八年级数学第一章《勾股定理》练习题 (2)
初二勾股定理练习题电子版

初二勾股定理练习题电子版1. 已知直角三角形的两条直角边长分别为3cm和4cm,请问斜边长多少?解答:根据勾股定理,斜边的平方等于两直角边的平方和。
设斜边长为c,根据公式可得:c² = 3² + 4²c² = 9 + 16c² = 25所以,斜边长c为5cm。
2. 在直角三角形ABC中,已知斜边长为10cm,一条直角边长为6cm,请问另一条直角边长多少?解答:同样根据勾股定理,设另一条直角边长为a,可得:a² + 6² = 10²a² + 36 = 100a² = 100 - 36a² = 64所以,另一条直角边长a为8cm。
3. 已知直角三角形的两条直角边分别为5cm和12cm,请问斜边长多少?解答:根据勾股定理,设斜边长为c,可得:c² = 5² + 12²c² = 25 + 144c² = 169所以,斜边长c为13cm。
4. 在直角三角形XYZ中,已知斜边长为15cm,一条直角边长为9cm,请问另一条直角边长多少?解答:根据勾股定理,设另一条直角边长为b,可得:b² + 9² = 15²b² + 81 = 225b² = 225 - 81b² = 144所以,另一条直角边长b为12cm。
5. 若直角三角形的两条直角边分别为xcm和ycm,斜边长为zcm,根据勾股定理,我们可以得到一个关系式,即x² + y² = z²。
请用这个关系式回答以下问题:(1) 如果x=5cm,y=12cm,求z的值。
解答:根据关系式x² + y² = z²,代入x、y的值可得:5² + 12² = z²25 + 144 = z²169 = z²所以,z的值为13cm。
北师大版八年级上册数学第一章练习题

第1页,-共3页八年级上册数学第一章《勾股定理》测试题 【2 】班级:学号:姓名:成绩:一、 选择题:(每小题4分,共40分)1.下列四组数据不能作为直角三角形的三边长的是() A.6,8,10 B.5,12,13 C.12,18,22 D.1,12,152.将直角三角形的三条边长同时扩展统一倍数,得到的三角形是() A.钝角三角形 B.锐角三角形 C.直角三角形 D.等腰三角形3.如图,带暗影的矩形面积是60,则图中直角三角形的斜边长为() A.9 B.12 C.17D.244.假如梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是()A.12米B.13米C.14米D.15米5.等腰三角形的一腰长为13,底边长为10,则它的面积为() A.65 B.60 C.120 D.1306.已知三角形的三边分离为a.b.c,且知足,那么这个三角形是() A.锐角三角形 B.钝角三角形 C.直角三角形 D.不能肯定7.等边三角形的边长是10,它的高的平方等于() A.50 B.75 C.125 D.2008.直角三角形的两直角边分离为5厘米,12厘米,则斜边上的高是() A.6厘米 B.厘米 C.厘米 D.9.已知Rt ⊿ABC 中,已知∠C=900,若a+b=14cm,c=10cm,则Rt ⊿ABC 的面积是( ) A.24cm 2B.36cm 2C.48cm 2D.60cm 210.如图,在直角三角形中,∠C=900,AC=3,将其绕B 点顺时针扭转一周,则分离以BA,BC 为半径的圆形成一环,该圆环的面积为()第3题第5题4cmA. B.3 C.6 D.9二.填空题:(每小题4分,共20分)11.⊿ABC中,若AC2+AB2=BC2,则∠B+∠C=.12.若三角形的三边之比为3︰4︰5,则此三角形为三角形.13.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,个中最大的正方形的边长为7㎝,则正方形A,B,C,D的面积之和为㎝2.14.如图,黉舍有一块长方形花铺,有少少数工资了避开拐角走“捷径”,在花铺内走出了一条“路”,他们仅仅走了步路(假设2步为1米),却踩伤了花卉.15.正方形的面积为100平方厘米,则该正方形的对角线的平方长为 .三解答题:(共90分)16.如图,从电线杆离地面6m处向地面拉一条长10m的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?(12分)17.小明想知道黉舍旗杆的高,他发明旗杆上的绳索垂到地面还多1m,当他把绳索的下端拉开5m后,发明下端刚好接触地面,则旗杆的高度是若干?(12分)18.如图正方形网格中的⊿ABC,若小方格边长为1,请你依据所学的常识(1)求⊿ABC的面积(6分)(2)断定⊿ABC是什么外形?并解释来由.(6分)19.如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,求FC的长.(12分)20.如图所示,一棱长为3cm的正方体,把所有的面都分成3×3个小正方形,其边长都为1cm,假设一只蚂蚁每秒爬行D.F B .第2页,-共3页第3页,-共3页2cm,则它从下底面A 点沿表面爬行至右侧面的B 点,起码要花几秒钟?(12分)21.如图所示,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的顶端飞到另一棵树的顶端,至少要飞若干米?(15分)22.如图所示,在进修勾股定理时,我们学会应用图(I )验证它的准确性,图中大正方形的面积可表示为(a+b )2,也可表示为,即,由此推出勾股定理,这种依据图形可以极简略地直不雅推论或验证数学纪律和公式的办法,简称为“无字证实”.(1)请你用图(II )的面积表达式验证勾股定理(个中四个直角三角形全等).(5分) (2)请你用图(III )供给的图形进行组合,用组合图形(把组合图形画鄙人面空白处)的面积表达式验证:(5分)(3)请你本身设计图形的组合(画出组合图形),用其面积表达式验证: (5分)EGAC(I)(II)(III)。
(必考题)初中数学八年级数学上册第一单元《勾股定理》测试题(含答案解析)

一、选择题1.一根竹竿插到水池中离岸边1.5m 远的水底,竹竿高出水面0.5m ,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为( ) A .2m B .2.5cm C .2.25m D .3m2.学习勾股定理后,老师布置的课后作业为“利用绳子(绳子足够长)和卷尺,测量学校教学楼的高度”,某数学兴趣小组的做法如下:①将绳子上端固定在教学楼顶部,绳子自由下垂,再垂直向外拉到离教学楼底部3m 远处,在绳子与地面的交点处将绳子打结;②将绳子继续往外拉,使打结处离教学楼的距离为6m ,此时测得绳结离地面的高度为 1m ,则学校教学楼的高度为( )A .11 mB .13 mC .14 mD .15 m3.如图,在正方形网格中,每个小正方形的边长均为1,△ABC 的三个顶点A ,B ,C 均在网格的格点上,则△ABC 的三条边中边长是无理数的有( )A .0条B .1条C .2条D .3条 4.在周长为24的直角三角形中,斜边长为11,则该三角形的面积为( ) A .6B .12C .24D .48 5.下列各组数中,不能作为直角三角形的三边长的是( ) A .1,2,3 B .3,4,5 C .5,12,13 D .5,7,32 6.如图,用64个边长为1cm 的小正方形拼成的网格中,点A ,B ,C ,D ,E ,都在格点(小正方形顶点)上,对于线段AB ,AC ,AD ,AE ,长度为无理数的有( ).A .4条B .3条C .2条D .1条 7.下列几组数中,能作为直角三角形三边长度的是( )A .2,3,4a b c ===B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c === 8.下列各组数据中,是勾股数的是( )A .3,4,5B .1,2,3C .8,9,10D .5,6,9 9.一个长方体盒子长24cm ,宽10cm ,在这个盒子中水平放置一根木棒,那么这根木棒最长(不计木棒粗细)可以是( )A .10cmB .24cmC .26cmD .28cm 10.如图①,直角三角形纸片的两直角边长分别为6、8,按如图②方式折叠,使点A 与点CB 重合,折痕为DE ,则BCE 与ADE 的面积之比为( )A .2:3B .4:9C .9:25D .14:25 11.如图是由四个全等的直角三角形与一个小正方形拼成的大正方形.若小正方形边长为3,大正方形边长为15,则一个直角三角形的面积等于( )A .36B .48C .54D .108 12.一根旗杆在离地面3米处断裂,旗杆顶部落在离旗杆底部4米处,旗杆折断之前的高度是( )A .5米B .7米C .8米D .9米二、填空题13.将五个边长为2的正方形按如图所示放置,若A ,B ,C ,D 四点恰好在圆上,则这个圆的面积为________.(结果保留π)14.如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.15.如图,在Rt ABC △中,90C ∠=︒,点D 在BC 上,且12AC DC AB ==,若2AD =,则BD =___________.16.如图,在4×4方格中,小正方形格的边长为1,则图中阴影正方形的边长是____.17.如图,在校园内有两棵树相距12米,一棵树高14米,另一棵树高9米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞______米.18.在平面直角坐标系中,若点M (2,4)与点N (x ,4)之间的距离是3,则x 的值是_____.19.已知等边三角形的边长为2,则其面积等于__________.20.有两根木棒,分别长6cm 、5cm ,要再在7cm 的木棒上取一段,用这三根木棒为边做成直角三角形,则第三根木棒要取的长度是__________.三、解答题21.如图,Rt △ABC 中,∠ACB =90°.(1)作AB 边的垂直平分线交BC 于点D (要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB =10cm ,BC =8cm ,求BD 的长.22.如图,在平面直角坐标系中,点A (4,0),点B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,求点C 的坐标.23.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC 中,∠ACB =90°.AC =b ,BC =a ,AB =c ,请你利用这个图形解决下列问题:(1)试说明:a 2+b 2=c 2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a +b )2的值.24.