25.2.2用树状图法求概率
九年级数学上册 25.2.2 用列举法求概率(树状图)教案 新人教版(2021-2022学年)

知识与
技能
能通过树状图法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果.
过程与
方法
通过自主探究,合作交流的过ห้องสมุดไป่ตู้,感悟数形结合的思想,提高思维的条理性,提高分析问题和解决问题的能力。
通过画树状图求概率的过程提高学习兴趣,感受数学的简捷美,以及数学应用的广泛性。
ﻬ
情感态度与价值观
1。用列举法求概率的基本步骤是什么?
2。列举一次试验的所有可能结果时,学过哪些方法?
3。同时抛掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是多少?
4。随机掷一枚均匀的硬币两次,一枚硬币正面向上,一枚硬币反面向上的概率是多少?
抢答题:
小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形。游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色。问:游戏者获胜的概率是多少?
四、巩固提高,完善新知
1。抛掷三枚质地均匀的硬币,三枚正面朝上的概率是多少?为什么?
2。将分别标有数字1,2,3的三张质地、规格和背面均相同的卡片洗匀后,背面朝上放在桌子上。随机地抽取一张作为十位数字,不放回,再抽取一张作为个位数字,试用树状图探究:组成的两位数恰好是偶数的概率为多少?
3.箱子中装有3个只有颜色不同的球,其中2个是白球、1个是红球,3个人依次从箱子中任意摸出1个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是多少?
25。2.2用列举法求概率
课标依据
能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果。
25.2第2课时画树状图法求概率

第一个因素
A
B
第二个因素 1
2
3
1
2
3
第三个因素 a b a b a b a b a b a b 树状图法:按事件发生的次序,列出事件可能出现的结果.
所有可能出现的情况 n=2×3×2=12
一、利用画树状图法求概率
引例示范 同时掷三枚质地均匀的硬币,求恰有两枚正面向上的概率?
解:根据题意,可画树状图得: 开始
第一枚
正
反
第二枚
正
反
正
反
第三枚 正 反 正 反 正 反 正 反
由上图可知,共有8种等可能的情况, 其中恰有两枚正面向上的情况有 3 种。 ∴P(两枚正面向上)=38
一、利用画树状图法求概率
方法归纳
画树状图求概率的基本步骤
(1)明确一次试验的几个步骤及顺序; (2)画树状图列举一次试验的所有可能结果; (3)数出试验的所有可能结果数n,随机事件A包含的结果数m; (4)用概率公式进行计算。
拓展训练
有两把不同的锁和三把钥匙,其中两把钥匙恰好能分别打开这两把锁,第三
把钥匙不能打开这两把锁。任意取一把钥匙去开任意一把锁,一次打开锁的
概率是多少?
解: 设有A,B两把锁和a,b,c三把钥匙,其中钥匙a,b分别可以打开锁A,B。
列出所有可能的结果如下:
开始
由树状图可知,共有6种等可能的情况,
锁
B. 1
C. 1
D. 3
4
3
2
4
课堂检测
4. 某班要派出一对男女混合双打选手参加学校的乒乓球比赛,准备在小娟、 小敏、小华三名女选手和小明、小强两名男选手中选男、女选手各一名组成 一对参赛,一共能够组成 6 对;采用随机抽签的办法,恰好选出小敏和
25.2.2 用树状图求概率(课后练)-初中数学人教版九年级上册课前课中课后同步试题精编

故答案为: .
【点睛】
本题考查了列表法与树状图法以及概率公式,正确画出树状图是解题的关键.
(2)请将条形统计图补充完整;
(3)学校从获得满分的四位同学甲、乙、丙、丁中选2名同学参加全市现场党史知识竞赛,选取规则如下:在一个不透明的口袋中,装有4个大小质地均相同的小球,分别标有数字1、2、3、4.从中摸出两个小球,若两个数字之和为奇数,则选甲乙;若两个数字之和为偶数,则选丙丁,请用树状图或列表法说明此规则是否合理.
(1)这次共抽取了_________名家长进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是_________.
