(1)如图1所示,四边形ABCD即为所求,BD==4;(2)如图2,四边形ABCD即为所求.20.调查作业:了解你所住小区家庭3月份用气量情况小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2~5之间,这300户家庭的平均人数约为3.3.小天、小东、小芸各自对该小区家庭3月份用气量情况进行了抽样裯查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1抽样调查小区4户家庭3月份用气量统计表(单位:m3)家庭人数2345用气量14192126表2抽样调查小区15户家庭3月份用气量统计表(单位:m3)22233333333334家庭人数用气量1011151314151517171818182022表3抽样调查小区15户家庭3月份用气量统计表(单位:m3)家庭222333333444455人数101213141717182020212226312831用气量根据以|材料回答问题:(1)小天、小东和小芸三人中,哪位同学抽样调查的数据能较好地反映出该小区家庭3月份用气量情况?请简要说明其他两位同学抽样调查的不足之处.(2)在表3中,调查的15个家庭中使用气量的中位数是20m3,众数是17和20 m3.(3)小东将表2中的数据按用气量x(m3)大小分为三类.①节约型:10≤x≤13,②适中型:14≤x≤17,③偏高型:18≤x≤22,并绘制成如图扇形统讣图,请帮助他将扇形图补充完整.(4)小芸算出表3中3月份平均每人的用气量为6m3,请估计该小区3月份的总用气量.【分析】(1)小芸理由如下:抽样调査时应注意样本数量和所抽取样本的代表性,由此即可判断.(2)根据中位数,众数的定义即可判断.(3)求出适中型,偏高型的百分比蛮好吃扇形统计图即可.(4)利用样本估计总体的思想解决问题即可.【解答】解:(1)小芸理由如下:抽样调査时应注意样本数量和所抽取样本的代表性.根据以上要求,小芸的调查数据能较好地反映岀该小区家庭2月份用气量情况.小天的抽样调查不足之处:抽样调查所抽取的家庭数量过少;小东的抽样调查不足之处:抽样调查的样本不具有代表性,所抽取的样本家庭人数为3的居多缺少家庭人数为5的样本,所以样本类型不全面.(2)15户家庭2月份用气量虜形统计图:(3)中位数是20,众数是17和20.故答案为20,17和20.(4)6×3.3×300=5940(m3)所以该小区2月份的总用气量约为5940m321.张庄甲、乙两家草莓采摘园的草莓销售价格相同,“春节期间”,两家采摘园将推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,某游客的草莓采摘量为x(千克),在甲园所需总费用为y甲(元),在乙园所需总费用为y乙(元),y甲、y乙与x之间的函数关系如图所示,折线OAB表示y乙与x之间的函数关系.(1)甲采摘园的门票是60元,两个采摘园优惠前的草莓单价是每千克30元;(2)当x>10时,求y乙与x的函数表达式;(3)游客在“春节期间”采摘多少千克草莓时,甲、乙两家采摘园的总费用相同.【分析】(1)根据函数图象和图象中的数据可以解答本题;(2)根据函数图象中的数据可以求得当x>10时,y乙与x的函数表达式;(3)根据函数图象,利用分类讨论的方法可以解答本题.【解答】解:(1)由图象可得,甲采摘园的门票是60元,两个采摘园优惠前的草莓单价是:300÷10=30(元/千克),故答案为:60,30;(2)当x>10时,设y乙与x的函数表达式是y乙=kx+b,,得,即当x>10时,y乙与x的函数表达式是y乙=12x+180;(3)由题意可得,y甲=60+30×0.6x=18x+60,当0<x<10时,令18x+60=30x,得x=5,当x>10时,令12x+180=18x+60,得x=20,答:采摘5千克或20千克草莓时,甲、乙两家采摘园的总费用相同.22.若四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫做这个四边形的“巧分线”,这个四边形叫“巧妙四边形”,若一个四边形有两条巧分线,则称为“绝妙四边形.(1)下列四边形一定是巧妙四边形的是③④.(填序号)①平行四边形;②矩形;③菱形;④正方形.【初步应用】(2)如图,在绝妙四边形ABCD中,AC=AD,且AC垂直平分BD,若∠BAD=80°,求∠BCD的度数.【深入研究】(3)在巧妙四边形ABCD中,AB=AD=CD,∠A=90°,AC是四边形ABCD的巧分线,请直接写出∠BCD的度数.【分析】(1)由平行四边形,矩形,菱形,正方形的性质可求解;【初步应用】(2)由线段垂直平分线的性质可得AB=AD,BC=CD,AC⊥BD,由等腰三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,即可求∠BCD的度数;【深入研究】(3)分三种情况讨论,由等腰三角形的性质和“绝妙四边形的定义可求解.【解答】解:(1)∵菱形的四条边相等,∴连接对角线能得到两个等腰三角形,∴菱形是巧妙四边形;正方形是特殊的菱形,所以正方形也是巧妙四边形;故答案是:③④;【初步应用】(2)∵AC垂直平分BD,∴AB=AD,BC=CD,AC⊥BD,∴∠BAC=∠DAC,∠BCA=∠DCA,∵∠BAD=80°,∴∠BAC=∠DAC=40,∵AC=AD,∴∠ACD=70°=∠BCA,∴∠BCD=140°,【深入研究】(3)∵AC是四边形ABCD的巧分线,∴△ACD和△ABC是等腰三角形,①当AC=BC时,如图,过C作CH⊥AB于H,过C作CG⊥AD,交AD的延长线于G,∵∠HAD=∠AHC=∠G=90°∴四边形AHCG是矩形,AH=CG=AB=CD∴∠CDG=30°,∴∠ADC=150°∴∠DAC=∠DCA=15°∵∠DAB=90°,∴∠CAB=∠B=75°,且∠ACB=30°∴∠BCD=30°+15°=45°;②当AC=AB时,如图∵AC=AB=AD=CD∴△ACD是等边三角形,∠CAD=∠ACD=60°∴∠BAD=90°,∴∠BAC=30°,∵•AB=AC∴∠ACB=75°,∴∠BCD=75°+60°=135°;③当AB=BC时,如图∵AB=AD=CD=BC∴四边形ABCD是菱形,且∠BAD=90°,∴四边形ABCD是正方形∴∠BCD=90°综上所述:∠BCD的度数是45°或135°或90°.23.在△ABC中,AC=5,AB=7,BC=4,点D在边AB上,且AD=3,动点P从点A 出发,以每秒1个单位长度的速度向终点B运动,以PD为边向上作正方形PDMN,设点P运动的时间为t,正方形PDMN与△ABC重叠部分的面积为S.(1)用含有t的代数式表示线段PD的长(2)当点N落在△ABC的边上时,求t的值(3)求S与t的函数关系式(4)当点P在线段AD上运动时,作点N关于CD的对称点N′,当N′与△ABC的某一个顶点所连的直线平分△ABC的面积时,求t的值.【分析】(1)分0<t≤3时,3<t≤7时,两种情形分别求解即可.(2)分两种情形①如图2中,当点N在AC上时,②如图3中,当点N在BC上时,利用平行线分线段成比例定理解决问题即可.(3)分三种情形:①如图4中,当0<t≤时,重叠部分是五边形EFPDM,②如图5或6中.当<t≤5时,重叠部分是正方形PDMN.③如图7中,当5<t≤7时,重叠部分是五边形EFPDM,分别求解即可.(4)分三种情形画出图形,利用平行线分线段成比例定理构建方程即可解决问题.【解答】解:(1)如图1中,作CD′⊥AB于D.∵∠B=45°BC=4,∴CD′=BD′=4,∴AD′=AB﹣BD′=3,∵AD=3,∴AD=AD′,∴D′与D重合,当0<t≤3时,PD=3﹣t.当3<t≤7时,PD=t﹣3.(2)①如图2中,当点N在AC上时,∵MN∥AD,∴=,∴=,解得t=.②如图3中,当点N在BC上时,∵MN∥BD,∴=,∴=,解得t=5综上所述,满足条件的t的值为s或5s.(3)①如图4中,当0<t≤时,重叠部分是五边形EFPDM,s=S正方形MDPN﹣S△NEF=(3﹣t)2﹣•(3﹣t﹣t)2=﹣②如图5或6中,当<t≤5时,重叠部分是正方形PDMN,s=t2﹣6t+9③如图7中,当5<t≤7时,重叠部分是五边形EFPDM,s=S正方形MNPD﹣S△EFN=(t ﹣3)2﹣•[(t﹣3)﹣(7﹣t)]2=﹣t2+14t﹣41.综上所述,s=.(4)如图8中,当点N′落在中线AE上时,作EK⊥BC于K,N′J⊥AB于J.∵JN′∥EK,∴=,则有=,解得t=1.如图9中,当点N′落在中线BG上时,作GK⊥BC于K,N′J⊥AB于J.∵N′J∥GK,∴=,∴=,解得t=.如图10中,当点N′落在中线CF上时,∵MN′∥DF,∴=,∴=,解得t=.综上所述,满足条件的t的值为1s或s或s.24.在平面直角坐标系中,某个函数图象上任意两点的坐标分别为(﹣t,y1)和(t,y2)(其中t为常数且t>0),将x<﹣t的部分沿直线y=y1翻折,翻折后的图象记为G1;将x>t的部分沿直线y=y2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G.例如:如图,当t=1时,原函数y=x,图象G所对应的函数关系式为y=.(1)当t=时,原函数为y=x+1,图象G与坐标轴的交点坐标是(2,0)或(0,0).(2)当t=时,原函数为y=x2﹣2x①图象G所对应的函数值y随x的增大而减小时,x的取值范围是﹣≤x≤1或x≥.②图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由.(3)对应函数y=x2﹣2nx+n2﹣3(n为常数).①n=﹣1时,若图象G与直线y=2恰好有两个交点,求t的取值范围.②当t=2时,若图象G在n2﹣2≤x≤n2﹣1上的函数值y随x的增大而减小,直接写出n的取值范围.【分析】(1)求出翻折点的坐标,求出函数的表达式,即可求解;(2)①从图象确定函数值y随x的增大而减小的区域,即可求解;②确定函数在点A处取得最大值,即可求解;(3)①当y=2时,y=x2+2x﹣2=2,解得:x=﹣1±,即可求解;②分x=n在y轴左侧、x=n在y轴右侧两种情况,分别求解即可.【解答】解:(1)当x=时,y=,当x≥时,翻折后函数的表达式为:y=﹣x+b,将点(,)坐标代入上式并解得:翻折后函数的表达式为:y=﹣x+2,当y=0时,x=2,即函数与x轴交点坐标为:(2,0);同理沿x=﹣翻折后函数的表达式为:y=﹣x,函数与x轴交点坐标为:(0,0),故答案为:(2,0)或(0,0);(2)当t=时,由函数为y=x2﹣2x构建的新函数G的图象,如下图所示:点A、B分别是t=﹣、t=的两个翻折点,点C是抛物线原顶点,则点A、B、C的横坐标分别为﹣、1、,①函数值y随x的增大而减小时,﹣≤x≤1或x≥,故答案为:﹣≤x≤1或x≥;②函数在点A处取得最大值,x=﹣,y=(﹣)2﹣2×(﹣)=,答:图象G所对应的函数有最大值为;(3)n=﹣1时,y=x2+2x﹣2,①参考(2)中的图象知:当y=2时,y=x2+2x﹣2=2,解得:x=﹣1±,若图象G与直线y=2恰好有两个交点,则t>﹣1;②函数的对称轴为:x=n,令y=x2﹣2nx+n2﹣3=0,则x=n±,当t=2时,点A、B、C的横坐标分别为:﹣2,n,2,当x=n在y轴左侧时,(n≤0),此时原函数与x轴的交点坐标(n+,0)在x=2的左侧,如下图所示,则函数在AB段和点C右侧,故:﹣2≤x≤n,即:在﹣2≤n2﹣2≤﹣x≤n2﹣1≤n,解得:n≤;当x=n在y轴右侧时,(n≥0),同理可得:n≥;综上:n≤或n≥.。
吉林省吉林市2019-2020学年中考第四次模拟数学试题含解析

吉林省吉林市2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是()A.若这5次成绩的中位数为8,则x=8B.若这5次成绩的众数是8,则x=8C.若这5次成绩的方差为8,则x=8D.若这5次成绩的平均成绩是8,则x=82.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②244b aca->;③ac-b+1=0;④OA·OB=ca-.其中正确结论的个数是()A.4 B.3 C.2 D.13.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30°B.15°C.10°D.20°4.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是()A.B.C.D.5.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是()A .13;13B .14;10C .14;13D .13;146.一个多边形内角和是外角和的2倍,它是( )A .五边形B .六边形C .七边形D .八边形7.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A 、D 、B 在同一条直线上),设∠CAB =α,那么拉线BC 的长度为( )A .sin h αB .cos h αC .tan h αD .cot h α8.如图,是一次函数y=kx+b 与反比例函数y=2x 的图象,则关于x 的不等式kx+b >2x的解集为A .x >1B .﹣2<x <1C .﹣2<x <0或x >1D .x <﹣29.如图,已知菱形ABCD ,∠B=60°,AB=4,则以AC 为边长的正方形ACEF 的周长为( )A .16B .12C .24D .1810.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .11.现有三张背面完全相同的卡片,正面分别标有数字﹣1,﹣2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是( )A .12B .59C .49D .2312.cos45°的值是( )A.12B.32C.22D.1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知函数y=|x2﹣x﹣2|,直线y=kx+4恰好与y=|x2﹣x﹣2|的图象只有三个交点,则k的值为_____.14.如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:________.15.若两个关于x,y 的二元一次方程组3136mx nyx y+=⎧⎨-=⎩与52428x ny nx y-=-⎧⎨+=⎩有相同的解,则mn 的值为_____.16.使21x-有意义的x的取值范围是__________.17.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.18.如图,在两个同心圆中,三条直径把大、小圆都分成相等的六个部分,若随意向圆中投球,球落在黑色区域的概率是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,△MNQ中,MQ≠NQ.(1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD 中,180ACB CAD ∠+∠=︒,∠B=∠D .求证:CD=AB .20.(6分)已知抛物线y=ax 2+bx+2过点A (5,0)和点B (﹣3,﹣4),与y 轴交于点C .(1)求抛物线y=ax 2+bx+2的函数表达式;(2)求直线BC 的函数表达式;(3)点E 是点B 关于y 轴的对称点,连接AE 、BE ,点P 是折线EB ﹣BC 上的一个动点,①当点P 在线段BC 上时,连接EP ,若EP ⊥BC ,请直接写出线段BP 与线段AE 的关系;②过点P 作x 轴的垂线与过点C 作的y 轴的垂线交于点M ,当点M 不与点C 重合时,点M 关于直线PC 的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P 的坐标.21.(6分)如图,AB 为⊙O 的直径,点D 、E 位于AB 两侧的半圆上,射线DC 切⊙O 于点D ,已知点E 是半圆弧AB 上的动点,点F 是射线DC 上的动点,连接DE 、AE ,DE 与AB 交于点P ,再连接FP 、FB ,且∠AED =45°.(1)求证:CD ∥AB ;(2)填空:①当∠DAE = 时,四边形ADFP 是菱形;②当∠DAE = 时,四边形BFDP 是正方形.22.(8分)(2016山东省烟台市)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)23.(8分)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=42,点P 为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.