利用所学的知识计算:(1)已知a b >,且2213a b +=,6ab =,求-a b 的值;(2)已知a 、b 、c 为Rt △ABC 的三边长,若222568a b a b ++=+,求Rt △ABC 的周长.25.如图,星期天小明去钓鱼,鱼钩A 在离水面的BD 的1.3米处,在距离鱼线1.2米处D 点的水下0.8米处有一条鱼发现了鱼饵,于是以0.2米/秒的速度向鱼饵游去,那么这条鱼至少几秒后才能到达鱼饵处?26.教材呈现:下图是华师版八年级上册数学教材111页的部分内容.()1请根据教材内容,结合图①,写出完整的解题过程.()2拓展:如图②,在图①的ABC 的边AB 上取一点D ,连接CD ,将ABC 沿CD 翻折,使点B 的对称点E 落在边AC 上.①求AE 的长.②DE 的长 .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设水池的深度BC =xm ,则AB =(0.5+x )m ,根据勾股定理列出方程,进而即可求解.【详解】解:在直角△ABC 中,AC =1.5m .AB ﹣BC =0.5m .设水池的深度BC =xm ,则AB =(0.5+x )m .根据勾股定理得出:∵AC 2+BC 2=AB 2,∴1.52+x 2=(x +0.5)2,解得:x =2.故选:A .【点睛】本题主要考查勾股定理的实际应用,根据勾股定理,列出方程,是解题的关键. 2.C解析:C【分析】根据题意画出示意图,设学校教学楼的高度为x ,可得AC AD x ==,()1AB x m =-,6BC m =,利用勾股定理可求出x .【详解】解:如图,设学校教学楼的高度为x ,则AD x =,()1AB x m =-,6BC m =,左图,根据勾股定理得,绳长的平方223x =+,右图,根据勾股定理得,绳长的平方()2216x =-+,∴()2222316x x +=-+, 解得:14x =.故选:C .【点睛】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.3.C解析:C【分析】根据勾股定理求出三边的长度,再判断即可.【详解】 解:由勾股定理得:22345AC =+=,是有理数,不是无理数;222313BC =+=,是无理数;221526AB =+=,是无理数,即网格上的△ABC 三边中,边长为无理数的边数有2条,故选:C .【点睛】本题考查了无理数和勾股定理,能正确根据勾股定理求出三边的长度是解此题的关键. 4.B解析:B【分析】画出直角三角形,由11,24,c a b c =++=可得:222169,a ab b ++=再由勾股定理可得:222121,a b c +==从而求解24,ab =再利用三角形的面积公式可得答案.【详解】解:如图,由题意知:11,24,c a b c =++=13,a b ∴+=222169,a ab b ∴++=222121,a b c +==121+2169,ab ∴=248,ab =24,ab ∴=112.2S ab ∴== 故选:.B【点睛】本题考查的是勾股定理的应用,完全平方公式的应用,掌握以上知识是解题的关键. 5.D解析:D【分析】根据勾股定理的逆定理分别进行判断,即可得出结论.【详解】解:A 、∵222142+==,∴1,2能作为直角三角形的三边长.故此选项不符合题意;B 、∵22234255+==,∴3,4,5能作为直角三角形的三边长.故此选项不符合题意;C 、∵22251216913+==,∴5,12,13能作为直角三角形的三边长.故此选项不符合题意;D 、∵2212+=,218=(,1218≠, ∴故选:D .【点睛】本题考查了勾股定理的逆定理的应用,掌握勾股定理逆定理用法是解题的关键. 6.C解析:C【分析】先根据勾股定理求出AB ,AC ,AD ,AE 这4条线段的长度,即可得出结果.【详解】根据勾股定理计算得:5=,=10=,长度为无理数的有2条,故选:C .【点睛】本题主要考查了勾股定理及无理数.勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.7.C解析:C【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案.【详解】解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意;22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C【点睛】本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键8.A解析:A【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A 、222345+=,能构成直角三角形,是正整数,故是勾股数;B 、222123+≠,不能构成三角形,故不是勾股数;C 、2220981,不能构成直角三角形,故不是勾股数;D 、222569+≠,不能构成直角三角形,故不是勾股数.故选:A .【点睛】本题主要考查了勾股数的定义及勾股定理的逆定理,熟悉相关性质是解题的关键. 9.C解析:C【分析】根据题意可知木棒最长是底面长方形的对角线的长,利用勾股定理求解即可.【详解】解:长方体的底面是长方形,水平放置木棒,当木棒为该正方形的对角线时木棒最长,26=,则最长木棒长为26cm ,故选:C .【点睛】本题考查立体图形、勾股定理,由题意得出木棒最长是底面长方形的对角线的长是解答的关键.10.D解析:D【分析】由折叠可得5AD BD ==,AE BE =,根据勾股定理可得CE ,AE ,DE 的长度,即可求面积比.【详解】解:6BC =,8AC =,10AB ∴=,折叠,5AD BD ∴==,AE BE =, 22BC CE BE +=2,2236(8)CE CE ∴+=-,74CE ∴=, 725844AE ∴=-=,154DE ∴=, 11::14:2522BCE ADE S S BC CE AD DE ∆∆∴=⨯⨯⨯=, 故选:D .【点睛】本题考查了折叠问题,勾股定理,关键是熟练运用勾股定理求线段的长度.11.C解析:C【分析】根据图形的特征先算出4个三角形的面积之和,再除以4,即可求解.【详解】由题意得:15×15-3×3=216,216÷4=54,故选C .【点睛】本题主要考查“赵爽弦图”的相关计算,理清图形中的面积关系,是解题的关键. 12.C解析:C【分析】如图,由题意,AC ⊥BC ,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB ,求出AB 即可解决问题.【详解】解:如图,由题意,AC ⊥BC ,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB .在Rt △ACB 中,∠C=90°,AC=3米,BC=4米, ∴2222AB AC BC 345=++=(米),∴旗杆折断之前的高度高度=AC+AB=3+5=8(米),故选:C .【点睛】本题考查勾股定理的应用,解题的关键是理解题意,正确画出图形,运用勾股定理解决问题.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】根据题意得到圆心O 的位置设MO=x 根据AO2=DO2得到方程求出x 得到圆O 的半径从而求出面积【详解】解:由题意可得:多个小正方形排成轴对称图形∴圆心O 落在对称轴MN 上设MO=x ∵AO=DO ∴ 解析:1309π 【分析】根据题意得到圆心O 的位置,设MO=x ,根据AO 2=DO 2,得到方程,求出x ,得到圆O 的半径,从而求出面积.【详解】解:由题意可得:多个小正方形排成轴对称图形,∴圆心O 落在对称轴MN 上,设MO=x ,∵AO=DO ,∴AO 2=DO 2,即()2222163x x +=-+,解得:x=113, ∴圆O 的半径为21x +=130, ∴圆O 的面积为21303π⎛⎫ ⎪ ⎪⎝⎭=1309π, 故答案为:1309π.【点睛】本题考查了勾股定理,轴对称的性质,圆的性质,解题的关键是根据半径相等得到方程. 14.29【分析】如图(见解析)先根据正方形的面积公式可得再利用勾股定理可得的值由此即可得出答案【详解】如图连接AC 由题意得:在中在中则正方形丁的面积为故答案为:29【点睛】本题考查了勾股定理的应用熟练掌 解析:29【分析】如图(见解析),先根据正方形的面积公式可得22230,16,17AB BC CD ===,再利用勾股定理可得2AD 的值,由此即可得出答案.【详解】如图,连接AC ,由题意得:22230,16,17AB BC CD ===,在ABC 中,90ABC ∠=︒, 22246AC AB BC ∴=+=,在ACD △中,90ADC ∠=︒,22229AD AC CD ∴=-=,则正方形丁的面积为229AD =,故答案为:29.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.15.【分析】设在中利用勾股定理求出x 值即可得到AC 和CD 的长再求出AB 的长再用勾股定理求出BC 的长即可得到结果【详解】解:设∵∴即解得或(舍去)∴∵∴∴∴故答案是:【点睛】本题考查勾股定理解题的关键是掌1【分析】设AC DC x ==,在Rt ACD △中,利用勾股定理求出x 值,即可得到AC 和CD 的长,再求出AB 的长,再用勾股定理求出BC 的长,即可得到结果.【详解】解:设AC DC x ==,∵90C ∠=︒,∴222AC CD AD +=,即222x x +=,解得1x =或1-(舍去), ∴1AC DC ==, ∵12AC AB =, ∴2AB =,∴BC ===, ∴1BD BC CD =-=.1.【点睛】本题考查勾股定理,解题的关键是掌握利用勾股定理解直角三角形的方法.16.【分析】根据勾股定理即可得出结果【详解】解:正方形的边长=故答案为:【点睛】本题主要考查的是勾股定理掌握勾股定理的计算方法是解题的关键【分析】根据勾股定理即可得出结果.【详解】解:正方形的边长.【点睛】本题主要考查的是勾股定理,掌握勾股定理的计算方法是解题的关键.17.13【分析】根据两点之间线段最短可知:小鸟沿着两棵树的顶端进行直线飞行所行的路程最短运用勾股定理可将两点之间的距离求出【详解】如图所示ABCD为树且AB=14米CD=9米BD为两树距离12米过C作C解析:13【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的顶端进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【详解】如图所示,AB,CD为树,且AB=14米,CD=9米,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=12,AE=AB−CD=5,在直角三角形AEC中,AC22+=13.512+=22AE CE答:小鸟至少要飞13米.