(2)将条形统计图补充完整;
(3)该学校共有2000名学生家长,估计该学校家长表示“支持”的(A类,B类的和)人数大约有多少人?
(4)D类不支持的家长中有两人是女性,一人是男性,现从这三个人中抽取两人,用树状图或者列表的方式求抽取的两人都是女性的概率.
(1)七年一班从3张卡片中随机抽取1张,抽到C卡片的概率为;
(2)七年一班从3张卡片中随机抽取1张,记下曲目后放回洗匀,七年二班再从中随机抽取1张,请用列表或画树状图的方法,求这两个班级恰好抽到同一首歌曲的概率.
8.不透明的口袋里装有红、黄两种颜色的小球(除颜色不同外,其它都相同),其中红球2个,现在从中任意摸出一个球,摸到黄球的概率为 .
参考答案
1.3
【分析】
分别假设放入的红球个数为1、2和3,画树状图列出此时所有等可能结果,从中找到摸出一红一黄和两个红球的结果数,从而验证红球的个数是否符合题意.
【详解】
解:(1)假设袋中红球个数为1,
此时袋中由1个黄球、1个红球,
搅匀后从中任意摸出两个球,P(摸出一红一黄)=1,P(摸出两红)=0,不符合题意.
人教版九年级数学上典中点课后作业25.2.2用树状图法求概率(A)(含答案)

25.2 用列举法求概率第2 课时用树状图法求概率课后作业:方案(A)一、教材题目:P140 T4、T64.一只蚂蚁在如图所示的树枝上寻觅实物,假定蚂蚁在每个岔路口都随机选择一条路径,它获得食物的概率是多少?6.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是多少?二、补充题目:部分题目来源于《典中点》10.(2016·贵阳模拟)体育课上,小明、小强、小华三人在学习训练踢足球,足球从一人传到另一人就记为踢一次.(1)如果从小强开始踢,经过两次踢后,足球踢到了小华处的概率是多少?(用树状图表示或列表说明)(2)如果踢三次后,足球踢到了小明处的可能性最小,应从谁开始踢?请说明理由.12.(2015·兰州)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?答案一、教材4.解:用树状图表示蚂蚁的路径,如图所示,其中 “○”表示没有食物,“△”表示有食物.所以P(蚂蚁获得食物)=26=13.(第4题)点拨:本题树杈的分支虽然不同,但蚂蚁选择任何一条路径的可能性都是相等的. (1)P(2个球都是黄球)=16;(2)P(2个球中1个是白球、1个是黄球)=36=12.6.解:三只雏鸟的雌雄情况用如图所示的树状图表示:(第6题)由图可知,共有8种可能的结果,其中恰有2只是雄鸟的结果有3种,所以P(恰有2只雄鸟)=38.点拨:每只雏鸟为雌雄的概率相同. 二、典中点10.解:(1)如图:(第10题(1))∴P(足球踢到小华处)=14(2)应从小明开始踢. 如图:(第10题(2))若从小明开始踢,P(踢到小明处)=28=14,若从小强开始踢,P(踢到小明处)=38,若从小华开始踢,P(踢到小明处)=38,故应从小明开始踢.12.解:(1)根据题意画出树状图如下:(第12题)(2)由(1)可知三次传球后,球回到甲脚下的概率为28=14.(3)由(1)可知球回到甲脚下的概率为14,传到乙脚下的概率为38,所以球传到乙脚下的概率大。
25.2.2+用画树状图求概率课件2024-2025学年人教版数学九年级上册

25.2.2 用画树状图求概率 (2)根据题意,列表如下:
由表格可知,共有12种等可能的结果,甲、丁同学都被选为宣传员
的结果有2种,
∴P(甲、丁同学都被选为宣传员)=
2 12
1 6
.