(1)求证:PC CE CD CB;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)若PE=1,求△PBD的面积.24.(10分)如图,AB为⊙O的直径,点E在⊙O,C为弧BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.试判断直线CD与⊙O的位置关系,并说明理由若AD=2,6,求⊙O的半径.25.(10分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=12α.(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,①求∠DAF的度数;②求证:△ADE≌△ADF;(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为.26.(12分)如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m.小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A′处时,有A'B⊥AB.(1)求A′到BD的距离;(2)求A′到地面的距离.27.(12分)已知:如图,梯形ABCD,DC∥AB,对角线AC平分∠BCD,点E在边CB的延长线上,EA⊥AC,垂足为点A.(1)求证:B是EC的中点;(2)分别延长CD 、EA 相交于点F ,若AC 2=DC•EC ,求证:AD :AF=AC :FC .参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据中位数的定义判断A ;根据众数的定义判断B ;根据方差的定义判断C ;根据平均数的定义判断D .【详解】A 、若这5次成绩的中位数为8,则x 为任意实数,故本选项错误;B 、若这5次成绩的众数是8,则x 为不是7与9的任意实数,故本选项错误;C 、如果x=8,则平均数为15(8+9+7+8+8)=8,方差为15 [3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;D 、若这5次成绩的平均成绩是8,则15(8+9+7+8+x )=8,解得x=8,故本选项正确; 故选D .【点睛】本题考查中位数、众数、平均数和方差:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差()()()()22221232...n x x x x x x x xS n -+-+-++-=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2.B【解析】试题分析:由抛物线开口方向得a <0,由抛物线的对称轴位置可得b >0,由抛物线与y 轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=﹣,所以④正确.故选B.考点:二次函数图象与系数的关系.3.B【解析】分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.详解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故选B.点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.4.B【解析】【分析】根据题意找到从左面看得到的平面图形即可.【详解】这个立体图形的左视图是,故选:B.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置.5.C【解析】【分析】根据统计图,利用众数与中位数的概念即可得出答案.【详解】从统计图中可以得出这一周的气温分别是:12,15,14,10,13,14,11所以众数为14;将气温按从低到高的顺序排列为:10,11,12,13,14,14,15所以中位数为13故选:C.【点睛】本题主要考查中位数和众数,掌握中位数和众数的求法是解题的关键.6.B【解析】【分析】多边形的外角和是310°,则内角和是2×310=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.【详解】设这个多边形是n边形,根据题意得:(n﹣2)×180°=2×310°解得:n=1.故选B.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.7.B【解析】根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=CDBC,可得BC=cos cosCD hBCDα=∠.故选B.点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.8.C【解析】【分析】根据反比例函数与一次函数在同一坐标系内的图象可直接解答.【详解】观察图象,两函数图象的交点坐标为(1,2),(-2,-1),kx+b>2x的解就是一次函数y=kx+b图象在反比例函数y=2x的图象的上方的时候x的取值范围,由图象可得:-2<x<0或x>1,故选C.【点睛】本题考查的是反比例涵数与一次函数图象在同一坐标系中二者的图象之间的关系.一般这种类型的题不要计算反比计算表达式,解不等式,直接从从图象上直接解答.9.A【解析】【分析】由菱形ABCD,∠B=60°,易证得△ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF的周长.【详解】解:∵四边形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=BC=4,∴以AC为边长的正方形ACEF的周长为:4AC=1.故选A.【点睛】本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.10.B【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】解:A、是轴对称图形,也是中心对称图形,故错误;B、是中心对称图形,不是轴对称图形,故正确;C、是轴对称图形,也是中心对称图形,故错误;D、是轴对称图形,也是中心对称图形,故错误.故选B.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.D【解析】【分析】先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率.【详解】任取两张卡片,数字之和一共有﹣3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是23.故选D.【点睛】本题主要考查概率的求法,熟练掌握概率的求法是解题的关键.12.C【解析】【分析】本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.【详解】cos45°= .故选:C.【点睛】本题考查特殊角的三角函数值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1﹣或﹣1【解析】【分析】直线y=kx+4与抛物线y=-x1+x+1(-1≤x≤1)相切时,直线y=kx+4与y=|x1-x-1|的图象恰好有三个公共点,即-x1+x+1=kx+4有相等的实数解,利用根的判别式的意义可求出此时k的值,另外当y=kx+4过(1,0)时,也满足条件.【详解】解:当y=0时,x1-x-1=0,解得x1=-1,x1=1,则抛物线y=x1-x-1与x轴的交点为(-1,0),(1,0),把抛物线y=x1-x-1图象x轴下方的部分沿x轴翻折到x轴上方,则翻折部分的抛物线解析式为y=-x1+x+1(-1≤x≤1),当直线y=kx+4与抛物线y=-x1+x+1(-1≤x≤1)相切时,直线y=kx+4与函数y=|x1-x-1|的图象恰好有三个公共点,即-x1+x+1=kx+4有相等的实数解,整理得x1+(k-1)x+1=0,△=(k-1)1-8=0,解得k=1±,所以k的值为.当<-1不符合题意,舍去.当y=kx+4过(1,0)时,k=-1,也满足条件,故答案为或-1.【点睛】本题考查了二次函数与几何变换:翻折变化不改变图形的大小,故|a|不变,利用顶点式即可求得翻折后的二次函数解析式;也可利用绝对值的意义,直接写出自变量在-1≤x≤1上时的解析式。
吉林省长春市2019-2020学年中考第四次模拟数学试题含解析

吉林省长春市2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.452.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是()A.2 B.3 C.4 D.53.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A.45°B.85°C.90°D.95°4.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的()A.平均数B.中位数C.众数D.方差5.下列各式计算正确的是()A.a4•a3=a12B.3a•4a=12a C.(a3)4=a12D.a12÷a3=a46.下列计算正确的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-47.2017年,太原市GDP突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为()A.3382×108元B.3.382×108元C.338.2×109元D.3.382×1011元8.已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定9.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9 10.实数4的倒数是()A.4 B.14C.﹣4 D.﹣1411.在3-,1-,0,1这四个数中,最小的数是()A.3-B.1-C.0 D.112.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B.2C3D.3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x 是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=_____.14.在平面直角坐标系xOy中,位于第一象限内的点A(1,2)在x轴上的正投影为点A′,则cos∠AOA′=__.15.不等式组29611x xx k+>+⎧⎨-<⎩的解集为2x<,则k的取值范围为_____.16.已知线段a=4,b=1,如果线段c是线段a、b的比例中项,那么c=_____.17.方程21x-=1的解是_____.18.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?20.(6分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,2)(1)求抛物线的表达式;(2)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线的对称轴上是否存在点P,使△BMP与△ABD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.21.(6分)如图1,抛物线l1:y=﹣x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣5).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.22.(8分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜.如果指针落在分割线上,则需要重新转动转盘.请问这个游戏对甲、乙双方公平吗?说明理由.23.(8分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.24.(10分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m,在随机抽取1张,将卡片的数字即为n.(1)请用列表或树状图的方式把(m,n)所有的结果表示出来.(2)求选出的(m,n)在二、四象限的概率.25.(10分)如图1,抛物线y=ax2+(a+2)x+2(a≠0),与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.(1)求抛物线的解析式;(2)若PN :PM =1:4,求m 的值;(3)如图2,在(2)的条件下,设动点P 对应的位置是P 1,将线段OP 1绕点O 逆时针旋转得到OP 2,旋转角为α(0°<α<90°),连接AP 2、BP 2,求AP 2+232BP 的最小值. 26.(12分)如图1,直角梯形OABC 中,BC ∥OA ,OA=6,BC=2,∠BAO=45°.(1)OC 的长为 ;(2)D 是OA 上一点,以BD 为直径作⊙M ,⊙M 交AB 于点Q .当⊙M 与y 轴相切时,sin ∠BOQ= ; (3)如图2,动点P 以每秒1个单位长度的速度,从点O 沿线段OA 向点A 运动;同时动点D 以相同的速度,从点B 沿折线B ﹣C ﹣O 向点O 运动.当点P 到达点A 时,两点同时停止运动.过点P 作直线PE ∥OC ,与折线O ﹣B ﹣A 交于点E .设点P 运动的时间为t (秒).求当以B 、D 、E 为顶点的三角形是直角三角形时点E 的坐标.27.(12分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表: 商品名称甲 乙 进价(元/件)40 90 售价(元/件) 60 120设其中甲种商品购进x 件,商场售完这100件商品的总利润为y 元.写出y 关于x 的函数关系式;该商场计划最多投入8000元用于购买这两种商品,①至少要购进多少件甲商品?②若销售完这些商品,则商场可获得的最大利润是多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.2.A【解析】试题分析:已知AB是⊙O的弦,半径OC⊥AB于点D,由垂径定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A.考点:垂径定理;勾股定理.3.B【解析】【分析】【详解】解:∵AC是⊙O的直径,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分线BD交⊙O于点D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故选B.【点睛】本题考查圆周角定理;圆心角、弧、弦的关系.4.B【解析】【分析】根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数. 【详解】因为需要保证不少于50%的骑行是免费的,所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,故选B.【点睛】本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。
2019-2020学年吉林省中考数学模拟试题(有标准答案)(Word版)