故答案为:13.【点睛】本题考查了勾股定理的应用,关键是从实际问题中构建出数学模型,转化为数学知识,然后利用直角三角形的性质解题.18.﹣1或5【分析】根据点M(24)与点N(x4)之间的距离是3可以得到|2-x|=3从而可以求得x的值【详解】解:∵点M(24)与点N(x4)之间的距离是3∴|2﹣x|=3解得x=﹣1或x=5故答案为解析:﹣1或5【分析】根据点M(2,4)与点N(x,4)之间的距离是3,可以得到|2-x|=3,从而可以求得x的值.【详解】解:∵点M(2,4)与点N(x,4)之间的距离是3,∴|2﹣x|=3,解得,x=﹣1或x=5,故答案为﹣1或5.【点睛】本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.19.【分析】根据等边三角形三线合一的性质可得D为BC的中点即BD=CD在直角三角形ABD中已知ABBD根据勾股定理即可求得AD的长即可求三角形ABC的面积即可解题【详解】等边三角形三线合一即D为BC的中解析:3【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.【详解】等边三角形三线合一,即D为BC的中点,∴BD=DC=1,在Rt△ABD中,AB=2,BD=1,∴AD==3,∴△ABC的面积为BC•AD=333.20.【分析】分2种情况:①是直角边;②是斜边;根据勾股定理求出第三根木棒的长即可求解【详解】解:①是直角边第三根木棒要取的长度是(舍去);②是斜边第三根木棒要取的长度是故答案为:【点睛】考查了勾股定理的11【分析】分2种情况:①6cm是直角边;②6cm是斜边;根据勾股定理求出第三根木棒的长即可求解.【详解】解:①6cm是直角边,22+>(舍去);6561cm7cm②6cm是斜边,22-.6511cm11cm.【点睛】考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.三、解答题21.(1)见解析;(2)254. 【分析】(1)利用基本作图,作AB 的垂直平分线得到D 点;(2)先利用勾股定理计算出AC =6,再根据线段的垂直平分线的性质得到DA =DB ,设BD=x ,则AD =x ,CD =8﹣x ,利用勾股定理得到2(8)x -+26=2x ,然后解方程即可. 【详解】解:(1)如图,点D 为所作;(2)在Rt △ABC 中,∵∠ACB =90°,AB =10,BC =8,∴AC 22108-6,∵点D 在AB 的垂直平分线上,∴DA =DB ,设BD =x ,则AD =x ,CD =8﹣x ,在Rt △ACD 中,2(8)x -+26=2x ,解得x =254, 即BD 的长为254. 【点睛】本题考查了线段垂直平分线的作法,线段垂直平分线的性质,勾股定理,熟练掌握基本作图,灵活运用性质,是解题的关键.22.点C 的坐标为(-1,0).【分析】根据勾股定理可求出AB 的长,由AB=AC ,根据线段的和差关系可求出OC 的长,进而可求出C 点坐标.【详解】∵点A ,B 的坐标分别为(4,0),(0,3),∴OA=4,OB=3,∴225AB AO BO =+=.∵以点A 为圆心,AB 长为半径画弧,∴5AB AC ==,∴1OC AC AO =-=.∵交x 轴的负半轴于点C ,∴点C 的坐标为(-1,0).【点睛】本题考查了勾股定理和坐标与图形性质的应用,根据勾股定理求出OC 的长是解题关键. 23.(1)证明见解析;(2)23【分析】(1)根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.(2)根据完全平方公式的变形解答即可.【详解】解:(1)∵大正方形面积为c 2,直角三角形面积为12ab ,小正方形面积为(b ﹣a )2, ∴c 2=4×12ab +(a ﹣b )2=2ab +a 2﹣2ab +b 2即c 2=a 2+b 2; (2)由图可知:(b ﹣a )2=3,4×12ab =13﹣3=10, ∴2ab =10,∴(a +b )2=(b ﹣a )2+4ab =3+2×10=23.【点睛】本题考查了对勾股定理的证明和以及非负数的性质,掌握三角形和正方形面积计算公式是解决问题的关键.24.(1)1;(2)12或7+【分析】(1)根据完全平方公式变形解答;(2)先移项,将25变形为9+16,利用完全平方公式变形为22(3)(4)0a b -+-=,求得a=3,b=4,分情况,利用勾股定理求出c ,即可得到周长.【详解】(1)∵2213a b +=,6ab =,∴222()213261a b a b ab =+-=-⨯=-,∴a-b=1或a-b=-1(舍去);(2)222568a b a b ++=+ 2225680a b a b ++--=22698160a a b b -++-+=22(3)(4)0a b -+-=∴a-3=0,b-4=0,∴a=3,b=4,当a 与b 都是直角边时,c=2222435b a +=+=,∴Rt △ABC 的周长=3+4+5=12; 当a 为直角边,b 为斜边时,c=2222437b a -=-=,∴Rt △ABC 的周长=77+.【点睛】此题考查完全平方公式的变形计算,勾股定理,正确掌握并熟练应用完全平方公式是解题的关键.25.5【分析】过点C 作CE ⊥AB 于点E ,连接AC ,根据题意直接得出AE ,EC 的长,再利用勾股定理得出AC 的长,进而求出答案.【详解】如图所示:过点C 作CE ⊥AB 于点E ,连接AC ,由题意可得:EC =BD =1.2m ,AE =AB−BE =AB−DC =1.3−0.8=0.5m ,∴AC=22221.20.5 1.3CE AE +=+=m ,∴1.3÷0.2=6.5s ,答:这条鱼至少6.5秒后才能到这鱼饵处.【点睛】本题主要考查勾股定理,添加合适的辅助线,构造直角三角形,是解题的关键. 26.(1)10cm ;(2)①4cm ;②3cm【分析】(1)设AB=xcm ,AC=(x+2)cm ,运用勾股定理可列出方程,求出方程的解可得AB 的值,从而可得结论;(2)①由折叠的性质可得EC=BC=6cm ,根据AE=AC-EC 可得结论;②设DE=xcm ,在Rt △ADE 中运用勾股定理列方程求解即可.【详解】解:(1)设AB=xcm ,则AC=(x+2)cm ,根据勾股定理得,222AC AB BC =+∴222(+2)6x x =+解得,x=8∴AB=8cm,∴AC=8+2=10cm;(2)①由翻折的性质得:EC=BC=6cm∴AE=AC-EC=10-6=4cm②由翻折的性质得:∠DEC=∠DBC=90°,DE=DB,∴∠AED=90°设DE=DB=x,则AD=AB-BD=8-x在Rt△ADE中,222=+AD AE DE∴222-=+(8)4x x解得,x=3∴DE=3cm.故答案为:3cm.【点睛】此题主要考查了勾股定理与折叠问题,运用勾股定理解直角三角形,熟练掌握运用勾股定理是解答此题的关键.。
八年级上册第1章《勾股定理》单元试卷含答案(中考数学试题)

中考数学试题分类汇编:北师版数学八年级上册第1章《勾股定理》考点一:勾股定理1.(•滨州)在直角三角形中,若勾为3,股为4,则弦为()A.5B.6C.7D.8【分析】直接根据勾股定理求解即可.【解答】解:∵在直角三角形中,勾为3,股为4,∴弦的平方为32+42=25,弦长为5.故选:A.2.(•模拟)如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4B.8C.16D.64【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.3.(•模拟)如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm【分析】解答此题只要把原来的图形补全,构造出直角三角形解答.【解答】解:延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15﹣3)2+(20﹣4)2=122+162=400,所以BC=20.则剪去的直角三角形的斜边长为20cm.故选:D.4.(•模拟)如图,在△ABC中,∠B=∠C,AD平分∠BAC,AB=5,BC=6,则AD=()A.3B.4C.5D.6【分析】先判定△ABC为等腰三角形,利用等腰三角形的性质可求得BD,在Rt△ABD中利用勾股定理可求得AD的长.【解答】解:∵∠B=∠C,∴AB=AC,∵AD平分∠BAC,∴AD⊥BC,BD=CD=12BC=3,在Rt△ABD中,AB=5,BD=3,∴AD=4,故选:B.考点二:勾股定理得证明1.(•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:12ab=12×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.2.(•期中)如图是著名的赵爽弦图,它是由四个全等的直角三角形拼成,每个直角三角形的两直角边的长分别为a和b,斜边长为c,请你用它验证勾股定理.【分析】通过图中小正方形面积证明勾股定理.【解答】解:S小正方形=(b﹣a)2=b2﹣2ab+a2,另一方面S小正方形=c2﹣4×ab=c2﹣2ab,即b2﹣2ab+a2=c2﹣2ab,∴a2+b2=c2.3.(•期中)如图:在Rt△ABC和Rt△BDE中,∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c,试利用图形证明勾股定理.【分析】由图知,梯形的面积等于三个直角三角形的面积之和,用字母表示出来,化简后,即证明勾股定理.【解答】证明:∵∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c,∵Rt△ACB≌Rt△BDE,∴∠ABC=∠BED,∠BAC=∠EBD,∵∠ABC+∠DBE=90°,∴∠ABE=90°,三个Rt△其面积分别为12ab,12ab和12c2.直角梯形的面积为12(a+b)(a+b).由图形可知:12(a+b)(a+b)=12ab+12ab+12c2,整理得(a+b)2=2ab+c2,a2+b2+2ab=2ab+c2,∴a2+b2=c2.4.(•模拟)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab.又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b﹣a),∴12b2+12ab=12c2+12a(b﹣a),∴a2+b2=c2.请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.【分析】首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S五边形ACBED,两者相等,整理即可得证.