25.2.2 用画树状图求概率
一题多解 根据题意,画树状图如解图: 由树状图可得,共有12种等可能的结果,甲、丁同学都被选为宣传员 的结果有2种, ∴P(甲、丁同学都被选为宣传员)= 2 1
(2)这个游戏不公平.理由如下:画树状图如图,由树状图可知,共有 16种等可能的结果,其中
两数之积为偶数的结果有12种,两数之积为
奇 ∴P数(小的明结胜果)=有412种,3,P(小亮胜)= 4 1
16 4
16 4
∵ 31
44
∴这个游戏不公平
25.2.2 用画树状图求概率
课堂小结
步骤
①确定每一步有几种结果 ②在树状图下面对应写出所有可能的结果 ③利用概率公式进行计算
12 6
25.2.2 用画树状图求概率
4.如图,可以自由转动的转盘被4等分, 指针落在每个扇形内的机会 均等.
(1)若转动转盘一次,求转出的数字是
1
2的概率为____4____;(2)小明、小亮利用这个转盘做游戏.若采用下 列游戏规则,你认为这个游戏公平吗?请利用画树状图或列表的方法 说明理由.
25.2.2 用画树状图求概率
25.2.2 用画树状图求概率
甲
A
B
乙
CDE
CD E
丙 结果:
HIH I H I
A AA A A A C CD D E E HI HI H I
H I HIHI
B B BB B B C C DD E E H I HI H I
人教版九年级数学上册第25章25.2.2 用树状图法求概率 同步练习题(含答案,教师版)

人教版九年级数学上册第25章25.2.2 用树状图法求概率同步练习题一、选择题1.有3张纸牌,分别是红桃2,红桃3,黑桃A,把纸牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张,则两人抽的纸牌均为红桃的概率是(A)A.49B.59C.13D.232.一个不透明的盒子里装有除颜色外其他都相同的四个球,其中1个白球、1个黑球、2个红球,搅匀后随机从盒子中摸出两个球,则摸出两个红球的概率是(C)A.12B.14C.16D.193.衣橱中挂着3套不同颜色的服装,同一套服装的上衣与裤子的颜色相同.若从衣橱里各任取一件上衣和一条裤子,则它们取自同一套的概率是(D)A.127B.19C.16D.134.小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是(D)A.127B.13C.19D.295.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为(D)A.23B.12C.13D.146.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为(C)A.15B.25C.35D.457.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率为(A)图1 图2A.23B.12C.13D .1 8.从1,2,3,4四个数中随机选取两个不同的数,分别记为a ,c ,则关于x 的一元二次方程ax 2+4x +c =0有实数解的概率为(C)A.14B.13C.12D.23二、填空题9.甲口袋装有2个相同的小球,分别写有字母a 和b ;乙口袋中装有3个相同的小球,分别写有字母c ,d 和e.从两个口袋中各随机取出一个小球,恰好是一个元音和一个辅音字母的概率是12.(字母a 和e 是元音,字母b ,c 和d 是辅音) 10.从甲、乙2名医生和丙、丁2名护士中任意抽取2人参加医疗队,那么抽取的2人恰好是一名医生和一名护士的概率为23. 11.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为23. 12.有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其他都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为415. 三、解答题 13.经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用画树状图法,求两人之中至少有一人直行的概率.解:画树状图如下:由树状图可知所有等可能的结果有9种,其中两人之中至少有一人直行的结果有5种,所以P(两人之中至少有一人直行)=59. 14.某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样:A :菜包,B :面包,C :鸡蛋,D :油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是不可能事件(填“随机”“必然”或“不可能”);(2)请用画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.