吉林省中考数学试卷一、单项选择题(每小题2分,共12分)1.计算(﹣1)2的正确结果是()A.1 B.2 C.﹣1 D.﹣2【答案】A.【解析】考点:有理数的乘方.2.如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.【答案】B.【解析】试题解析:正六棱柱的俯视图为正六边形.故选B.考点:简单几何体的三视图.3.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2【答案】C.【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.4.不等式x+1≥2的解集在数轴上表示正确的是()A.B. C. D.【答案】A.【解析】考点:解一元一次不等式;在数轴上表示不等式的解集.5.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70° B.44° C.34° D.24°【答案】C.【解析】试题解析:∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.考点:三角形内角和定理.6.如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB交⊙O于点C.若AB=12,OA=5,则BC的长为()A.5 B.6 C.7 D.8【答案】D.【解析】考点:切线的性质.二、填空题(每小题3分,共24分)7.2016年我国资助各类家庭困难学生超过84 000 000人次.将84 000 000这个数用科学记数法表示为.【答案】8.4×107【解析】试题解析:84 000 000=8.4×107考点:科学记数法—表示较大的数.8.苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克元(用含x的代数式表示).【答案】0.8x.【解析】试题解析:依题意得:该苹果现价是每千克80%x=0.8x.考点:列代数式.9.分解因式:a2+4a+4= .【答案】(a+2)2.【解析】试题解析:a2+4a+4=(a+2)2.考点:因式分解﹣运用公式法.10.我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是.【答案】同位角相等,两直线平行.【解析】∵∠1=∠2,∴a∥b(同位角相等,两直线平行);考点:平行线的判定.11.如图,在矩形ABCD 中,AB=5,AD=3.矩形ABCD 绕着点A 逆时针旋转一定角度得到矩形AB'C'D'.若点B 的对应点B'落在边CD 上,则B'C 的长为 .【答案】1. 【解析】试题解析:由旋转的性质得到AB=AB′=5, 在直角△AB′D 中,∠D=90°,AD=3,AB′=AB=5, 所以B′D=222254AB AD '-=-=4,所以B′C=5﹣B′D=1. 故答案是:1.考点:旋转的性质;矩形的性质.12.如图,数学活动小组为了测量学校旗杆AB 的高度,使用长为2m 的竹竿CD 作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O 处重合,测得OD=4m ,BD=14m ,则旗杆AB 的高为 m .【答案】9. 【解析】即旗杆AB 的高为9m .考点:相似三角形的应用.13.如图,分别以正五边形ABCDE 的顶点A ,D 为圆心,以AB 长为半径画»BE,ºCE .若AB=1,则阴影部分图形的周长为 (结果保留π).【答案】65π+1. 【解析】试题解析:∵五边形ABCDE 为正五边形,AB=1, ∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴»BE=ºCE =10831805AB ππ︒⨯⨯=︒, ∴C 阴影=»BE+ºCE +BC=65π+1. 考点:正多边形和圆.14.我们规定:当k ,b 为常数,k ≠0,b ≠0,k ≠b 时,一次函数y=kx+b 与y=bx+k 互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为 . 【答案】1. 【解析】考点:两条直线相交或平行问题.三、解答题(每小题5分,共20分)15.某学生化简分式21211x x ++-出现了错误,解答过程如下:原式=12(1)(1)(1)(1)x x x x ++-+-(第一步)=1+2(1)(1)x x +-(第二步)=231x -.(第三步) (1)该学生解答过程是从第 步开始出错的,其错误原因是 ; (2)请写出此题正确的解答过程.【答案】(1)一、分式的基本性质用错;(2)过程见解析. 【解析】试题分析:根据分式的运算法则即可求出答案. 试题解析:(1)一、分式的基本性质用错; (2)原式=12(1)(1)(1)(1)x x x x x -++-+-=x+1(1)(1)x x +-=11x -. 考点:分式的加减法.16.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km ,隧道累计长度的2倍比桥梁累计长度多36km .求隧道累计长度与桥梁累计长度. 【答案】隧道累计长度为126km ,桥梁累计长度为216km . 【解析】解得:126216x y ⎧=⎨=⎩.答:隧道累计长度为126km ,桥梁累计长度为216km . 考点:二元一次方程组的应用.17.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率. 【答案】49. 【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.试题解析:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.考点:列表法与树状图法.18.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【答案】证明见解析.【解析】考点:全等三角形的判定与性质.四、解答题(每小题7分,共28分)19.某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:月份销售额人员第1月第2月第3月第4月第5月甲7.2 9.6 9.6 7.8 9.3乙 5.8 9.7 9.8 5.8 9.9丙 4 6.2 8.5 9.9 9.9统计值平均数(万元)中位数(万元)众数(万元)数值人员甲9.3 9.6乙8.2 5.8丙7.7 8.5【答案】(1)8.7,9.7,9.9;(2)甲,理由见解析.【解析】(2)我赞同甲的说法.甲的平均销售额比乙、丙都高.考点:众数;加权平均数;中位数.20.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【答案】(1)作图见解析;(2)作图见解析.【解析】(2)如图③所示,▱ABCD即为所求.考点:等腰三角形的判定;等边三角形的性质;平行四边形的判定.21.如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)【答案】求A,B两点间的距离约为1.7km.【解析】∴OA=OC•tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km,答:求A,B两点间的距离约为1.7km.考点:解直角三角形的应用﹣仰角俯角问题.22.如图,在平面直角坐标系中,直线AB与函数y=kx(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=12OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.【答案】(1)4;8;4;(2)4.3 【解析】∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴12CD•AC=6,∴AC=4,即m=4,则点A的坐标为(4,2),将其代入y=kx可得k=8,∵点B(2,n)在y=8x的图象上,∴n=4;(2)如图,过点B作BE⊥AC于点E,则BE=2,∴S△ABC=12AC•BE=12×4×2=4,即△ABC的面积为4.考点:反比例函数与一次函数的交点问题.五、解答题(每小题8分,共16分)23.如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.【答案】(1)证明见解析;(2)43;(3)6+3或23+3.【解析】∴∠ADB=60°,由平移可得,B'C'=BC=AD,∠D'B'C'=∠DBC=∠ADB=60°,∴AD∥B'C'∴四边形AB'C'D是平行四边形,∵B'为BD中点,∴Rt△ABD中,AB'=12BD=DB',又∵∠ADB=60°,∴△ADB'是等边三角形,∴AD=AB',∴四边形AB'C'D是菱形;(2)由平移可得,AB=C'D',∠ABD'=∠C'D'B=30°,∴AB∥C'D',∴四边形ABC'D'是平行四边形,由(1)可得,AC'⊥B'D,∴四边形ABC'D'是菱形,∵AB=3AD=3,∴四边形ABC'D′的周长为43,∴矩形周长为6+3或23+3.考点:菱形的判定与性质;矩形的性质;图形的剪拼;平移的性质.24.如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.【答案】(1)10;(2)y=58x+52(12≤x≤28);(3)4秒【解析】(2)设线段AB对应的函数解析式为:y=kx+b,∵图象过A(12,0),B(28,20),∴1202820k bk b⎧+=⎨+=⎩,解得:5852kb⎧=⎪⎪⎨⎪=⎪⎩,∴线段AB对应的解析式为:y=58x+52(12≤x≤28);(3)∵28﹣12=16(cm),∴没有立方体时,水面上升10cm,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.考点:一次函数的应用.六、解答题(每小题10分,共20分)25.如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.【答案】(1)x;(2)x=45;(3)见解析;(4)1<x<32.【解析】(3)如图②,当0<x≤45时,根据正方形的面积公式得到y=x2;如图③,当45<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=12AB=2,根据正方形和三角形面积公式得到y=﹣232x2+20x﹣8;如图④,当1<x<2时,PQ=4﹣2x,根据三角形的面积公式得到结论;(4)当Q与C重合时,E为BC的中点,得到x=1,当Q为BC的中点时,BQ=2,得到x=32,于是得到结论.试题解析:(1)∵∠ACB=90°,∠A=45°,PQ⊥AB,∴∠AQP=45°,∴PQ=AP=2x,∵D为PQ中点,∴DQ=x,∵D为PQ中点,∴DQ=x,∴GP=2x,∴2x+x+2x=4,∴x=45;(3)如图②,当0<x≤45时,y=S正方形DEFQ=DQ2=x2,∴y=x2;如图③,当45<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=12AB=2,∵PQ=AP=2x,CK=2﹣2x,∴MQ=2CK=4﹣4x,FM=x﹣(4﹣4x)=5x﹣4,∴y=S正方形DEFQ﹣S△MNF=DQ2﹣12FM2,∴y=x2﹣12(5x﹣4)2=﹣232x2+20x﹣8,∴y=﹣232x2+20x﹣8;∴DQ=2﹣x,∴y=S△DEQ=12DQ2,∴y=12(2﹣x)2,∴y=12x2﹣2x+2;(4)当Q与C重合时,E为BC的中点,即2x=2,∴x=1,当Q为BC的中点时,BQ=2,PB=1,∴AP=3,∴2x=3,∴x=32,∴边BC的中点落在正方形DEFQ内部时x的取值范围为:1<x<32.考点:四边形综合题.26.《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a= .【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值范围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.【答案】【问题】:a=13;【操作】:y=2214(2)(0或4)3314(2)(04)33xx x xx<<⎧--≤≥⎪⎪⎨⎪--+⎪⎩;【探究】:当1<x<2或x>2+7时,函数y随x增大而增大;【应用】:m=0或m=4或m≤2﹣或m≥2+.【解析】试题分析:【问题】:把(0,0)代入可求得a的值;【操作】:先写出沿x轴折叠后所得抛物线的解析式,根据图象可得对应取值的解析式;【探究】:令y=0,分别代入两个抛物线的解析式,分别求出四个点CDEF的坐标,根据图象呈上升趋势的部分,即y随x增大而增大,写出x的取值;【应用】:先求DE的长,根据三角形面积求高的取值h≥1;分三部分进行讨论:①当P 在C 的左侧或F 的右侧部分时,设P[m ,214(2)33m --],根据h ≥1,列不等式解出即可; ②如图③,作对称轴由最大面积小于1可知:点P 不可能在DE 的上方; ③P 与O 或A 重合时,符合条件,m=0或m=4. 试题解析:【问题】 ∵抛物线y=a (x ﹣2)2﹣43经过原点O , ∴0=a (0﹣2)2﹣43, a=13; 【操作】:如图①,抛物线:y=13(x ﹣2)2﹣43, 对称轴是:直线x=2,由对称性得:A (4,0), 沿x 轴折叠后所得抛物线为:y=﹣13(x ﹣2)2+43如图②,图象G 对应的函数解析式为:y=2214(2)(0或4)3314(2)(04)33x x x x x <<⎧--≤≥⎪⎪⎨⎪--+⎪⎩;解得:x 1=3,x 2=1, ∴D (1,1),E (3,1),由图象得:图象G 在直线l 上方的部分,当1<x <2或x >7时,函数y 随x 增大而增大; 【应用】:∵D (1,1),E (3,1), ∴DE=3﹣1=2, ∵S △PDE =12DE•h≥1, ∴h ≥1;②如图③,作对称轴交抛物线G于H,交直线CD于M,交x轴于N,∵H(2,43),∴HM=43﹣1=13<1,∴当点P不可能在DE的上方;③∵MN=1,且O(0,0),a(4,0),∴P与O或A重合时,符合条件,∴m=0或m=4;综上所述,△PDE的面积不小于1时,m的取值范围是:m=0或m=4或m≤210或m≥10.考点:二次函数综合题.。
2019-2020学年吉林省第二实验学校九年级(下)第四次月考数学试卷(附答案详解)

2019-2020学年吉林省第二实验学校九年级(下)第四次月考数学试卷1.如果温度上升2℃记作+2℃.那么温度下降3℃记作()A. +2℃B. −2℃C. +3℃D. −3℃2.举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A. 5.5×103B. 55×103C. 0.55×105D. 5.5×1043.如图,是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体()A. 主视图改变,左视图改变B. 俯视图不变,左视图不变C. 俯视图改变,左视图改变D. 主视图改变,左视图不变4.为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如表,则关于这10户家庭的月用水量,下列说法错误的是()月用电量4569总数3421A. 中位数是5吨B. 众数是5吨C. 极差是3吨D. 平均数是5.3吨5.如图,AB为⊙O的直径,C、D是⊙O上的两点,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E的度数为()A. 40°B. 50°C. 55°D. 60°,y2),C(2,y3)在三次函数y=x2+2x+c的图象上,则y1,y2,6.若A(−3,y1),B(12y3的大小关系是()A. y2<y1<y3B. y1<y3<y2C. y1<y2<y3D. y3<y2<y17.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是()已知:如图,∠BEC=∠B+∠C.求证:AB//CD.证明:延长BE交__※__于点F,则∠BEC=__⊙__+∠C又∵∠BEC=∠B+∠C,∴∠B=※∴AB//CD(__□__相等,两直线平行)A. ⊙代表∠FECB. □代表同位角C. ※代表∠EFCD. ※代表AB8.如图,在平而直角坐标系中,一次函数y=−4x+4的图象与x轴、y轴分别交于A、(k≠0) B两点.正方形ABCD的项点C、D在第一象限,顶点D在反比例函数y=kx 的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是()A. 2B. 3C. 4.D. 59.因式分解:4a3b3−ab=______.10.√27−√3=______.11.已知扇形的面积为4π,半径为6,则此扇形的圆心角为______度.12.如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为______米.(精确到1米,参考数据:√2约等于1.414,√3约等于1.732)13.如图,在Rt△ABC中,∠BAC=90°,BA=5,AC=8,D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN长的最小值为______.14.已知y=x2+(1−a)x+2是关于x的二次函数,当x的取值范围是0≤x≤4时,y仅在x=4时取得最大值,则实数a的取值范围是______.15.