【解答】证明:连结BD,过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=12ab+12b2+12ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=12ab+12c2+12a(b﹣a),∴12ab+12b2+12ab=12ab+12c2+12a(b﹣a),∴a2+b2=c2.考点三:勾股定理的逆定理1.(•南通)下列长度的三条线段能组成直角三角形的是()A.3,4,5B.2,3,4C.4,6,7D.5,11,12【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选:A.2.(•模拟)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD2=AC2+CD2=25,CD=5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故选:A.3.(•期中)下列各组数中,不能作为直角三角形的三边长的是()A.1.5,2,3B.6,8,10C.5,12,13D.15,20,25【分析】只要验证两小边的平方和等于最长边的平方即可判断三角形是不是直角三角形,据此进行判断.【解答】解:A、(1.5)2+22≠32,不能构成直角三角形,故本选项符合题意;B、62+82=100=102,能构成直角三角形,故本选项不符合题意;C、52+122=169=132,能构成直角三角形,故本选项不符合题意;D、152+202=252,能构成直角三角形,故本选项符合题意;故选:A.4.(•期末)满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:15【分析】根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【解答】解:A.b2﹣c2=a2,则b2=a2+c2,△ABC是直角三角形;B.a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;C.∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;D.∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.5.(•期中)已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24B.30C.40D.48【分析】因为△ABC的三边分别是6,8,10,根据勾股定理的逆定理可求出此三角形为直角三角形,根据三角形面积公式可求出面积.【解答】解:∵62+82=102,∴△ABC是直角三角形,∴△ABC的面积=×6×8=24.故选:A.6.(•期中)已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为三角形.【分析】对原式进行变形,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵a+b=10,ab=18,c=8,∴(a+b)2﹣2ab=100﹣36=64,c2=64,∴a2+b2=c2,∴此三角形是直角三角形.故答案为:直角.7.(•期末)观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…请你写出有以上规律的第⑤组勾股数:.【分析】勾股定理和了解数的规律变化是解题关键.【解答】解:从上边可以发现第一个数是奇数,且逐步递增2,故第5组第一个数是11,又发现第二、第三个数相差为一,故设第二个数为x,则第三个数为x+1,根据勾股定理得:112+x2=(x+1)2,解得x=60,则得第5组数是:11、60、61.故答案为:11、60、61.8.(•期中)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.【分析】根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.【解答】解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD2=AC2-AD2=225,CD=15,∴S△ABC=12BC•AD=12(BD+CD)•AD=12×21×8=84,因此△ABC的面积为84.答:△ABC的面积是84.考点四:勾股定理的应用1.(•期末)如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75B.100C.120D.125【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.2.(•模拟)一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处耍的身高为1m的小明()A.没有危险B.有危险C.可能有危险D.无法判断【分析】由勾股定理求出BC=4>3.9,即可得出结论.【解答】解:如图所示:AB=9﹣4=5,AC=4﹣1=3,由勾股定理得:BC=4>3.9,∴此时在3.9m远处耍的身高为1m的小明有危险,故选:B.3.(•模拟)如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A.16cm B.20cm C.24cm D.28cm【分析】首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.【解答】解:∵长方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵长方形ABCD中,DC=AB=32cm,∴DF=DC﹣FC=32﹣25=7cm,在直角△ADF中,AD=24(cm).故选:C.4.(•湘潭)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程为.【分析】设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论.【解答】解:设AC=x,∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.故答案为:x2+32=(10﹣x)2.5.(•包头)如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为.【分析】根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长.【解答】解:根据勾股定理得:AC=5,由网格得:S△ABC=12×2×4=4,且S△ABC=12AC•BD=12×5BD,∴12×5BD=4,解得:BD=85.故答案为:8 56.(•黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B2=A′D2+BD2=400,A′B=20(cm).故答案为20.7.(•期中)在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方两丈,葭生其,出水两尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”这个数学问题的意思是说:“有一个水池是边长为2丈(1丈=10尺)的正方形,在水池正长有一根芦苇,芦苇露出水面2尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度分别是多少?”答:这个水池的深度和这根芦苇的长度分别是.【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理可得x2+(102)2=(x+1)2,再解答即可.【解答】解;设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+(102)2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:水池深12尺,芦苇长13尺.故答案是:12尺;13尺.8.(•期中)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,求EB′的长.【分析】根据折叠得到BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4﹣x,根据勾股定理求得AC的值,再由勾股定理可得方程x2+22=(4﹣x)2,再解方程即可算出答案.【解答】解:根据折叠可得BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4﹣x,∵∠B=90°,AB=3,BC=4,∴在Rt△ABC中,由勾股定理得,AC=5,∴B′C=5﹣3=2,在Rt△B′EC中,由勾股定理得,x2+22=(4﹣x)2,解得x=1.5.11/ 11。
2019年八年级数学上册第一章《勾股定理》第一节《探索勾股定理》习题二(含答案)

2019年八年级数学上册第一章《勾股定理》《探索勾股定理》同步练习二1.如图,有一张直角三角形纸片,两直角边AC=6,BC=8,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 等于()讲完知识点梳理后作做问题延伸题(举一反三):BE 的长?求折痕DE 的长?A. 425B. 322C. 47D. 352.如图所示,已知△ABC 中,∠C=90°,AB 的垂直平分线交BC•于M ,交AB 于N ,若AC=4,MB=2MC ,求AB 的长.3.折叠矩形ABCD 的一边AD,点D 落在BC 边上的点F 处,已知AB=8CM,BC=10CM,求CF 和EC 。
4.如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E ,沿直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AED 的面积5.如图,矩形纸片ABCD 的长AD=9㎝,宽AB=3㎝,将其折叠,使点D 与点B 重合,那么折叠后DE 的长是多少?(举一反三:题干不变,求折痕EF 的长?)利用直角三角形ABE 可求得BE ,也就是DE 长,构造EF为斜边的直角三角形,进而利用勾A BF股定理求解.6.如图,在长方形ABCD中,将∆ABC沿AC对折至∆AEC位置,CE与AD交于点F。