解:画树状图如下:由树状图知共有12种等可能的情况,其中早餐刚好得到菜包和油条的情况有2种,所以P(某顾客该天早餐刚好得到菜包和油条)=212=16. 15.现有A ,B ,C 三个不透明的盒子,A 盒中装有红球、黄球、蓝球各1个,B 盒中装有红球、黄球各1个,C 盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A ,B ,C 三个盒子中任意摸出一个球.(1)从A 盒中摸出红球的概率为13; (2)用画树状图的方法,求摸出的三个球中至少有一个红球的概率. 解:画树状图如图所示:共有12种等可能的结果,摸出的三个球中至少有一个红球的结果有10种,∴摸出的三个球中至少有一个红球的概率为1012=56. 16.小颖参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道题有3个选项,第二道题有4个选项,这两道题小颖都不会,不过小颖还有一个“求助”没有使用(使用“求助”可让主持人去掉其中一题中的一个错误选项).(1)若小颖第一道题不使用“求助”,则小颖答对第一道题的概率是13; (2)若小颖将“求助”留在第二道题使用,求小颖顺利通关的概率;(3)从概率的角度分析,你会建议小颖在答第几道题时使用“求助”?解:(2)画树状图如下:(用Z 表示正确选项,C 表示错误选项)第一题:第二题:由树状图可知,共有9种等可能的结果,其中小颖顺利通关的结果有1种,∴小颖将“求助”留在第二道题使用时,P(小颖顺利通关)=19. (3)若小颖将“求助”在第一道题使用,画树状图如下:(用Z 表示正确选项,C 表示错误选项)第一题:第二题:由树状图可知,共有8种等可能的结果,其中小颖顺利通关的结果有1种,∴小颖将“求助”在第一道题使用时,P(小颖顺利通关)=18. ∵18>19, ∴建议小颖在答第一道题时使用“求助”.。
大赛课-用画树状图法求概率(教学设计)

§25.2.2用画树状图法求概率【知识与技能】理解并掌握列表法和树状图法求随机事件的概率.并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.【过程与方法】经历用列表法或树状图法求概率的学习,使学生明白在不同情境中分析事件发生的多种可能性,计算其发生的概率,解决实际问题,培养学生分析问题和解决问题的能力.【情感态度】通过求概率的数学活动,体验不同的数学问题采用不同的数学方法,但各种方法之间存在一定的内在联系,体会数学在现实生活中应用价值,培养缜密的思维习惯和良好的学习习惯.【教学重点】会用列表法和树状图法求随机事件的概率.区分什么时候用列表法,什么时候用树状图法求概率.【教学难点】列表法是如何列表,树状图的画法.列表法和树状图的选取方法.一、情境导入看图片知拍7娃娃机游戏规则,这与我们今天学习的游戏规则有关【教学说明】情境激趣,在最短时间内激起学生的求知欲和探索的欲望.把游戏规则简单化,变成一道数学问题有两排指示灯,按下启动键,随机选中第一排的一个数字,接着再按一次启动键选中第二排的一个数字,请问两排选中的指示灯数字相加和是4的概率是多少?【教学说明】由情景引入,带领学生复习列表法求概率的方法和适用条件,由此引出树状图法二、思考探究,获取新知当一次试验要涉及3个(因素或步骤)或更多的(因素或步骤)时,列表就不方便了,为不重不漏地列出所有可能的结果,通常采用树状图法.三、例题讲解课本第138页例3.甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C.D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I,从3个口袋中各随机地取出1个小球.(1)取出的3个小球上,恰好有1个,2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?分析:分步画图和分类排列相关的结论是解题的关键.弄清题意后,先让学生思考,从3个口袋中每次各随机地取出1个球,共取出3个球,就是说每一次试验涉及到3个步骤,这样的取法共有多少种呢?你打算用什么方法求得?介绍树状图的方法:第一步:可能产生的结果为A和B,两者出现的可能性相同且不分先后,写在第一行.第二步:可能产生的结果有C、D和E,三者出现可能性相同且不分先后,从A和B分别画出三个分支,在分支下的第二行分别写上C、D、E.第三步:可能产生的结果有两个,H和I.两者出现的可能性相同且不分先后,从C、D和E分别画出两个分支,在分支下的第三行分别写上H和I.(如果有更多的步骤可依上继续.)第四步:把各种可能的结果对应竖写在下面,就得到了所有可能的结果的总数,从中再找出符合要求的个数,就可以计算概率了.