先化简,再求值:(2x−3x−2−1)÷x2−2x+1x−2,然后从0,1,2三个数中选择一个恰当的数代入求值.16.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,利用树状图或者列表的方法,求摸出的两个球颜色相同的概率.17.时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?18.为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意:B级满意;C级:基本满意:D级:不满意),并将调查结果绘制成如两幅不完整的统计图,请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数是______;(2)图①中,∠α的度数是______,并把图②条形统计图补充完整;(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的户数约为多少户?19.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,以CD为直径的⊙O分别交AC、BC于点M、N,过点N作NE⊥AB,垂足为E.(1)求证:NE与⊙O相切;(2)若⊙O的半径为5,AC=6,则BN的长为______.220.如图,在下列10×10网格中,横、纵坐标均是整数的点叫格点,例如A(2,1),B(5,4),C(1,8)都是格点.(1)直接写出△ABC的面积;(2)仅用无刻度的直尺在图中画出一条线段EF,使它满足以下条件:①E点在△ABC内;②点E,F都是格点;③EF三等分BC;④EF=√41,请写出点E,F的坐标.21.甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(ℎ)之间的函数图象为折线OA−AB−BC,如图所示.(1)这批零件一共有______个,甲机器每小时加工______个零件,乙机器排除故障后每小时加工______个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?22.在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交AB(或AB的延长线)于点N,连接CN.感知:如图①,当M为BD的中点时,易证CM=MN.(不用证明)探究:如图②,点M为对角线BD上任一点(不与B、D重合).请探究MN与CM的数量关系,并证明你的结论.应用:(1)直接写出△MNC的面积S的取值范围______;(2)若DM:DB=3:5,则AN与BN的数量关系是______.23.如图,在菱形ABCD中,对角线AC与BD相交于点M,已知BC=5,点E在射线BC上,tan∠DCE=4,点P从点B出发,以每秒2√5个单位沿BD方向向终点D匀3速运动,过点P作PQ⊥BD交射线BC于点O,以BP、BQ为邻边构造▱PBQF,设点P的运动时间为t(t>0).(1)tan∠DBE=______;(2)求点F落在CD上时t的值;(3)求▱PBQF与△BCD重叠部分面积S与t之间的函数关系式;(4)连接▱PBQF的对角线BF,设BF与PQ交于点N,连接MN,当MN与△ABC的边平行(不重合)或垂直时,直接写出t的值.24. 定义:二元一次不等式是指含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式;满足二元一次不等式(组)的x 和y 的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.如:x +y >3是二元一次不等式,(1,4)是该不等式的解.有序实数对可以看成直角坐标平面内点的坐标.于是二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.(1)已知A(12,1),B (1,−1),C (2,−1),D(−1,−1)四个点,请在直角坐标系中标出这四个点,这四个点中是x −y −2≤0的解的点是______.(2)设{y −2x −1≤0y +x +2≤0y +3≥0的解集在坐标系内所对应的点形成的图形为G .①求G 的面积;②P(x,y)为G 内(含边界)的一点,求3x +2y 的取值范围;(3)设{−1≤2x −y ≤1−1≤2x +y ≤1的解集围成的图形为M ,直接写出抛物线y =x 2+2mx +3m 2−m −1与图形M 有交点时m 的取值范围.答案和解析1.【答案】D【解析】【分析】本题考查正数和负数,属于基础题.根据正数与负数的表示方法,可得解.【解答】解:上升2℃记作+2℃,下降3℃记作−3℃.故选:D.2.【答案】D【解析】解:55000这个数用科学记数法可表示为5.5×104,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;主视图发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;左视图没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;俯视图发生改变.故选:D.根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.4.【答案】C【解析】解:∵这10个数据是:4,4,4,5,5,5,5,6,6,9;∴中位数是:(5+5)÷2=5吨,故A正确;∴众数是:5吨,故B正确;∴极差是:9−4=5吨,故C错误;∴平均数是:(3×4+4×5+2×6+9)÷10=5.3吨,故D正确.故选:C.根据中位数的确定方法,将一组数据按大小顺序排列,位于最中间的两个的平均数或最中间一个数据是中位数,众数的定义是在一组数据中出现次数最多的就是众数,极差是一组数据中最大值与最小值的差,运用加权平均数求出即可.此题主要考查了极差与中位数和众数等知识,熟记定义和公式是解决问题的关键.5.【答案】A【解析】解:连接OC,∵CE是⊙O的切线,∴OC⊥CE,即∠OCE=90°,∵∠COB=2∠CDB=50°,∴∠E=90°−∠COB=40°.故选:A.首先连接OC,由切线的性质可得OC⊥CE,又由圆周角定理,可求得∠COB的度数,继而可求得答案.本题考查了切线性质,三角形的外角性质,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.6.【答案】A=−1,【解析】解:对称轴为直线x=−22×1∵a=1>0,∴x<−1时,y随x的增大而减小,x>−1时,y随x的增大而增大,∴y2<y1<y3.故选:A.求出二次函数的对称轴,再根据二次函数的增减性判断即可.本题考查了二次函数图象上点的坐标特征,求出对称轴解析式,然后利用二次函数的增减性求解更简便.7.【答案】C【解析】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C.又∵∠BEC=∠B+∠C,∴∠B=∠EFC,∴AB//CD(内错角相等,两直线平行).∴※代表CD,⊙代表∠EFC,※代表∠EFC,□代表内错角.故选:C.延长BE交CD于点F,利用三角形外角的性质可得出∠BEC=∠EFC+∠C,结合∠BEC=∠B+∠C可得出∠B=∠EFC,利用“内错角相等,两直线平行”可证出AB//CD,找出各符号代表的含义,再对照四个选项即可得出结论.本题考查了平行线的判定以及三角形外角的性质,利用各角之间的关系,找出∠B=∠EFC是解题的关键.8.【答案】B【解析】解:过D、C分别作DE⊥x轴,CF⊥y轴,垂足分别为E、F,CF交反比例函数的图象于G,把x=0和y=0分别代入y=−4x+4得:y=4和x=1,∴A(1,0),B(0,4),∴OA=1,OB=4;由ABCDA是正方形,易证△AOB≌△DEA≌△BCF(AAS),∴DE=BF=OA=1,AE=CF=OB=4,∴D(5,1),F(0,5),得,k=5,把D(5,1),代入y=kx把y=5代入y=5得,x=1,即FG=1,xCG=CF−FG=4−1=3,即n=3,故选:B.由一次函数的关系式可求出与x轴,y轴的交点坐标,即求出OA、OB的长,由正方形的性质、三角形全等可以求出DE、AE、CF、BF的长,进而求出G的坐标,最后求出CG的长就是n的值.考查反比例函数图象上点的坐标特征,正方形的性质以及全等三角形判断和性质,根据坐标求出线段的长是解决问题的关键,合理的转化是常用的方法.9.【答案】ab(2ab+1)(2ab−1)【解析】解:原式=ab(4a2b2−1)=ab(2ab+1)(2ab−1),故答案为:ab(2ab+1)(2ab−1)原式提取公因式,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10.【答案】2√3【解析】解:原式=3√3−√3=2√3.故答案为:2√3.先将二次根式化为最简,然后合并同类二次根式即可得出答案.此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.11.【答案】40【解析】解:设该扇形的圆心角度数为n°,∵扇形的面积为4π,半径为6,∴4π=nπ⋅62360,解得:n=40.∴该扇形的圆心角度数为:100°.故答案为:40.利用扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=nπR2360,由此构建方程即可解决问题.此题考查了扇形面积的计算.此题比较简单,注意熟记公式与性质是解此题的关键.12.【答案】566【解析】【分析】考查了解直角三角形的应用−方向角的问题.此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.通过解直角△OAC求得OC的长度,然后通过解直角△OBC求得OB的长度即可.【解答】解:如图,设线段AB交y轴于C,在直角△OAC中,∠AOC=∠CAO=45°,则AC=OC.∵OA=400米,∴OC=OA⋅cos45°=400×√2 2=200√2(米).∵在直角△OBC中,∠COB=60°,OC=200√2米,∴OB=OCcos60∘=200√212=400√2≈566(米).故答案是:566.13.【答案】40√8989【解析】解:∵∠BAC=90°,且BA=5,AC=8,∴BC=√BA2+AC2=√52+82=√89,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=12AB×AC=12BC×AD,∴AD=AB×ACBC =√89=40√8989,∴MN的最小值为40√8989,故答案为:40√8989.由勾股定理求出BC的长,再证明四边形DMAN是矩形,可得MN=AD,根据垂线段最短和三角形面积即可解决问题.本题考查了矩形的判定与性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.【答案】a<5【解析】解:∵0≤x≤4时,y仅在x=4时取得最大值,∴−1−a2×1<0+42,解得a<5.故答案为:a<5.根据二次函数的增减性利用对称轴列出不等式求解即可.本题考查了二次函数的最值问题,熟练掌握二次函数的增减性和对称轴公式是解题的关键.15.【答案】解:原式=(2x−3x−2−x−2x−2)÷(x−1)2x−2 =x −1x −2⋅x −2(x −1)2=1x−1,∵x −2≠0,且x −1≠0,∴x ≠2,且x ≠1,∴x =0,当x =0时,原式=−1.【解析】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算可得.16.【答案】解:根据题意列表如下:由表知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果, 所以摸出的两个球颜色相同的概率为49.【解析】列表得出所有等可能结果,从中找到两个球颜色相同的结果数,利用概率公式计算可得.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 17.【答案】解:设“红土”百香果每千克x 元,“黄金”百香果每千克y 元,由题意得:{2x +y =80x +3y =115, 解得:{x =25y =30;答:“红土”百香果每千克25元,“黄金”百香果每千克30元.【解析】设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意列出方程组,解方程组即可.本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.18.【答案】60户54°【解析】解:(1)由图表信息可知本次抽样调查测试的建档立卡贫困户的总户数=21÷35%=60(户)故答案为:60户;×360°=54°;C级户数为:60−9−21−9=21(户),(2)图1中,∠α的度数=960补全条形统计图如图2所示:故答案为:54°;×10000=1500(户).(3)估计非常满意的人数约为960(1)由B级别户数及其对应百分比可得答案;(2)求出A级对应百分比可得∠α的度数,再求出C级户数即可把图2条形统计图补充完整;(3)利用样本估计总体思想求解可得.本题考查的是条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.【答案】4【解析】(1)证明:如图1,连接ON,∵∠ACB=90°,D为斜边的中点,AB,∴CD=DA=DB=12∴∠BCD=∠B,∵OC=ON,∴∠BCD=∠ONC,∴∠ONC=∠B,∴ON//AB,∵NE⊥AB,∴ON⊥NE,∴NE为⊙O的切线;(2)解:如图2,连接DN,ON∵⊙O的半径为5,2∴CD=5∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD=5,∴AB=10,∴BC=√AB2−AC2=8,∵CD为直径,∴∠CND=90°,且BD=CD,∴BN=NC=4,故答案为:4.(1)连接ON,证出ON//AB,证明ON⊥NE即可;(2)由直角三角形的性质可求AB=10,由勾股定理可求BC=8,由等腰三角形的性质可得BN=4.本题考查切线的判定和性质,解直角三角形等知识,解题的关键是熟练掌握基本知识.20.【答案】解:(1)△ABC的面积=4×7−12×7×1−12×3×3−12×4×4=12;(2)如图,EF即为所求线段,点E的坐标为:(2,4),F的坐标为(7,8).∵EB=3,FC=6,EB//CF,∴BDCD =EBFC=12,∴EF三等分BC;∴EF=√42+52=√41,∴点E的坐标为:(2,4),F的坐标为(7,8).【解析】(1)根据网格即可求出△ABC的面积;(2)根据题意先确定点E和F,由EB//CF,可得BDCD =EBFC=12,进而可得EF三等分BC,根据勾股定理可得EF=√41,得点E,F的坐标.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21.【答案】270 20 40【解析】解:(1)这批零件一共有270个,甲机器每小时加工零件:(90−550)÷(3−1)=20(个),乙机器排除故障后每小时加工零件:(270−90−20×3)÷3=40(个);故答案为:270;20;40;(2)设当3≤x ≤6时,y 与x 之间的函数关系是为y =kx +b ,把B(3,90),C(6,270)代入解析式,得{3k +b =906k +b =270,解得{k =60b =−90, ∴y =60x −90(3≤x ≤6);(3)设甲价格x 小时时,甲乙加工的零件个数相等,①20x =30,解得x =15;②50−20=30,20x =30+40(x −3),解得x =4.5,答:甲加工1.5ℎ或4.5ℎ时,甲与乙加工的零件个数相等.(1)根据图象解答即可;(2)设当3≤x ≤6时,y 与x 之间的函数关系是为y =kx +b ,运用待定系数法求解即可;(3)设甲价格x 小时时,甲乙加工的零件个数相等,分两种情况列方程解答:①当0≤x ≤1时,20x =30;②当3≤x ≤6时,20x =30+40(x −3).此题主要考查了一次函数的应用,根据题意得出函数关系式以及数形结合是解决问题的关键.22.【答案】探究:探究:如图①中,过M 分别作ME//AB 交BC 于E ,MF//BC 交AB 于F ,则四边形BEMF是平行四边形,∵四边形ABCD是正方形,∴∠ABC=90°,∠ABD=∠CBD=∠BME=45°,∴ME=BE,∴平行四边形BEMF是正方形,∴ME=MF,∵CM⊥MN,∴∠CMN=90°,∵∠FME=90°,∴∠CME=∠FMN,∴△MFN≌△MEC(ASA),∴MN=MC;应用:(1)9≤S<18;(2)AN=6BN.