(1)试说明:AF=FC;(2)如果AB=3,BC=4,求AF的长(举一反三:试说明EF=DF.)7.如图2所示,将长方形ABCD沿直线AE折叠,顶点D正好落在BC边上F点处,已知CE=3cm,AB=8cm,则图中阴影部分面积为_______.(原题图不标准重新画一个图)习题答案1.如图,有一张直角三角形纸片,两直角边AC=6,BC=8,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 等于()讲完知识点梳理后作做问题延伸题(举一反三):BE 的长?求折痕DE 的长?A. 425B. 322C. 47D. 35解:由题意得DB=AD ; 设CD=xcm ,则 AD=DB=(8-x )cm , ∵∠C=90°, ∴,解得x=,即CD=cm .故选C .2.如图所示,已知△ABC 中,∠C=90°,AB 的垂直平分线交BC•于M ,交AB 于N ,若AC=4,MB=2MC ,求AB 的长.解:连接AM∵MN 是AB 的垂直平分线,∴△AMN ≌△BMN ,∴MA = MB ,∠B = ∠BAM ∵MB = 2MC ,∴MA = 2MC ,∴∠CAM = 30°,即∠CMA = 60°∵∠CMA = ∠B + ∠BAM 且∠B = ∠BAM ,∴∠B = 30°,∴AB = 2AC = 16折叠矩形ABCD 的一边AD,点D 落在BC 边上的点F 处,已知AB=8CM,BC=10CM,求CF 和EC 。
八年级上册数学练习题

C第一章 勾股定理评估试卷(1)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长 (A )4 cm (B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.58. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ).(A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元10.如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ). (A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米. 12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题)15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,AD =5,则AC 等于______________.17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:EABCDBDE ABCD第18题图7cm“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。
(必考题)初中数学八年级数学上册第一单元《勾股定理》测试题(含答案解析)(2)

一、选择题1.如图,在22⨯的正方形网格中,每个小正方形边长为1,点A,B,C均为格点,以点A 为圆心,AB长为半径作弧,交格线于点D.则CD的长为()A.12B.13C.23-D.32.如图,在Rt△ABC中,∠BAC=90°,以Rt△ABC各边为斜边分别向外作等腰Rt△ADB、等腰Rt△AFC、等腰Rt△BEC,然后将等腰Rt△ADB和等腰Rt△AFC按如图方式叠放到等腰Rt△BEC中,其中BH=BA,CI=CA,已知,S四边形GKJE=1,S四边形KHCJ=8,则AC的长为()A.2 B.52C.4 D.63.如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有()A.1 条B.2条C.3条D.4条4.在下列四组数中,属于勾股数的是()A.0.3,0.4,0.5 B.9,40,41 C.2,3,4 D.123 5.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,AB的垂直平分线DE交BC的延长线于点E,则DE的长为()A .103B .256C .203D .1546.如图,在Rt △ABC 中,∠C =90°,AC =2,BC =1,在BA 上截取BD =BC ,再在AC 上截取AE =AD ,则AE AC的值为( )A .352 B .51- C .5﹣1 D .51+ 7.《九章算术》是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多6尺,门的对角线长10尺,那么门的高和宽各是多少?如果设门的宽为x 尺,根据题意可列方程( )A .222(6)10x x ++=B .222(6)10x x -+=C .222(6)10x x +-=D .222610x +=8.《九章算术》是我国古代最重要的数学著作之一,它的出现标志着中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》﹔“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长.则AC 的长为( )A .4.2尺B .4.3尺C .4.4尺D .4.5尺 9.一个直角三角形的两条边分别是9和40,则第三边的平方是( )A .1681B .1781C .1519或1681D .1519 10.如图,在33⨯的正方形网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,若BD 是ABC 的边AC 上的高,则BD 的长为( )A .52613B .102613C .13137D .7131311.在Rt △ABC 中,∠ACB =90°,AC =BC =1.点Q 在直线BC 上,且AQ =2,则线段BQ 的长为( )A .3B .5C .31+或31-D .51+或51- 12.勾股定理是人类最伟大的科学发现之一,在我国古代《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若图中阴影部分图形的面积为3,则较小两个正方形重叠部分图形的面积为( )A .2B .3C .5D .6二、填空题13.如图,在ABC 中,90,ACB AC BC ︒∠==,点M 为射线AE 上一点,连接CM ,点N 为三角形ABC 外右侧一点,连接CN ,连接NB 交射线AE 于点D ,已知,,15CN CM CN CM EAC ︒⊥=∠= ,6260,2ACM BD ︒+∠==,则线段DN 长为________.14.将一根24cm 的筷子,置于底面直径为5cm 、高为12cm 的圆柱体中,如图,设筷子露出在杯子外面长为h cm ,则h 的最小值__,h 的最大值__.15.如图,在ABC 中,90C =∠,AB 的中垂线DE 交AB 于E ,交BC 于D ,若5AB =,3AC =,则ACD △的周长为__________.16.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是_________17.如图,两个正方形的面积分别是118S =,212S =,则第三个正方形的面积3S =_________.18.若直角三角形的两直角边长为a 、b 21025a a -+b ﹣12|=0,则该直角三角形的斜边长为_____.19.现有两根木棒,长度分别为5dm 和12dm ,若要钉成一个直角三角形框架,那么所需的第三根木棒的长度可以是________dm .20.若一个直角三角形的两条直角边长分别是4和6,则斜边长为__________.三、解答题21.如图,在△ABC 中,∠ABC 的角平分线与外角∠ACD 的角平分线相交于点E . (1)设∠A =α,用含α的代数式表示∠E 的度数;(2)若EC ∥AB ,AC =4,求线段CE 的长;(3)在(2)的条件下,过点C 作∠ACB 的角平分线交BE 于点F ,若CF =3,求边AB 的长.22.如图,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9.求AB 的长.23.如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC=60°,∠DAE=45°,点D 到地面的垂直距离DE=32米.求点B 到地面的垂直距离BC .24.如图,在Rt △ABC 中,∠C =90°,AC =8,AB =10,AB 的垂直平分线分别交AB 、AC 于点D 、E .求AE 的长.25.如图,//,90AD BC A ∠=︒,E 是AB 上的点,且,12AD BE =∠=∠.(1)求证:ADE BEC ≌△△.(2)若30,3AED AE ∠=︒=,求线段CD 的长度.26.如图,已知Rt △ABC 中,∠C =90°,点D 是AC 上一点,点E 、点F 是BC 上的点,且∠CDF =∠CEA ,CF =CA .(1)如图1,若AE 平分∠BAC ,∠DFC =25°,求∠B 的度数;(2)如图2,若过点F 作FG ⊥AB 于点G ,连结GC ,求证:AG +GF =2GC .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由勾股定理求出DE ,即可得出CD 的长.【详解】解:连接AD ,如图所示:∵AD =AB =2,∴DE =2221-=3,∴CD =23-,故选:C .本题考查了勾股定理;由勾股定理求出DE是解决问题的关键.2.D解析:D【分析】设AD=DB=a,AF=CF=b,BE=CE=c,由勾股定理可求a2+b2=c2,由S四边形GHCE=S四边形GKJE+S四边形KHCJ=9,可求b=,即可求解.【详解】解:设AD=DB=a,AF=CF=b,BE=CE=c,∴AB=,AC=,BC=,∵∠BAC=90°,∴AB2+AC2=BC2,∴2a2+2b2=2c2,∴a2+b2=c2,∵将等腰Rt△ADB和等腰Rt△AFC按如图方式叠放到等腰Rt△BEC,∴BG=GH=a,∵S四边形GHCE=S四边形GKJE+S四边形KHCJ=9,∴1(a+c)(c﹣a)=9,2∴c2﹣a2=18,∴b2=18,∴b=∴AC==6,故选:D.【点睛】本题考查了勾股定理,折叠的性质,利用整体思想解决问题是本题的关键.3.B解析:B【分析】由勾股定理求出a、b、c、d,即可得出结果.【详解】∵=,=d=2,=5∴长度是无理数的线段有2条,故选B.【点睛】本题考查了勾股定理、无理数,熟练掌握勾股定理是解决问题的关键.4.B解析:B根据勾股数的定义:满足222+=a b c 的三个正整数,成为勾股数,据此可判断.【详解】A .0.3、0.4、0.5,不是正整数,所以不是勾股数,选项错误;B .9、40、41,是正整数,且满足22294041+=,是勾股数,选项正确;C .2、3、4,是正整数,但222234+≠,所以不是勾股数,选项正确;D .1、2、3,不是正整数,所以不是勾股数,选项错误;故选:B .【点睛】本题考查了勾股数的判定方法,解题关键是要看这组数是否为正整数,且满足最小两个数的平方和等于最大数的平法.5.C解析:C【分析】利用勾股定理求BC 的长度,连接AE ,然后设BE=AE=x ,结合勾股定理列方程求解.【详解】解:如图,∵Rt △ABC 中,∠ACB=90°,∴22221086BC AB AC =-=-=,∵DE 是AB 的垂直平分线,∴BD=12AB=5,∠EDB=90°,AE=BE 连接AE ,设AE=BE=x ,则CE=x-6在Rt △ACE 中,222(6)8x x -+=,解得:253x =∴BE=AE=253 在Rt △BDE 中,ED=22222520()533BE BD -=-=. 故选:C .【点睛】本题考查了勾股定理解直角三角形和线段垂直平分线的性质,掌握相关性质定理正确推理计算是解题关键.6.B解析:B【分析】先由勾股定理求出BD=BC=1,得1,即可得出结论.【详解】解:∵∠C=90°,AC=2,BC=1,∴==∵BD=BC=1,∴1-,∴AE AC =, 故选B .【点睛】本题考查了黄金分割以及勾股定理,熟练掌握黄金分割和勾股定理是解题的关键. 7.A解析:A【分析】设门的宽为x 尺,则高为(x+6)尺,根据勾股定理解答.【详解】设门的宽为x 尺,则高为(x+6)尺,根据题意可列方程222(6)10x x ++=,故选:A .【点睛】此题考查勾股定理计算,正确理解题意掌握勾股定理计算公式是解题的关键. 8.A解析:A【分析】设AC=x 尺,则AB=(10-x )尺,利用勾股定理解答.【详解】设AC=x 尺,则AB=(10-x )尺, ABC 中,90ACB ∠=︒,222AC BC AB +=,∴2224(10)x x +=-,解得:x=4.2,故选:A .【点睛】此题考查勾股定理,根据题意正确设未知数,利用勾股定理解答是解题的关键. 9.C解析:C【分析】由题意可分当第三边为直角边时和当第三边为斜边时,然后利用勾股定理进行求解即可.【详解】解:当第三边是直角边时,第三边的平方是402﹣92=1519;当第三边是斜边时,第三边的平方是402+92=1681;故选:C.【点睛】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键.10.D解析:D【分析】根据勾股定理计算AC的长,利用割补法可得△ABC的面积,由三角形的面积公式即可得到结论.【详解】解:由勾股定理得:AC=∵S△ABC=3×3−12×1×2−12×1×3−12×2×3=72,∴12AC•BD=72,∴=7,∴BD故选:D.【点睛】本题考查了勾股定理与三角形的面积的计算,掌握勾股定理是解题的关键.11.C解析:C【分析】分Q在CB延长线上和Q在BC延长线上两种情况分类讨论,求出CQ长,根据线段的和差关系即可求解.【详解】解:如图1,当Q在CB延长线上时,在Rt△ACQ中,CQ===∴1;如图2,当Q 在BC 延长线上时,在Rt △ACQ 中,2222213CQ AQ AC =-=-=,∴BQ=CQ+BC=31+;∴BQ 的长为31+或31-.故选:C【点睛】本题考查了勾股定理,根据题意画出图形,分类讨论是解题关键.12.B解析:B【分析】由图①结合勾股定理可得三个正方形面积之间的关系,在图②中,可知两个小正方形的面积与阴影部分面积之和减去大正方形的面积即可得到重叠部分的面积.【详解】设以直角三角形三边为边长的正方形面积分别为S 1,S 2,S 3,大小正方形重叠部分的面积为S ,则由勾股定理可得:S 1+S 2=S 3,在图②中,S 1+S 2+3-S=S 3,∴S=3,故选:B .【点睛】本题主要考查勾股定理与图形面积,灵活运用勾股定理处理图形面积之间的转化是解题关键.二、填空题13.【分析】根据题意可求证延长CM 交AB 与点G 过G 作GK 垂直于BC 于点K 根据角相等判断边相等AG=AM 列出方程求出AG 的长从而求出AM 的长从而求出BN 的长DN=BN-BD 即可求解【详解】∵∴∵CN=CM【分析】根据题意可求证ACM BCN ≅,延长CM 交AB 与点G ,过G 作GK 垂直于BC 于点K ,根据角相等判断边相等,AG=AM ,列出方程求出AG 的长,从而求出AM 的长,从而求出BN 的长,DN=BN-BD 即可求解.【详解】∵60ACM ︒∠=,90M B N A C C ︒=∠∠=,∴60ACM BCN ︒∠=∠=,∵AC BC =,CN=CM∴ACM BCN ≅,∴15CAM CBN ︒∠=∠=,延长CM 交AB 与点G ,过G 作GK 垂直于BC 于点K ,∵90,ACB AC BC ︒∠==,60ACM ︒∠=∴45ABC ︒∠=,45CAB ︒∠=,30GCB ∠=︒,∴60ABD ︒∠=,30BAD ︒∠=,75AGC ∠=︒,75AMG ∠=︒∴90ADB ︒∠=,AM=AG ,∵BD = ∴AB =∴12AC BC ===,设BK=a ,则GK=a ,CK =, ∴1a +=,∴a=1,∴1BK KG ==, ∴BG =∴AG =AM =∴6BN =, ∴622DN BN BD -=-=, 故答案为:62-.【点睛】本题主要考查的是三角形全等的性质及判定,正确做出辅助线,熟练掌握三角形全等的性质及判定是解答本题的关键.14.11cm12cm 【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h 最大当筷子与杯底及杯高构成直角三角形时h 最小利用勾股定理计算即可【详解】解:当筷子与杯底垂直时h 最大h 最大=24﹣12=12(cm解析:11cm 12cm【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h 最大,当筷子与杯底及杯高构成直角三角形时h 最小,利用勾股定理计算即可.【详解】解:当筷子与杯底垂直时h 最大,h 最大=24﹣12=12(cm ).当筷子与杯底及杯高构成直角三角形时h 最小,此时,在杯子内的长度22512+=13(cm ),故h =24﹣13=11(cm ).故h 的取值范围是11≤h ≤12cm .故答案为:11cm ;12cm .【点睛】此题考查勾股定理的实际应用,正确理解题意、掌握勾股定理的计算公式是解题的关键. 15.7【分析】先根据勾股定理求出BC 的长再由线段垂直平分线的性质得出AD=BD 即AD+CD=BC 再由AC=6即可求出答案【详解】解:∵△ABC 中∠C=90°AB=5AC=3∴BC==4∵DE 是线段AB 的解析:7【分析】先根据勾股定理求出BC的长,再由线段垂直平分线的性质得出AD=BD,即AD+CD=BC,再由AC=6即可求出答案.【详解】解:∵△ABC中,∠C=90°,AB=5,AC=3,∴BC=2222-=-=4,53AB AC∵DE是线段AB的垂直平分线,∴AD=BD,∴AD+CD=BD+CD,即AD+CD=BC,∴△ACD的周长=AC+CD+AD=AC+BC=3+4=7.故答案为:7.【点睛】本题考查了勾股定理及线段垂直平分线的性质,能根据线段垂直平分线的性质求出AD+CD=BC是解题的关键.16.2021【分析】根据勾股定理求出生长了1次后形成的图形中所有的正方形的面积和结合图形总结规律根据规律解答即可【详解】解:如图由题意得正方形A的面积为1由勾股定理得正方形B的面积+正方形C的面积=1∴解析:2021【分析】根据勾股定理求出“生长”了1次后形成的图形中所有的正方形的面积和,结合图形总结规律,根据规律解答即可.【详解】解:如图,由题意得,正方形A的面积为1,由勾股定理得,正方形B的面积+正方形C的面积=1,∴“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3,∴“生长”了3次后形成的图形中所有的正方形的面积和为4,……∴“生长”了2020次后形成的图形中所有的正方形的面积和为2021,故答案为:2021.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.6【分析】根据题意和图形可以得到AB2和AC2再根据△ABC是直角三角形和勾股定理可以得到BC2【详解】解:∵两个正方形的面积分别是S1=18S2=12∴AB2=18AC2=12∵△ABC是直角三角解析:6【分析】根据题意和图形,可以得到AB2和AC2,再根据△ABC是直角三角形和勾股定理,可以得到BC2.【详解】解:∵两个正方形的面积分别是S1=18,S2=12,∴AB2=18,AC2=12,∵△ABC是直角三角形,∴BC2=AB2-AC2=18-12=6,故答案为:6.【点睛】本题考查了正方形的性质,解题的关键是明确题意,利用数形结合的思想解答.18.13【分析】根据非负数的性质得到ab的值然后结合勾股定理求得斜边的长度即可【详解】解:∵∴∴|a﹣5|+|b﹣12|=0∴a=5b=12∴该直角三角形的斜边长为:故答案是:13【点睛】本题考查了勾股解析:13【分析】根据非负数的性质得到a、b的值,然后结合勾股定理求得斜边的长度即可.【详解】解:∵|12|0b-=,∴|12|0b-=∴|a﹣5|+|b﹣12|=0,∴a=5,b=12,∴13=.故答案是:13.【点睛】本题考查了勾股定理,非负数的性质﹣绝对值、算术平方根.任意一个数的绝对值(二次根式)都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.19.13或【分析】分情况讨论当的木棒为直角边时以及当的木棒为斜边时利用勾股定理解答即可【详解】解:当的木棒为直角边时第三根木棒的长度为;当的木棒为斜边时第三根木棒的长度为;故答案为:13或【点睛】本题考解析:13【分析】分情况讨论当12dm的木棒为直角边时以及当12dm的木棒为斜边时,利用勾股定理解答即可.【详解】解:当12dm13dm;当12dm=;故答案为:13【点睛】本题考查勾股定理的应用,分情况讨论是解题的关键.20.【分析】直接根据勾股定理求解可得【详解】解:∵直角三角形的两条直角边长分别是4和6∴斜边长为故答案为:【点睛】本题考查勾股定理在任何一个直角三角形中两条直角边长的平方之和一定等于斜边长的平方即如果直解析:【分析】直接根据勾股定理求解可得.【详解】解:∵直角三角形的两条直角边长分别是4和6,∴故答案为:【点睛】本题考查勾股定理,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.三、解答题21.(1)12α;(2)4;(3)5625【分析】(1)设∠ABE=∠CBE=x,∠ACE=∠ECD=y,利用三角形的外角的性质,构建方程组求解即可.(2)证明CA=CB=CE,可得结论.(3)如图,连接AF,过点C作CT⊥BE于T.解直角三角形求出EF,BE,BF,再利用相似三角形的性质求解即可.