【解析】解:应用:(1)当点M与D重合时,△CNM的面积最大,最大值为18,当DM=BM时,△CNM的面积最小,最小值为9,综上所述,9≤S<18.(2)如图②中,由(1)得FM//AD,EM//CD,∴AFAB =CEBC=DMBD=35,∵AB=BC=6,∴AF=3.6,CE=3.6,∵△MFN≌△MEC,∴FN=EC=3.6,∴AN=7.2,BN=7.2−6=1.2,∴AN=6BN,故答案为AN=6BN.探究:如图①中,过M分别作ME//AB交BC于E,MF//BC交AB于F,证明△MFN≌△MEC(ASA)即可解决问题.应用:(1)求出△MNC面积的最大值以及最小值即可解决问题.(2)利用平行线分线段成比例定理求出AN,BN即可解决问题.本题是四边形的综合问题,考查了正方形的判定与性质、等腰直角三角形的判定与性质及全等三角形的判定与性质等知识点,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.23.【答案】12【解析】解:(1)如图1中,作DH⊥BE于H.在Rt△BCD中,∵∠DHC=90°,CD=5,tan∠DCH=43,∴DH=4,CH=3,∴BH=BC+CH=5+3=8,∴tan∠DBE=DHBH =48=12.故答案为12.(2)如图2中,∵四边形ABCD是菱形,∴AC⊥BD,∵BC=5,tan∠CBM=CMBM =12,∴CM=√5,BM=DM=2√5,∵PF//CB,∴PFBC =DPDB,∴5t5=4√5−2√5t4√5,解得t=23.(3)如图3−1中,当0<t≤23时,重叠部分是平行四边形PBQF,S=PB⋅PQ=2√5t⋅√5t=10t2.如图3−2中,当23<t≤1时,重叠部分是五边形PBQRT,S=S平行四边形PBQF−S△TRF=10t2−12⋅[2√5t−(5−5t)]⋅45[2√5t−(5−5t)]=−55t2+(20√5+50)t−25.如图3−3中,当1<t≤2时,重叠部分是四边形PBCT,S=S△BCD−S△PDT=12×5×4−1 2⋅(5−52t)⋅(4−2t)=−52t2+10t.(4)如图4−1中,当MN//AB时,设CM交BF于T.∵PN//MT,∴PNMT =BPBM,∴√52tMT=√5t2√5,∴MT=√52,∵MN//AB,∴MTAM =TNBN=PBPM=2,∴PB=23BM,∴2√5t=23×2√5,∴t =23. 如图4−2中,当MN ⊥BC 时,易知点F 落在DH 时,∵PF//BH ,∴PF BH =DP DB ,∴5t8=4√5−2√5t 4√5, 解得t =89. 如图4−3中,当MN ⊥AB 时,易知∠PNM =∠ABD ,可得tan∠PNM =PM PN =12, ∴√5t−2√5√5t=12, 解得t =43,当点P 与点D 重合时,MN//BC ,此时t =2,综上所述,满足条件的t 的值为23或89或43或2.(1)如图1中,作DH ⊥BE 于H.解直角三角形求出BH ,DH 即可解决问题.(2)如图2中,由PF//CB ,可得PF BC =DP DB ,由此构建方程即可解决问题.(3)分三种情形:如图3−1中,当0<t ≤23时,重叠部分是平行四边形PBQF.如图3−2<t≤1时,重叠部分是五边形PBQRT.如图3−3中,当1<t≤2时,重叠部分中,当23是四边形PBCT,分别求解即可解决问题.(4)分四种情形:如图4−1中,当MN//AB时,设CM交BF于T.如图4−2中,当MN⊥BC 时.如图4−3中,当MN⊥AB时.当点P与点D重合时,MN//BC,分别求解即可.本题属于四边形综合题,考查了菱形的性质,平行四边形的性质,平行线分线段成比例定理,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.24.【答案】A、B、D【解析】解:(1)如图所示:这四个点中是x−y−2≤0的解的点是A、B、D.故答案为:A、B、D;(2)①如图所示:不等式组在坐标系内形成的图形为G,×3×2=3.所以G的面积为:12②根据图象得:−2≤x≤1,−3≤y≤−1,∴−6≤3x≤3,−6≤2y≤−2,∴−12≤3x +2y ≤1.答:3x +2y 的取值范围为−12≤3x +2y ≤1. (3)如图所示为不等式组{−1≤2x −y ≤1−1≤2x +y ≤1的解集围成的图形,设为M , 抛物线y =x 2+2mx +3m 2−m −1与图形M 有交点时m 的取值范围:∵抛物线的对称轴x =−m ,−m ≥−12,或−m ≤12,∴m ≤12或m ≥−12. 又−1≤3m 2−m −1≤1,∴0≤m ≤13, 综上:m 的取值范围是0≤m ≤13.(1)在直角坐标系中标出这四个点即可,这四个点中是x −y −2≤0的解的点是A 、B 、D ;(2)①根据题目中所给定义画出不等式的解集在坐标系内所对应的点形成的图形为G ,是三角形,由点的坐标进而可求面积;②根据①中的图形先确定x 和y 的取值范围,进而可求3x +2y 的取值范围;(3)不等式组的解集在坐标系内所对应的点形成的图形为菱形,根据图形即可得抛物线y =x 2+2mx +3m 2−m −1与图形M 有交点时m 的取值范围.本题考查了二次函数与系数的关系、二元不等式组及图象的关系,解决本题的关键是理解题目中所给定义.。
吉林省吉林市2019-2020学年中考第四次质量检测数学试题含解析

吉林省吉林市2019-2020学年中考第四次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在等腰直角△ABC 中,∠C=90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( )A .5B .35C .222D .232.函数y=13x -中,自变量x 的取值范围是( ) A .x >3B .x <3C .x=3D .x≠33.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表: 甲 2 6 7 7 8 乙23488关于以上数据,说法正确的是( ) A .甲、乙的众数相同B .甲、乙的中位数相同C .甲的平均数小于乙的平均数D .甲的方差小于乙的方差4.二次函数2y x =的对称轴是( ) A .直线y 1= B .直线x 1=C .y 轴D .x 轴5.直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A .(-3,0)B .(-6,0)C .(-52,0) D .(-32,0) 6.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .7.下列式子一定成立的是( ) A .2a+3a=6a B .x 8÷x 2=x 4C .121a a =D .(﹣a ﹣2)3=﹣61a 8.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .1+3B .2+3C .23﹣1D .23+19.在平面直角坐标系中,有两条抛物线关于x 轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=2x +6x+m ,则m 的值是 ( ) A .-4或-14B .-4或14C .4或-14D .4或1410.下列因式分解正确的是( ) A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+-D .()2212x x x x -+=-+11.如图,在△ABC 中,过点B 作PB ⊥BC 于B ,交AC 于P ,过点C 作CQ ⊥AB ,交AB 延长线于Q ,则△ABC 的高是( )A .线段PB B .线段BC C .线段CQD .线段AQ12.若,则的值为( )A .﹣6B .6C .18D .30二、填空题:(本大题共6个小题,每小题4分,共24分.)13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_______.14.如图,PA ,PB 分别为O e 的切线,切点分别为A 、B ,P 80∠=o ,则C ∠=______.15.二次根式1x -中字母x 的取值范围是_____. 16.计算:(π﹣3)0﹣2-1=_____.17.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.18.小华到商场购买贺卡,他身上带的钱恰好能买5张3D 立体贺卡或20张普通贺卡.若小华先买了3张3D 立体贺卡,则剩下的钱恰好还能买______张普通贺卡.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,一次函数y =kx +b 的图象与反比例函数y =mx的图象交于点A (-3,m +8),B (n ,-6)两点.(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积.20.(6分)如图,▱ABCD 中,点E ,F 分别是BC 和AD 边上的点,AE 垂直平分BF ,交BF 于点P ,连接EF ,PD .求证:平行四边形ABEF 是菱形;若AB =4,AD =6,∠ABC =60°,求tan ∠ADP 的值.21.(6分)如图,AB 是半圆O 的直径,D 为弦BC 的中点,延长OD 交弧BC 于点E ,点F 为OD 的延长线上一点且满足∠OBC =∠OFC ,求证:CF 为⊙O 的切线;若四边形ACFD 是平行四边形,求sin ∠BAD 的值.22.(8分)如图,已知抛物线y =ax 2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x 轴的另一个交点为C ,顶点为D ,连结CD .求该抛物线的表达式;点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为t .①当点P 在直线BC 的下方运动时,求△PBC 的面积的最大值;②该抛物线上是否存在点P ,使得∠PBC =∠BCD ?若存在,求出所有点P 的坐标;若不存在,请说明理由.23.(8分)如图,圆O 是ABC V 的外接圆,AE 平分BAC ∠交圆O 于点E ,交BC 于点D ,过点E 作直线//l BC .(1)判断直线l 与圆O 的关系,并说明理由;(2)若ABC ∠的平分线BF 交AD 于点F ,求证:BE EF =; (3)在(2)的条件下,若5DE =,3DF =,求AF 的长.24.(10分)“知识改变命运,科技繁荣祖国”.在举办一届全市科技运动会上.下图为某校2017年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:(1)该校参加航模比赛的总人数是人,空模所在扇形的圆心角的度数是;(2)并把条形统计图补充完整;(3)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖.今年全市中小学参加航模比赛人数共有2500人,请你估算今年参加航模比赛的获奖人数约是多少人?25.(10分)(1)如图1,半径为2的圆O内有一点P,切OP=1,弦AB过点P,则弦AB长度的最大值为__________;最小值为___________.图①(2)如图2,△ABC是葛叔叔家的菜地示意图,其中∠ABC=90°,AB=80米,BC=60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔想建的鱼塘是四边形ABCD,且满足∠ADC=60°,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由.图②26.(12分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);(2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.27.(12分)解不等式组:21512x xxx+>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.【详解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=34,∴sin ∠BED=sin ∠CDF=35CF DF =. 故选B . 【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中. 2.D 【解析】由题意得,x ﹣1≠0, 解得x≠1. 故选D . 3.D 【解析】 【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【详解】甲:数据7出现了2次,次数最多,所以众数为7, 排序后最中间的数是7,所以中位数是7,26778==65x ++++甲,()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4,乙:数据8出现了2次,次数最多,所以众数为8, 排序后最中间的数是4,所以中位数是4,23488==55x 乙++++,()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4,所以只有D 选项正确, 故选D. 【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 4.C 【解析】 【分析】根据顶点式y=a (x-h )2+k 的对称轴是直线x=h ,找出h 即可得出答案. 【详解】解:二次函数y=x2的对称轴为y轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).5.C【解析】【分析】【详解】作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.直线y=23x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),所以2=-3k+b-2=b⎧⎨⎩,解得:4k=-3b=-2⎧⎪⎨⎪⎩,即可得直线CD′的解析式为y=﹣43x﹣1.令y=﹣43x﹣1中y=0,则0=﹣43x﹣1,解得:x=﹣32,所以点P的坐标为(﹣32,0).故答案选C.考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.6.C【解析】试题分析:根据主视图是从正面看得到的图形,可得答案.解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选C.考点:简单组合体的三视图.7.D 【解析】 【分析】根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可. 【详解】解:A :2a+3a=(2+3)a=5a ,故A 错误; B :x 8÷x 2=x 8-2=x 6,故B 错误;C :12a C 错误; D :(-a -2)3=-a -6=-61a,故D 正确. 故选D. 【点睛】本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现. 8.D 【解析】 【详解】设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有()x 1-,解得.故选D. 9.D 【解析】 【分析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m 的方程,解方程即可求得. 【详解】∵一条抛物线的函数表达式为y=x 2+6x+m , ∴这条抛物线的顶点为(-3,m-9), ∴关于x 轴对称的抛物线的顶点(-3,9-m ), ∵它们的顶点相距10个单位长度. ∴|m-9-(9-m )|=10, ∴2m-18=±10, 当2m-18=10时,m=1,当2m-18=-10时,m=4,∴m的值是4或1.故选D.【点睛】本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系.10.C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D选项中,多项式x2-x+2在实数范围内不能因式分解;选项B,A中的等式不成立;选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.故选C.【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.11.C【解析】【分析】根据三角形高线的定义即可解题.【详解】解:当AB为△ABC的底时,过点C向AB所在直线作垂线段即为高,故CQ是△ABC的高,故选C.【点睛】本题考查了三角形高线的定义,属于简单题,熟悉高线的作法是解题关键.12.B【解析】试题分析:∵,即,∴原式=====﹣12+18=1.故选B.考点:整式的混合运算—化简求值;整体思想;条件求值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.小林【解析】【分析】【详解】观察图形可知,小林的成绩波动比较大,故小林是新手.故答案是:小林.14.50°【解析】【分析】由PA 与PB 都为圆O 的切线,利用切线长定理得到PA PB =,再利用等边对等角得到一对角相等,由顶角P ∠的度数求出底角BAP ∠的度数,再利用弦切角等于夹弧所对的圆周角,可得出BAP C ∠∠=,由BAP ∠的度数即可求出C ∠的度数.【详解】解:PA Q ,PB 分别为O e 的切线,PA PB ∴=,AP CA ⊥,又P 80∠=o ,()1BAP 18080502o o o ∠∴=-=, 则C BAP 50∠∠==o .故答案为:50o【点睛】此题考查了切线长定理,切线的性质,以及等腰三角形的性质,熟练掌握定理及性质是解本题的关键. 15.x≤1【解析】【分析】二次根式有意义的条件就是被开方数是非负数,即可求解.【详解】根据题意得:1﹣x≥0,解得x≤1.故答案为:x≤1【点睛】主要考查了二次根式的意义和性质.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.16.【解析】【分析】分别利用零指数幂a 0=1(a≠0),负指数幂a -p =(a≠0)化简计算即可.【详解】解:(π﹣3)0﹣2-1=1-=. 故答案为:.【点睛】本题考查了零指数幂和负整数指数幂的运算,掌握运算法则是解题关键.17.20000【解析】试题分析:1000÷10200=20000(条). 考点:用样本估计总体.18.1【解析】【分析】根据已知他身上带的钱恰好能买5张3D 立体贺卡或20张普通贺卡得:1张3D 立体贺卡的单价是1张普通贺卡单价的4倍,所以设1张3D 立体贺卡x 元,剩下的钱恰好还能买y 张普通贺卡,根据3张3D 立体贺卡y +张普通贺卡5=张3D 立体贺卡,可得结论.【详解】解:设1张3D 立体贺卡x 元,剩下的钱恰好还能买y 张普通贺卡.则1张普通贺卡为:5x 1x 204=元, 由题意得:15x 3x x y 4-=⋅, y 8=,答:剩下的钱恰好还能买1张普通贺卡.故答案为:1.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:根据总价=单价⨯数量列式计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=-6x ,y=-2x-4(2)1 【解析】【分析】(1)将点A 坐标代入反比例函数求出m 的值,从而得到点A 的坐标以及反比例函数解析式,再将点B 坐标代入反比例函数求出n 的值,从而得到点B 的坐标,然后利用待定系数法求一次函数解析式求解; (2)设AB 与x 轴相交于点C ,根据一次函数解析式求出点C 的坐标,从而得到点OC 的长度,再根据S △AOB =S △AOC +S △BOC 列式计算即可得解.【详解】(1)将A (﹣3,m+1)代入反比例函数y=m x得, -3m =m+1, 解得m=﹣6,m+1=﹣6+1=2,所以,点A 的坐标为(﹣3,2),反比例函数解析式为y=﹣6x, 将点B (n ,﹣6)代入y=﹣6x 得,﹣6n =﹣6, 解得n=1,所以,点B 的坐标为(1,﹣6),将点A (﹣3,2),B (1,﹣6)代入y=kx+b 得,326k b k b -+=⎧⎨+=-⎩, 解得24k b =-⎧⎨=-⎩, 所以,一次函数解析式为y=﹣2x ﹣4;(2)设AB 与x 轴相交于点C ,令﹣2x ﹣4=0解得x=﹣2,所以,点C 的坐标为(﹣2,0),所以,OC=2,S △AOB =S △AOC +S △BOC ,=×2×2+×2×6,=2+6,=1.考点:反比例函数与一次函数的交点问题.20.(1)详见解析;(2)tan∠ADP=.【解析】【分析】(1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.【详解】(1)证明:∵AE垂直平分BF,∴AB=AF,∴∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠FAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∴AF=BE.∵AF∥BC,∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形;(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.【点睛】本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.21.(1)见解析;(2)1 3 .【解析】【分析】(1)连接OC,根据等腰三角形的性质得到∠OCB=∠B,∠OCB=∠F,根据垂径定理得到OF⊥BC,根据余角的性质得到∠OCF=90°,于是得到结论;(2)过D作DH⊥AB于H,根据三角形的中位线的想知道的OD=12AC,根据平行四边形的性质得到DF=AC,设OD=x,得到AC=DF=2x,根据射影定理得到CD=2x,求得BD=2x,根据勾股定理得到AD=226AC CD+=x,于是得到结论.【详解】解:(1)连接OC,∵OC=OB,∴∠OCB=∠B,∵∠B=∠F,∴∠OCB=∠F,∵D为BC的中点,∴OF⊥BC,∴∠F+∠FCD=90°,∴∠OCB+∠FCD=90°,∴∠OCF=90°,∴CF为⊙O的切线;(2)过D作DH⊥AB于H,∵AO=OB ,CD=DB ,∴OD=12AC , ∵四边形ACFD 是平行四边形,∴DF=AC ,设OD=x ,∴AC=DF=2x ,∵∠OCF=90°,CD ⊥OF ,∴CD 2=OD•DF=2x 2,∴x ,∴x ,∴=,∵OD=x ,x ,∴,∴DH=CD BD OB ⋅=x , ∴sin ∠BAD=DH AD =13. 【点睛】 本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键.22. (1)y =x 2+6x+5;(2)①S △PBC 的最大值为278;②存在,点P 的坐标为P(﹣32,﹣74)或(0,5). 【解析】【分析】(1)将点A 、B 坐标代入二次函数表达式,即可求出二次函数解析式;(2)①如图1,过点P 作y 轴的平行线交BC 于点G ,将点B 、C 的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =x+1,设点G(t ,t+1),则点P(t ,t 2+6t+5),利用三角形面积公式求出最大值即可; ②设直线BP 与CD 交于点H ,当点P 在直线BC 下方时,求出线段BC 的中点坐标为(﹣52,﹣32),过该点与BC 垂直的直线的k 值为﹣1,求出 直线BC 中垂线的表达式为:y =﹣x ﹣4…③,同理直线CD 的表达式为:y =2x+2…④,、联立③④并解得:x =﹣2,即点H(﹣2,﹣2),同理可得直线BH 的表达式为:y =12x ﹣1…⑤,联立⑤和y =x 2+6x+5并解得:x =﹣32,即可求出P 点;当点P(P′)在直线BC 上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:25550 16453a ba b-+=⎧⎨-+=-⎩,解得:16 ab=⎧⎨=⎩,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=12PG(x C﹣x B)=32(t+1﹣t2﹣6t﹣5)=﹣32t2﹣152t﹣6,∵-32<0,∴S△PBC有最大值,当t=﹣52时,其最大值为278;②设直线BP与CD交于点H,当点P 在直线BC 下方时,∵∠PBC =∠BCD ,∴点H 在BC 的中垂线上,线段BC 的中点坐标为(﹣52,﹣32), 过该点与BC 垂直的直线的k 值为﹣1, 设BC 中垂线的表达式为:y =﹣x+m ,将点(﹣52,﹣32)代入上式并解得: 直线BC 中垂线的表达式为:y =﹣x ﹣4…③,同理直线CD 的表达式为:y =2x+2…④,联立③④并解得:x =﹣2,即点H(﹣2,﹣2),同理可得直线BH 的表达式为:y =12x ﹣1…⑤, 联立①⑤并解得:x =﹣32或﹣4(舍去﹣4), 故点P(﹣32,﹣74); 当点P(P′)在直线BC 上方时,∵∠PBC =∠BCD ,∴BP′∥CD ,则直线BP′的表达式为:y =2x+s ,将点B 坐标代入上式并解得:s =5,即直线BP′的表达式为:y =2x+5…⑥,联立①⑥并解得:x =0或﹣4(舍去﹣4),故点P(0,5);故点P 的坐标为P(﹣32,﹣74)或(0,5). 【点睛】本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.23.(1)直线l 与O e 相切,见解析;(2)见解析;(3)AF=245. 【解析】【分析】()1连接.OE 由题意可证明BE CE =n n ,于是得到BOE COE ∠=∠,由等腰三角形三线合一的性质可证明OE BC ⊥,于是可证明OE l ⊥,故此可证明直线l 与O e 相切;()2先由角平分线的定义可知ABF CBF ∠=∠,然后再证明CBE BAF ∠=∠,于是可得到EBF EFB ∠=∠,最后依据等角对等边证明BE EF =即可;()3先求得BE 的长,然后证明BED V ∽AEB V ,由相似三角形的性质可求得AE 的长,于是可得到AF 的长.()1直线l 与O e 相切.理由:如图1所示:连接OE .AE Q 平分BAC ∠,BAE CAE ∴∠=∠.BE CE n n∴=, OE BC ∴⊥.//l BC Q ,OE l ∴⊥.∴直线l 与O e 相切.()2BF Q 平分ABC ∠,ABF CBF ∴∠=∠.又CBE CAE BAE Q ∠=∠=∠,CBE CBF BAE ABF ∴∠+∠=∠+∠.又EFB BAE ABF ∠=∠+∠Q ,EBF EFB ∴∠=∠.BE EF ∴=.()3由()2得8BE EF DE DF ==+=.DBE BAE ∠=∠Q ,DEB BEA ∠=∠,BED ∴V ∽AEB V .DE BE BE AE ∴=,即588AE =,解得;645AE =. 6424855AF AE EF ∴=-=-=. 故答案为:(1)直线l 与O e 相切,见解析;(2)见解析;(3)AF=245. 【点睛】本题主要考查的是圆的性质、相似三角形的性质和判定、等腰三角形的性质、三角形外角的性质、切线的判定,证得EBF EFB ∠=∠是解题的关键.24.(1)24,120°;(2)见解析;(3)1000人【分析】(1)由建模的人数除以占的百分比,求出调查的总人数即可,再算空模人数,即可知道空模所占百分比,从而算出对应的圆心角度数;(2)根据空模人数然后补全条形统计图;(3)根据随机取出人数获奖的人数比,即可得到结果.【详解】解:(1)该校参加航模比赛的总人数是6÷25%=24(人),则参加空模人数为24﹣(6+4+6)=8(人),∴空模所在扇形的圆心角的度数是360°×824=120°,故答案为:24,120°;(2)补全条形统计图如下:(3)估算今年参加航模比赛的获奖人数约是2500×3280=1000(人).【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.25.(1)弦AB长度的最大值为4,最小值为3(2)面积最大值为(3)平方米,周长最大值为340米.【解析】【分析】(1)当AB是过P点的直径时,AB最长;当AB⊥OP时,AB最短,分别求出即可.(2)如图在△ABC 的一侧以AC为边做等边三角形AEC,再做△AEC的外接圆,则满足∠ADC=60°的点D在优弧AEC上(点D不与A、C重合),当D与E重合时,S△ADC最大值=S△AEC,由S△ABC为定值,故此时四边形ABCD 的面积最大,再根据勾股定理和等边三角形的性质求出此时的面积与周长即可.【详解】(1)(1)当AB是过P点的直径时,AB最长=2×2=4;当AB⊥OP时,AB最短,2222213OA OP--=∴AB=23(2)如图,在△ABC的一侧以AC为边做等边三角形AEC,再做△AEC的外接圆,当D与E重合时,S△ADC最大故此时四边形ABCD的面积最大,∵∠ABC=90°,AB=80,BC=60∴AC=22100AB BC+=∴周长为AB+BC+CD+AE=80+60+100+100=340(米)S△ADC=1110050325003 22AC h⨯=⨯⨯=S△ABC=1180602400 22AB BC⨯=⨯⨯=∴四边形ABCD面积最大值为(25003+2400)平方米.【点睛】此题主要考查圆的综合利用,解题的关键是熟知圆的性质定理与垂径定理.26.(1)不可能;(2)1 6 .【解析】【分析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21126=. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式m n计算事件A 或事件B 的概率. 27.则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.【解析】【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【详解】21x 512x x x +>⎧⎪⎨+-≥⎪⎩①,② 解不等式①得:x >﹣1,解不等式②得:x≤3,则不等式组的解集是:﹣1<x≤3,不等式组的解集在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.。
吉林省吉林市2019-2020学年中考数学二模试卷含解析

吉林省吉林市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若α,β是一元二次方程3x 2+2x -9=0的两根,则+βααβ的值是( ). A .427 B .-427 C .-5827 D .58272.如图,抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0),顶点坐标(1,n )与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②-1≤a≤-;③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根.其中结论正确的个数为( )A .1个B .2个C .3个D .4个3.如图,在△ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm/s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则△PBQ 的面积S 随出发时间t 的函数关系图象大致是( )A .B .C .D .4.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( )A .1个B .2个C .3个D .4个5.已知a,b 为两个连续的整数,且11则a+b 的值为( )A .7B .8C .9D .106.如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是( )A.仅有甲和乙相同B.仅有甲和丙相同C.仅有乙和丙相同D.甲、乙、丙都相同7.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧交AB于M、AC于N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于D,下列四个结论:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△ACD:S△ACB=1:1.其中正确的有()A.只有①②③B.只有①②④C.只有①③④D.①②③④8.如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.9.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°10.