【详解】解:(1)设∠ABE=∠CBE=x,∠ACE=∠ECD=y,则有22y x Ay x E=+∠⎧⎨=+∠⎩,可得∠E =12∠A =12α. (2)∵EC ∥AB ,∴∠ABE =∠E ,∵∠ABC =2∠ABE ,∠A =2∠E ,∴∠A =∠ABC ,∠E =∠CBE ,∴CA =CB =4,CE =CB =4.(3)如图,连接AF ,过点C 作CT ⊥BE 于T ,延长CF 交AB 于R .∵CF 平分∠ACB ,CE 平分∠ACD ,∴∠FCE =12(∠ACB +∠ACD )=90°, ∵CF =3,CE =4,∴EF5,∵S △CEF =12•EC•CF =12•EF•CT , ∴CT =125, 在Rt △BCT 中,BT=165, ∵CB =CE ,CT ⊥BE ,∴BT =TE ,∴BE =2BT =325, ∴BF =BE ﹣EF =325﹣5=75, ∵CA =CB ,CF 平分∠ACB ,∴CR ⊥AB ,BR =AR ,设BR =x ,RF =y , 则有2222227()5(3)4x y x y ⎧+=⎪⎨⎪++=⎩, 解得2825215x y ⎧=⎪⎪⎨⎪=⎪⎩(不符合题意的解已经舍弃). ∴AB =2BR =5625.【点睛】本题考查三角形的外角的性质,平行线的性质,勾股定理解直角三角形等知识,解题的关键是学会利用参数构建方程组解决问题,题目有一定的难度.22.【分析】由题意可知三角形CDB是直角三角形,利用已知数据和勾股定理直接可求出DC的长,再利用勾股定理求出AD的长,进而求出AB的长.【详解】∵CD⊥AB于D,且BC=15,BD=9,AC=20∴∠CDA=∠CDB=90°在Rt△CDB中,CD2+BD2=CB2,∴CD2+92=152∴CD=12;在Rt△CDA中,CD2+AD2=AC2∴122+AD2=202∴AD=16,∴AB=AD+BD=16+9=25.23.33【分析】在Rt△ADE中,运用勾股定理可求出梯子的总长度,在Rt△ABC中,根据已知条件再次运用勾股定理可求出BC的长.【详解】解:在Rt△DAE中,∵∠DAE=45°,∴∠ADE=∠DAE=45°,2.∴AD2=AE2+DE2=(2)2+(2)2=36,∴AD=6,即梯子的总长为6米.∴AB=AD=6.在Rt△ABC中,∵∠BAC=60°,∴∠ABC=30°,∴AC=1AB=3,2∴BC2=AB2-AC2=62-32=27,∴BC=27=33m,∴点B到地面的垂直距离BC=33m.【点睛】本题考查了勾股定理的应用,如何从实际问题中整理出直角三角形并正确运用勾股定理是解决此类题目的关键.24.25 4【分析】连接BE,先利用勾股定理求出BC的长,根据线段垂直平分线的性质可得AE=BE,然后设AE=BE=x,再由勾股定理可得方程(8−x)2+62=x2,求解后即可得出答案.【详解】解:连接BE,在Rt△ABC中,∵∠C=90°,AC=8,AB=10,∴AC2+BC2=AB2.即82+BC2=102,解得:BC=6.∵DE是AB的垂直平分线,∴AE=BE.设AE=BE=x,则EC=8−x,∵Rt△BCE中,EC2+BC2=BE2,∴(8−x)2+62=x2,解得:x=254,∴AE=254.【点睛】此题考查了线段垂直平分线的性质以及勾股定理,掌握线段垂直平分线的性质并结合勾股定理求解线段的长度是解题的关键,且要注意数形结合思想应用.25.(1)证明见详解;(2)26【分析】(1)根据已知可得到∠A =∠B =90°,DE =CE ,AD =BE 从而利用HL 判定两三角形全等; (2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC =90°,由30,3AED AE ∠=︒=,可求得AD 、DE 的长,再利用勾股定理求得CD 的长即可.【详解】(1)∵AD ∥BC ,∠A =90°,∴∠A =∠B =90°,∵∠1=∠2,∴DE =CE .∵AD =BE ,在Rt △ADE 与Rt △BEC 中AD BE DE CE =⎧⎨=⎩, ∴Rt △ADE ≌Rt △BEC (HL )(2)由△ADE ≌△BEC 得∠AED =∠BCE ,AD =BE .DE=CE ,∴∠AED +∠BEC =∠BCE +∠BEC =90°.∴∠DEC =90°.在Rt △ADE 中又∵30,3AED AE ∠=︒=设AD =x ,则DE =2x,由勾股定理222AD AE DE +=,即2294x x +=解得x =∴在Rt △CDE 中由勾股定理,DC 2=DE 2+CE 2∴CD【点睛】本题主要考查全等三角形的判定与性质的运用,熟练掌握等三角形的判定与性质的运用是解题关键.26.(1)∠B=40°;(2)见解析.【分析】(1)先利用SAS 证明△AEC ≌△FDC ,得出∠EAC=∠DFC=25°,从而得出∠BAC=50°,再根据直角三角形的两个锐角互余即可得出结论(2)过点C 作GC 的垂线交GF 的延长线于点P ,根据同角的余角得出∠PCF =∠GCA ,再根据ASA 得出△AGC ≌△FPC ,从而得出△GCP 是等腰直角三角形,即可得出答案【详解】(1)在△AEC 和△FDC 中,∵∠CDF=∠CEA CE=CD ∠C=∠C,∴△AEC≌△FDC,∴∠EAC=∠DFC=25°∵AE平分∠BAC,∴∠BAC=2∠EAC=50°∵∠C=90°,∴在Rt△ABC中,∠B=90°-∠BAC=40°.(2)如答图,过点C作GC的垂线交GF的延长线于点P∴∠GCP = 90°∴∠GCF+∠PCF = 90°,∵∠ACB = 90°∴∠GCF+∠GCA = 90°,∴∠PCF =∠GCA.∵∠ACB=90°,GF⊥AB∴∠B+∠BAC=∠B+∠BFG= 90°,∴∠BAC=∠BFG.又∵∠PFC=∠BFG∴∠GAC=∠PFC.由(1)知,△AEC≌△FDC,∴CA=CF,∴△AGC≌△FPC,∴GC=PC,AG=FP.又∵PC⊥GC,∴△GCP是等腰直角三角形,∴GF+2GC,∴AG+2GC【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质、勾股定理等知识,正确作出辅助线构造全等三角形是解题的关键.。
八年级数学上册(第一章 勾股定理)专题练习 试题

轧东卡州北占业市传业学校<第一章勾股定理>专题练习〔一〕双解问题例1 一个三角形的两边长是5和12,要使其成为一个直角三角形,那么第三边长应为多少?变式:1.小强家有一块三角形菜地,量得两边长分别为41m,15m,第三边上的高为9m,请你帮小强计算这块菜地的面积.2.在△ABC中,AB=15,AC=13,高CD=12,求三角形的周长.〔二〕折叠问题中利用勾股定理建立方程例2 如图,在长方形ABCD中,AD=10cm,AB=8cm,E是CD上一点,假设以AE为折痕,将△ADE翻折,点D 恰与BC边上的点F重合,求△AEF的面积.变式:1.如图,在△ABC中,AB=3,AC=4,BC=5,现将它折叠,使点B与点C重合,折痕DE的长为.2.长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合,折痕为EF,那么DE= cm.2题 3题3.如下列图,在长方形纸片ABCD中,AB=3,BC=4,现将顶点A、C重合,使纸片折叠压平,设折痕为EF,那么重垒局部△AEF的面积为.例3 把图一的矩形纸片ABCD折叠,B,C两点愉好重合落在AD边上的点P处〔如图二〕,∠MPN=90°,PM=3,PN=4,〔1〕求△PMN的周长;〔2〕求矩形纸片ABCD的面积.变式:如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5,在矩形ABCD的边AB上取一点M,在CD上取一点N ,将纸片沿MN 折叠,使MB 与DN 交于点K ,得到△MNK.〔1〕假设∠1=70°,求∠MKN 的度数.〔2〕△MNK 的面积能否小于12?假设能,求出此时∠1的度数;假设不能,试说明理由. 〔三〕勾股定理逆定理的应用例4 在△ABC 中,a=22mn -,b=2mn ,c=22m n +,其中m, n 是正整数,且m>n ,试判断△ABC 是不是直角三角形.变式:1.以下各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a、4a 、5a 〔a>0〕; ⑤m 2-n 2、2mn 、m 2+n 2〔m 、n 为正整数,且m>n 〕其中可以构成直角三角形的有〔 〕 A .5组 B .4组 C .3组 D .2组2. 设一个直角三角形两直角边分别为a 、b ,斜边上的高为h ,斜边长为c ,那么以c h +、a b +、h为边的三角形的形状是 三角形.3.四边形ABCD 中,∠C=90°,AB=4,BC=3,CD=12,AD=13,求四边形ABCD 的面积〔四〕勾股定理及逆定理与图形面积的整体计算例5 直角三角形的周长为92,斜边长为2,求它的面积. 变式:1.如图,△ABC 中,AB=AC ,AD=4,AD 为高,△ABC 的周长为16,S △ABC = .2.假设三角形的三边a 、b 、c 满足a +b =10,ab =18,c =8,那么此三角形是三角形.3..如图,△ABC 中,∠B=90°,两直角边AB=7,BC=24,三角形内有一点P到各边的距离相等,那么这个距离是〔 〕A. 1B. 3C. 4D. 5(五)勾股定理及逆定理的综合应用例6 如下列图,一根旗杆在离地面5米处断裂,旗杆顶部落承离杆底12米的A处,旗杆断裂前有多高?变式:现有一长25cm的云梯,架靠在一面墙上,梯子底端离墙7m,那么梯子可以到达墙的高度为m,假设梯子顶端下滑了4m,那么梯子底部在水平方向滑动了m.例7 如下列图,一圆柱油罐底面积的周长为24m,高为6m,一只壁虎从距底面1m的A处爬行到对角B处去捕食,它爬行的最短路线长为多少?例8 如下列图,高速公路的同侧有A、B两个村庄,它们到高速公路所在直线MN的距离分别为AA1=2km,BB1=4km,且A1B1=8km.现在在高速公路的A1B1之间设一个出口P,使A、B两个村庄到P的距离之和最短,那么这个最短距离是多少?变式:1. 如图,长方体的长为15 cm,宽为10 cm,高为20 cm,点B离点C 5 cm,一只蚂蚁如果要沿着长方体的外表从点A爬到点B,需要爬行的最短距离是多少?2.公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所,AP=160米,假设拖拉机在行驶时,周围100米内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行使时,是否会受到影响?请说明理由,如果受到影响,拖拉机的速度是18千米/小时,那么受影响的时间为多少?例9 如图,四边形ABCD、EFGH、NHMC都是正方形,边长分别为1,2,c;A,B,N,E,F五点在同一直线上,正方形NHMC的面积=变式:如图,四边形ABCD,EFGH,NHMC都是正方形,边长分别为a、b、c,A、B、N、E、F五点在同一直线上,那么c= 〔用含有a,b的代数式表示〕.