关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为()A.B.C.D.11.下列计算正确的是()A.2224()39b bc c=B.0.00002=2×105C.2933xxx-=--D.3242·323x yy x x=12.sin60°的值为()A.3B.32C.22D.12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是_____.14.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是_____cm.15.如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=kx的图象恰好经过斜边A′B的中点C,若S ABO=4,tan∠BAO=2,则k=_____.16.如图,已知直线y=x+4与双曲线y=kx(x<0)相交于A、B两点,与x轴、y轴分别相交于D、C两点,若AB=22,则k=_____.17.如图,正方形ABCD 的边长为2,分别以A 、D 为圆心,2为半径画弧BD 、AC ,则图中阴影部分的面积为_____.18.若a 是方程2310x x -+=的解,计算:22331a a a a -++=______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△BAD 是由△BEC 在平面内绕点B 旋转60°而得,且AB ⊥BC ,BE =CE ,连接DE . (1)求证:△BDE ≌△BCE ;(2)试判断四边形ABED 的形状,并说明理由.20.(6分)为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:根据以上统计图,解答下列问题:本次接受调查的市民共有 人;扇形统计图中,扇形B 的圆心角度数是 ;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数. 21.(6分)在Rt ABC ∆中,90ACB ∠=o ,CD 是AB 边的中线,DE BC ⊥于E ,连结CD ,点P 在射线CB 上(与B ,C 不重合)(1)如果30A ∠=o①如图1,DCB ∠= o②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60o ,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论;(2)如图3,若点P 在线段CB 的延长线上,且()090A αα∠=<<o o ,连结DP ,将线段DP 绕点逆时针旋转2α得到线段DF ,连结BF ,请直接写出DE 、BF 、BP 三者的数量关系(不需证明)22.(8分)先化简,后求值:22321113x x x x x -++⋅---,其中21x =+. 23.(8分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?24.(10分)春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率. 25.(10分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?26.(12分)如图,一次函数y =kx+b 的图象与坐标轴分别交于A 、B 两点,与反比例函数y =m x的图象在第一象限的交点为C ,CD ⊥x 轴于D ,若OB =1,OD =6,△AOB 的面积为1.求一次函数与反比例函数的表达式;当x >0时,比较kx+b 与m x的大小.27.(12分)解不等式组:()()3x 1x 382x 11x 132⎧-+--<⎪⎨+--≤⎪⎩并求它的整数解的和.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】分析:根据根与系数的关系可得出α+β=-23、αβ=-3,将其代入+βααβ=()22αβαβαβ+-中即可求出结论. 详解:∵α、β是一元二次方程3x 2+2x-9=0的两根,∴α+β=-23,αβ=-3, ∴+βααβ=22βααβ+=()22αβαβαβ+-=()22()23583327--⨯-=--. 故选C .点睛:本题考查了根与系数的关系,牢记两根之和等于-b a 、两根之积等于c a是解题的关键. 2.D【解析】【分析】利用抛物线开口方向得到a <0,再由抛物线的对称轴方程得到b=-2a ,则3a+b=a ,于是可对①进行判断;利用2≤c≤3和c=-3a 可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax 2+bx+c 与直线y=n-1有两个交点可对④进行判断.【详解】∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=-=1,即b=-2a,∴3a+b=3a-2a=a<0,所以①正确;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.3.C【解析】【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【详解】由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=12PB•BQ=12(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选C.【点睛】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.4.C【解析】【分析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C.【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.5.A【解析】∵9<11<16,<<,即34<<,∵a,b为两个连续的整数,且a b<<,∴a=3,b=4,∴a+b=7,故选A.6.B【解析】试题分析:根据分析可知,甲的主视图有2列,每列小正方数形数目分别为2,2;乙的主视图有2列,每列小正方数形数目分别为2,1;丙的主视图有2列,每列小正方数形数目分别为2,2;则主视图相同的是甲和丙.考点:由三视图判断几何体;简单组合体的三视图.7.D【解析】【分析】①根据作图过程可判定AD是∠BAC的角平分线;②利用角平分线的定义可推知∠CAD=10°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB是等腰三角形,由等腰三角形的“三合一”性质可以证明点D在AB的中垂线上;④利用10°角所对的直角边是斜边的一半,三角形的面积计算公式来求两个三角形面积之比.【详解】①根据作图过程可知AD是∠BAC的角平分线,①正确;②如图,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正确;③∵∠1=∠B=10°,∴AD=BD,∴点D在AB的中垂线上,③正确;④如图,∵在直角△ACD中,∠2=10°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC∙CD=AC∙AD.∴S△ABC=AC∙BC=AC∙AD=AC∙AD,∴S△DAC:S△ABC=AC∙AD:AC∙AD=1:1,④正确.故选D.【点睛】本题主要考查尺规作角平分线、角平分线的性质定理、三角形的外角以及等腰三角形的性质,熟练掌握有关知识点是解答的关键.8.A【解析】试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形.故选A.考点:轴对称图形9.C【解析】试题分析:∵PA 、PB 是⊙O 的切线,∴OA ⊥AP ,OB ⊥BP ,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C .考点:切线的性质.10.D【解析】试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.解:∵关于x 的一元二次方程x 2+2x+k+1=0有两个实根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x 1+x 2=﹣2,x 1•x 2=k+1,∴﹣2﹣(k+1)<﹣1,解得k >﹣2,不等式组的解集为﹣2<k≤0,在数轴上表示为:,故选D .点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.11.D【解析】【分析】在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.【详解】解:A 、原式=2249b c;故本选项错误; B 、原式=2×10-5;故本选项错误;C 、原式=()()3333x x x x +-=+- ;故本选项错误; D 、原式=223x ;故本选项正确; 故选:D .【点睛】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.12.B【解析】解:sin60°=3.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4 5【解析】分析:直接利用中心对称图形的性质结合概率求法直接得出答案.详解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:45.故答案为45.点睛:此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键.14.2【解析】试题分析:BE=AB-AE=2.设AH=x,则DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.∴C△EBF==C△HAE=2.考点:1折叠问题;2勾股定理;1相似三角形.15.1【解析】设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan∠BAO=2,∴=2,∵S△ABO=12•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A'O'B,∴AO=A′O′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=12A′O′=1,BD=12BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x·y=3×2=1.故答案为1.16.-3【解析】设A(a,a+4),B(c,c+4),则4y xkyx=+⎧⎪⎨=⎪⎩解得:x+4=kx,即x2+4x−k=0,∵直线y=x+4与双曲线y=kx相交于A、B两点,∴a+c=−4,ac=-k,∴(c−a)2=(c+a)2−4ac=16+4k,∵AB=22∴由勾股定理得:(c−a)2+[c+4−(a+4)]2=(22,2 (c−a)2=8,(c−a)2=4,∴16+4k =4,解得:k=−3,故答案为−3.点睛:本题考查了一次函数与反比例函数的交点问题、根与系数的关系、勾股定理、图象上点的坐标特征等,题目具有一定的代表性,综合性强,有一定难度.17.23﹣23π 【解析】 【分析】 过点F 作FE ⊥AD 于点E ,则AE=12AD=12AF ,故∠AFE=∠BAF=30°,再根据勾股定理求出EF 的长,由S 弓形AF =S 扇形ADF -S △ADF 可得出其面积,再根据S 阴影=2(S 扇形BAF -S 弓形AF )即可得出结论【详解】如图所示,过点F 作FE ⊥AD 于点E ,∵正方形ABCD 的边长为2,∴AE=12AD=12AF=1,∴∠AFE=∠BAF=30°,∴EF=3. ∴S 弓形AF =S 扇形ADF -S △ADF =6041223336023ππ⨯-⨯⨯=-, ∴ S 阴影=2(S 扇形BAF -S 弓形AF )=2×[304233603ππ⨯⎛⎫-- ⎪⎝⎭]=2×(12333ππ-+)=2 233π-.【点睛】本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力.18.1【解析】【分析】根据一元二次方程的解的定义得a 2﹣3a+1=1,即a 2﹣3a=﹣1,再代入22331a a a a -++,然后利用整体思想进行计算即可.【详解】∵a 是方程x 2﹣3x+1=1的一根,∴a 2﹣3a+1=1,即a 2﹣3a=﹣1,a 2+1=3a∴2233=11=01-+-++a a a a故答案为1.【点睛】本题考查了一元二次方程的解:使一元二次方程两边成立的未知数的值叫一元二次方程的解.也考查了整体思想的运用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.证明见解析.【解析】【分析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED 为菱形.【详解】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵DB CBDBE CBE BE BE=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△BCE;(2)四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED= AD∴四边形ABED为菱形.考点:旋转的性质;全等三角形的判定与性质;菱形的判定.20.(1)1;(2)43.2°;(3)条形统计图如图所示:见解析;(4)估计乘公交车上班的人数为6万人.【解析】【分析】(1)根据D 组人数以及百分比计算即可.(2)根据圆心角度数=360°×百分比计算即可.(3)求出A ,C 两组人数画出条形图即可.(4)利用样本估计总体的思想解决问题即可.【详解】(1)本次接受调查的市民共有:50÷25%=1(人),故答案为1.(2)扇形统计图中,扇形B 的圆心角度数=360°×24200=43.2°; 故答案为:43.2°(3)C 组人数=1×40%=80(人),A 组人数=1﹣24﹣80﹣50﹣16=30(人).条形统计图如图所示:(4)15×40%=6(万人).答:估计乘公交车上班的人数为6万人.【点睛】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)①60;②CP BF =.理由见解析;(2)2tan BF BP DE α-=⋅,理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合30A ∠=o ,只要证明CDB ∆是等边三角形即可; ②根据全等三角形的判定推出DCP DBF ∆≅∆,根据全等的性质得出CP BF =,(2)如图2,求出DC DB AD ==,DE AC P ,求出2FDB CDP PDB α∠=∠=+∠,DP DF =,根据全等三角形的判定得出DCP DBF ∆≅∆,求出CP BF =,推出BF BP BC -=,解直角三角形求出tan CE DE α=即可.【详解】解:(1)①∵30A ∠=o ,90ACB ∠=o ,∴60B ∠=o ,∵AD DB =,∴CD AD DB ==,∴CDB ∆是等边三角形,∴60DCB ∠=o .故答案为60.②如图1,结论:CP BF =.理由如下:∵90ACB ∠=o ,D 是AB 的中点,DE BC ⊥,A α∠=,∴DC DB AD ==,DE AC P ,∴A ACD α∠=∠=,EDB A α∠=∠=,2BC CE =,∴2BDC A ACD α∠=∠+∠=,∵2PDF α∠=,∴2FDB CDP PDB α∠=∠=-∠,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP DF =,在DCP ∆和DBF ∆中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴DCP DBF ∆≅∆,∴CP BF =.(2)结论:2tan BF BP DE α-=⋅.