例10 某公司的大门如下列图,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.8m,宽为1.6m,问这辆车能否通过公司大门?并说明你的理由.变式:,如图△ABC中,∠C=90°,M为AB中点,∠PMQ=90°,求证PQ2=AP2+BQ2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学第一章《勾股定理》练习题一.选择题(12³3′=36′)1.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或252.下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( ) A 、a=1.5,b=2,c=3 B 、a=7,b=24,c=25C 、a=6,b=8,c=10D 、a=3,b=4,c=5 3.若线段a ,b ,c 组成Rt △,则它们的比为( ) A 、2∶3∶4 B 、3∶4∶6 C 、5∶12∶13 D 、4∶6∶74.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( ) A 、121 B 、120 C 、132 D 、不能确定5.如果Rt △两直角边的比为5∶12,则斜边上的高与斜边的比为( ) A 、60∶13 B 、5∶12 C 、12∶13 D 、60∶169 6.如果Rt △的两直角边长分别为n 2-1,2n (n>1),那么它的斜边长是( )A 、2nB 、n+1C 、n 2-1 D 、n 2+17.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、24cm 2 B 、36cm 2 C 、48cm 2 D 、60cm 28.等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A 、56 B 、48 C 、40 D 、32 9.三角形的三边长为(a+b )2=c 2+2ab,则这个三角形是( )A. 等边三角形;B. 钝角三角形;C. 直角三角形;D. 锐角三角形.10.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ) A 、450a 元 B 、225a 元 C 、150a 元 D 、300a 元11.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A 、6cm 2B 、8cm 2C 、10cm 2D 、12cm 212.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A 、25海里 B 、30海里 C 、35海里 D 、40海里 二.填空题(8³3′=24′)13.在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则S Rt△ABC =________。
14.在由小方格组成的网格中,用数格子的方法判断出给定的钝角三角形和锐角三角形的三边不满足两边平方和等于第三边的平方,由此可想到________________________________________________。
15.直角三角形两直角边长分别为5和12,则它斜边上的高为__________。
16.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。
17.已知两条线段的长为5c m 和12c m,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形.18.已知:如图,△ABC 中,∠C = 90°,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且BC = 8cm ,CA = 6cm ,则点O 到三边AB ,AC 和BC 的距离分别等于 cm19.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
150°20m 30m第10题图 第11题图北 南 A 东第12题图 C20.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。
另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_________________________米。
三.解答题(共60分) 21.(7分)小明的叔叔家承包了一个矩形鱼池,已知其面积为48m 2,其对角线长为10m ,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗? 22.(7分)如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?23.(7分)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度 24.(7分)已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°,求四边形ABCD 的面积。
25.(8分)已知,如图,在Rt △ABC 中,∠C=90°,∠1=∠2,CD=1.5,BD=2.5,求AC 的长.26.(8分)如图,在边长为c 的正方形中,有四个斜边为c 的全等直角三角形,已知其直角边长为a ,b.利用这个图试说明勾股定理?27.(8分)已知,△ABC 中,AB=17cm ,BC=16cm ,BC 边上的中线AD=15cm ,试说明△ABC 是等腰三角形。
A BCD 第24题图 A DE B C 第22题图C D A B第25题图第26题图28.(8分)如图,在△ABC 中,AB=AC ,P 为BC 上任意一点,请用学过的知识说明:AB 2-AP 2=PB ³PC 。
分式方程应用题1、块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000Kg 和15000Kg,已知第一块试验田的每公顷的产量比第二块少3000Kg,分别求这块试验田每公顷的产量。
2、从甲地到乙地有两条公路:一条是全长600Km 的普通公路,另一条是全长480Km 的告诉公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
3、从甲地到乙地的路程是15千米,A 骑自行车从甲地到乙地先走,40分钟后,B 骑自行车从甲地出发,结果同时到达。
已知B 的速度是A 的速度的3倍,求两车的速度。
4、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?5、A 做90个零件所需要的时间和B 做120个零件所用的时间相同,又知每小时A 、B 两人共做35个机器零件。
求A 、B 每小时各做多少个零件。
6、某工厂去年赢利25万元,按计划这笔赢利额应是去、今两年赢利总额的20%,今年的赢利额应是多少?7、某农场原有水田400公顷,旱田150公顷,为了提高单位面积产量,准备把部分旱田改为水田,改完之后,要求旱田占水田的10%,问应把多少公顷旱田改为水田。
8、我部队到某桥头阻击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。
9、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
A B P C第28题图10、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。
求先遣队和大队的速度各是多少?11、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
12、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
13、某商品的标价比成本高p%,当该商品降价出售,为了不亏本,降价幅度不得超过d%,请用p表示d。
14、某人沿一条河顺流游泳l米,然后逆流游回出发点,设此人在静水中的游泳速度为xm/s,水流速度为nm/s,求他来回一趟所需的时间t。
(1)小芳在一条水流速度是0.01m/s的河中游泳,她在静水中游泳的速度是0.39m/s,而出发点与河边一艘固定小艇间的距离是60m,求她从出发点到小艇来回一趟所需的时间。
(2)志勇是小芳的邻居,也喜欢在该河中游泳,他记得有一次出发点与柳树间来回一趟大约用了2.5min,假设当时水流的速度是0.015m/s,而志勇在静水中的游泳速度是0.585m/s,那么出发点与柳树间的距离大约是多少?15、某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共赢利多少元。
16、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。
小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,(1)这个八年级的学生总数在什么范围内?(2)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?17、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。
已知第一次捐款总额为4800元,第二次捐款为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额相等,如果设第一次捐款人数X人,那么X应满足怎样的方程?18、一个正多边形的每个内角都是172度,求它的边数N应满足的分式方程。
19、退耕还林还草是我国西部地区实施的一项重要生态工程,某地规划退耕面积69000公顷,退耕还林与退耕还草的面积比是5:3,设退耕还林的面积是X公顷,那么应满足的分式方程是什么?20、某运输公司需要装运一批货物,由于机械设备没有到位,只好先用人工装运,6小时后完成一半,后来机械装运和人工同时进行,1小时完成了后一半,如果设单独采用机械装运X小时可以完成后一半任务,那么应满足的方程是什么?21、某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?22、某质检部门抽取甲、乙两厂相同数量的产品进行质量检查,结果甲厂有48件合格产品,乙厂有45件合格产品,甲厂的合格率乙厂高5%,求甲厂的合格率?23、某单位将沿街的一部分房屋出租,每年房屋的租金第二年比第一年要多500元,所有房屋的租金第一年为9。