理由:∵90ACB ∠=o ,D 是AB 的中点,DE BC ⊥,A α∠=,∴DC DB AD ==,DE AC P ,∴A ACD α∠=∠=,EDB A α∠=∠=,2BC CE =,∴2BDC A ACD α∠=∠+∠=,∵2PDF α∠=,∴2FDB CDP PDB α∠=∠=+∠,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP DF =,在DCP ∆和DBF ∆中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴DCP DBF ∆≅∆,∴CP BF =,而CP BC BP =+,∴BF BP BC -=,在Rt CDE ∆中,90DEC ∠=o , ∴tan DE DCE CE∠=, ∴tan CE DE α=,∴22tan BC CE DE α==,即2tan BF BP DE α-=.【点睛】本题考查了三角形外角性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出DCP DBF ∆≅∆是解此题的关键,综合性比较强,证明过程类似.22.21x -【解析】 分析:先把分值分母因式分解后约分,再进行通分得到原式=21x -,然后把x 的值代入计算即可. 详解:原式=311x x x -+-()()•213x x ()+-﹣1 =11x x +-﹣11x x -- =21x - 当时,原式. 点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.23.(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.24.小王在这两年春节收到的年平均增长率是【解析】【分析】增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x)元,在2018年的基础上再增长x,就是2019年收到微信红包金额400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可.【详解】解:设小王在这两年春节收到的红包的年平均增长率是.依题意得:解得(舍去).答:小王在这两年春节收到的年平均增长率是【点睛】本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.25.从甲班抽调了35人,从乙班抽调了1人【解析】分析:首先设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,根据题意列出一元一次方程,从而得出答案.详解:设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,由题意得,45﹣x=2[39﹣(x﹣1)],解得:x=35,则x﹣1=35﹣1=1.答:从甲班抽调了35人,从乙班抽调了1人.点睛:本题主要考查的是一元一次方程的应用,属于基础题型.理解题目的含义,找出等量关系是解题的关键.26.(1)223y x=-,12yx=;(2) 当0<x<6时,kx+b<mx,当x>6时,kx+b>mx【解析】【分析】(1)根据点A和点B的坐标求出一次函数的解析式,再求出C的坐标6,2),利用待定系数法求解即可求出解析式(2)由C(6,2)分析图形可知,当0<x<6时,kx+b<mx,当x>6时,kx+b>mx【详解】(1)S△AOB=12OA•OB=1,∴OA=2,∴点A的坐标是(0,﹣2),∵B(1,0)∴2 30 bk b=-⎧⎨+=⎩∴232 kb⎧=⎪⎨⎪=-⎩∴y=23x﹣2.当x=6时,y=23×6﹣2=2,∴C(6,2)∴m=2×6=3.∴y=12x.(2)由C(6,2),观察图象可知:当0<x<6时,kx+b<mx,当x>6时,kx+b>mx.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于求出C的坐标27.0【解析】分析:先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可求出不等式组的解集.详解:,由①去括号得:﹣3x﹣3﹣x+3<8,解得:x>﹣2,由②去分母得:4x+2﹣3+3x≤6,解得:x≤1,则不等式组的解集为﹣2<x≤1.点睛:本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.。
吉林省九年级下学期数学第四次月考试卷

吉林省九年级下学期数学第四次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题4分,共48分) (共12题;共48分)1. (4分) -3的倒数是()A . 3B . -3C .D . -2. (4分) (2019八上·武威月考) 下列运算正确的是()A .B .C .D .3. (4分) 2012年3月5日,温家宝总理在“政府工作报告”中说,2012年国家财政性教育经费支出21984.63亿元,占国内生产总值4%以上.21984.63亿元用科学记数法表示为()A . 2.198463×1013元B . 2.198463×1012元C . 21.98463×1012元D . 21.98463×1013元4. (4分) (2019七上·焦作期末) 如图,所示的几何体是由若干个大小相同的小正方体组成的,则该几何体的左视图(从左面看)是()A .B .C .D .5. (4分)下列说法正确的是()A . 要调查人们对“低碳生活”的了解程度,宜采用普查方式B . 一组数据:3,4,4,6,8,5的众数和中位数都是3C . 必然事件的概率是100%,随机事件的概率是50%D . 若甲组数据的方差S甲2=0.128,乙组数据的方差是S乙2=0.036,则乙组数据比甲组数据稳定6. (4分)(2016·河池) 如图,不等式组的解集在数轴上表示正确的是()A .B .C .D .7. (4分)如图,直径为10的⊙A经过点C (0,5) 和点O (0,0),B是y轴右侧⊙A优弧上一点,则∠OBC 的正弦值为()A .B .C .D .8. (4分)(2014·苏州) 如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A .B .C .D .9. (4分)如图,已知两正方形的面积分别是25和169,则字母B所代表的正方形的面积是().A . 12B . 13C . 144D . 19410. (4分) (2016九上·嵊州期中) 绍兴是著名的桥乡.如图,圆拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A . 4mB . 5mC . 6mD . 8m11. (4分) (2017八下·凉山期末) 如图,在平行四边形ABCD中,过点P作直线EF、GH分别平行于AB、BC,那么图中共有()平行四边形.A . 4个B . 5个C . 8个D . 9个12. (4分)如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF 的长为()A .B .C .D .二、填空题(每小题4分,共24分) (共6题;共22分)13. (4分)比较大小:.(填“>”“<”或“=”)14. (2分)(2020·龙湖模拟) 因式分解:15. (4分)抛物线y=ax2+bx+c向左平移3个单位,再向上平移2个单位得y=x2+2x+3,则a=,b=,c=.16. (4分) (2017九上·曹县期末) 已知当x1=a,x2=b,x3=c时,二次函数y= x2+mx对应的函数值分别为y1 , y2 , y3 ,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3 ,则实数m的取值范围是.17. (4分)(2019·襄州模拟) 如图,在四边形ABCD中,AD∥BC (BC>AD),∠D=90°,∠ABE=45°,BC =CD,若AE=5,CE=2,则BC的长度为.18. (4分)(2017·埇桥模拟) 如图,在矩形ABCD中,AB=2,BC=4,点M、N分别在边AD和BC上,沿MN折叠四边形ABCD,使点A、B分别落在A1、B1处,得四边形A1B1NM,其中点B1在DC上,过点M作ME⊥BC于点E,连接BB1 ,给出下列结论:①∠MNB1=∠ABB1;②△MEN∽△BCB1;③ 的值为定值;④当B1C= DC时,AM= ,其中正确结论的序号是.(把所有正确结论的序号都在填在横线上)三、解答题(本大题有8小题,共78分) (共8题;共78分)19. (6分) (2019八上·昭通期中) 计算:(1)(2)解方程组:20. (8分)(2021·吴兴模拟) 如图,在方格纸中,每个小正方形的边长都是1,点A,B,P都在格点上,请按要求画出图形,使点P在所画图形的内部(不包括边界上).(1)请在图1中作出一个,点C和点D都在格点上;(2)请在图2中画一个四边形,使得,且是钝角,点E和点F都在格点上.(温馨提示:请画在答题卷相对应的图上)21. (8.0分) (2019九上·九龙坡开学考) 在校园歌手大赛中,甲、乙两位同学的表现分外突出,现场A、B、C、D、E、F六位评委的打分情况以及随机抽取的50名同学的民意调查结果分别如下统计表和不完整的条形统计图:(说明:随机抽取的50名同学每人必须从“好”、“较好”、“一般”中选一票投给每个选手)A B C D E F甲899790939594乙899290979494(1) a=,六位评委对乙同学所打分数的中位数是,并补全条形统计图;(2)学校规定评分标准如下:去掉评委评分中最高和最低分,再算平均分并将平均分与民意测评分按2:3计算最后得分.求甲、乙两位同学的最后得分.(民意测评分=“好”票数×2+“较好”票数×1+“一般”票数×0)22. (10分) (2016九上·北京期中) 如图,正方形ABCD的边长为2,E是BC的中点,以点A为中心,把△ABE 逆时针旋转90°,设点E的对应点为F.(1)画出旋转后的三角形.(2)在(1)的条件下,①求EF的长;②求点E经过的路径弧EF的长.23. (10.0分)如图,在ΔABC中,已知DE∥BC,AD=4,DB=8,DE=3,(1)求的值,(2)求BC的长24. (10分)如图,已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的表达式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;(3)若抛物线上有一动点M,使△ABM的面积等于△ABC的面积,求M点坐标.(4)抛物线的对称轴上是否存在动点Q,使得△BCQ为等腰三角形?若存在,求出点Q的坐标;若不存在,说明理由.25. (12分)(2018·道外模拟) 如图,△ABC内接于⊙O,弦CD平分∠ACB,点E为弧AD上一点,连接CE、DE,CD与AB交于点N.(1)如图1,求证:∠AND=∠CED;(2)如图2,AB为⊙O直径,连接BE、BD,BE与CD交于点F,若2∠BDC=90°-∠DBE,求证:CD=CE;(3)如图3,在⑵的条件下,连接OF,若BE=BD+4,BC=,求线段OF的长.26. (14.0分) (2020九上·新乡期末) 如图,直线与轴交于点,与轴交于点,抛物线与直线交于,两点,点是抛物线的顶点.(1)求抛物线的解析式;(2)点是直线上方抛物线上的一个动点,其横坐标为,过点作轴的垂线,交直线于点,当线段的长度最大时,求的值及的最大值.(3)在抛物线上是否存在异于、的点,使中边上的高为,若存在求出点的坐标;若不存在请说明理由.参考答案一、选择题(每小题4分,共48分) (共12题;共48分)答案:1、略答案:2、略答案:3、略答案:4、略答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题(每小题4分,共24分) (共6题;共22分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题(本大题有8小题,共78分) (共8题;共78分)答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、答案:24-4、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林省第二实验学校2019-2020学年度上学期九年级第四次月考
数学试题
一、选择题(本大题共8小题,每小题3分,共24分)
1. 如果温度上升2C ︒记作2C ︒+,那么温度下降3C ︒记作 ( )
A. 2C ︒+
B. 2C ︒-
C. 3C ︒+
D. 3C ︒-
2. 举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米,55000这个数用科学计数法表示( )
A. 35.510⨯
B. 35510⨯
C. 50.5510⨯
D. 40.5510⨯
3. 如图是由6个同样大小的小正方体摆成的几何体,将正方体①移走后,所得几何体()
A. 主视图改变,左视图不变
B. 俯视图不变,左视图不变
C. 俯视图改变,左视图改变
D.主视图改变,左视图不变
4. 为了调查某小区居民用水情况,随机抽查了10户家庭的月用水量,结果如下:
则关于这10户家庭的月用水量,下列说法错误的是( )
A.中位数是5吨
B. 众数是5吨
C. 极差是3吨
D.平均数是5.3吨
5. 如图,AB 为O e 直径,,C D 是圆上两点,25CDB ︒∠=,过点C 作O e 的切线交AB 的延长线于点E ,则E ∠的度数是( )
A. 40︒
B. 50︒
C. 55︒
D. 60︒
6. 若1231A(-3,y ),(,),(2,)2B y C y 在二次函数2
2y x x c =++的图像上,则123,,y y y 的大小关系是( )
A. 213y y y <<
B. 132y y y <<
C. 123y y y <<
D. 321y y y <<
7. 下面是投影屏幕上出示的抢答题,需要回答横线上符号代表的内容
已知:如图,BEC B C ∠=∠+∠
求证://AB CD
证明:延长BE 交_____*_______于点F.
则BEC C ∠=+∠o (三角形的外角等于与它不相邻的两个内角之和)
又BEC B C ∠=∠+∠得B ∠=∆
若//AB CD (___@________相等两直线平行)
下列回答正确的是( )
A. o 代表FEC ∠
B. @代表同位角
C. ∆代表EFC ∠
D. *代表AB
8. 如图,在平面直角坐标系中,一次函数的图像与轴分别交于两点,正方形的顶点在第一象限,顶点在
反比例函数的图像上,若正方形向左平移个单位后,顶点恰好落在反比例函数的图像上,则的值是( )
A. 2
B. 3
C. 4
D.5
二、填空题(每小题3分,共18分)
9. 因式分解:33
4_____a b ab -=
10. _______=
11. 已知扇形的面积为4π,半径为6,则此扇形的圆心角为___度。
12. 如图,某海防哨所O 发现它的西北方向,距离哨所400米的A 处有一艘船向正东方向航行,航行了一段时间后到达哨所北偏东60︒方向的B 处,则此时这艘船与哨所的距离约为多少__________米,(精确到1
1.732≈≈)
13.如图,在Rt ABC ∆中,90,5,8,BAC BA AC D ︒
∠===是斜边BC 上的一个动点,过点D 分别作DM AB ⊥于点M, DN AC ⊥于点N ,连接MN ,则线段MN 长的最小值为______________.
14.已知2
(1)2y x a x =+-+是关于x 的二次函数,当x 的取值范围是04x ≤≤时,仅在4x =时取得最大值,则实数a 的取值范围是______________.
三、解答题(本大题共10小题,共78分) 15.先化简,再求值,22321(1)22
x x x x x --+-÷--,然后从0,1,2,三个数中选择一个恰当的数代入求值. 16.现有两个不透明的袋子,一个装有2个红球,1个白球,一个装有1个黄球,2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出一个球,利用树状图或列表的方法,求摸出的两个球颜色相同的概率.
17.百香果丰收的季节,张阿姨到“海南爱心扶贫”上选购百香果,若购买2千克红土白香果和1千克黄金白香果需付80元,若购买1千克红土白香果和3千克黄金白香果需付115元,请问这两种白香果每千克各是多少元?
18.为了解某县建档立卡贫困户精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行调查(把调查的结果分成四个等级:A 级:非常满意;B 级满意;C 级基本满意;D 级不满意)并将调查结果绘制成两幅不完整的统计图,请跟进统计图中的信息解决下列问题.
(1)本次抽样调查的建档立卡贫困户的总户数是___________
(2)图1中,α∠的度数是______,并将图2条形统计图补充完整
(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约多少户?
4。