“树状图”如下:由树状图可以看出,所有可能的结果共有12种,即:ACH、ACI、ADH、ADI、AEH、AEI、BCH、BCI、BDH、BDI、BEH、BEI,这些结果出现的可能性相等.P(一个元音)=5/12;P(两个元音)=4/12=1/3,P(三个元音)=1/12;P(三个辅音)=2/12=1/6.【教学说明】教师引导:元素多,怎样才能解出所有结果的可能性?引出树状图,详细讲解树状图各步的操作方法,学生尝试按步骤画树状图.学生结合列表法,理解分析,体会树状图的用法,体验树状图的优势.【归纳结论】画树状图求概率的基本步骤:①明确试验的几个步骤及顺序.②画树状图列举试验的所有等可能的结果.③计数得出m,n的值.④计算随机事件的概率.思考什么时候用“列表法”方便?什么时候用“树状图”法方便?一般地,当一次试验要涉及两个因素(或两步骤),且可能出现的结果数目较多时,可用“列表法”,当一次试验要涉及三个或更多的因素(或步骤)时,可采用“树状图法”.板书设计§25.2.2用画树状图法求概率例1解:根据题意,可以画出如下的树状图:学生练习:由树状图可以看出,所有可能的结果共有12种,即:ACH、ACI、ADH、ADI、AEH、AEI、BCH、BCI、BDH、BDI、BEH、BEI,这些结果出现的可能性相等.由于前面已学过一般的列举法,学生在小学或其他学科中接触过“列表法”,因此本节课除了继续探究更为复杂的列举法外,还引入了树状图这种新的列举方法,以学生的生活实际为背景提出问题,在自主探究解决问题的过程中,自然地学习使用这种新的列举方法.在列举过程中培养学生思维的条理性,并把思考过程有条理、直观、简捷地呈现出来,使得列举结果不重不漏.。
25.2用树状图法求概率2

课堂作业
4.小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别 旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明 得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对 双方公平吗?若公平,说明理由;若不公平,如何修改规则才能 使游戏对双方公平? 解:P(积为奇数)=
1 3
,P(积为偶数)=
25.2
用树状图法求概率
(第2课时)
学习目标
1.能正确鉴别一次试验中是否涉及3个或更多个因素. 2.会用树形图求出一次试验中涉及3个或更多个 因素时,不重不漏地求出所有可能的结果,从而
正确地计算问题的概率.
举例讲解
例 甲口袋中装有2个相同的小球,它们分别 写有字母A和B;乙口袋中装有3个相同的小球, 它们分别写有字母C,D和E;丙口袋中装有2个 相同的小球,它们分别写有字母H和I,从3个口 袋中各随机地取出1个小球.
2 3
.
1 2 × 2 = 1 × . ∴ 这 个 游 戏 对 双 方 公 平 3 3
课堂小结
1. 一次试验中可能出现的结果是有限多个,各种结 果发生的可能性是相等的.通常可用列表法和树形图 法求得各种可能结果。
2.注意第二次放回与不放回的区别。
3.一次试验中涉及3个或更多个因素时,不重不漏
地求出所有可能的结果,通常采用树形图法 。
• • • • • • • • • • • • • • • • • • • •
1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。 2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。 3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。 4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。 5、也许有些路好走是条捷径,也许有些路可以让你风光无限,也许有些路安稳又有后路,可是那些路的主角,都不是我。至少我会觉得,那些路不是自己想要的。 6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了? 7、人往往有时候为了争夺名利,有时驱车去争,有时驱马去夺,想方设法,不遗余力。压力挑战,这一切消极的东西都是我进取成功的催化剂。 8、真想干总会有办法,不想干总会有理由;面对困难,智者想尽千方百计,愚者说尽千言万语;老实人不一定可靠,但可靠的必定是老实人;时间,抓起来是黄金,抓不起来是流水。 9、成功的道路上,肯定会有失败;对于失败,我们要正确地看待和对待,不怕失败者,则必成功;怕失败者,则一无是处,会更失败。 10、一句简单的问候,是不简单的牵挂;一声平常的祝福,是不平常的感动;条消息送去的是无声的支持与鼓励,愿你永远坚强应对未来,胜利属于你! 11、行为胜于言论,对人微笑就是向人表明:我喜欢你,你使我快乐,我喜欢见到你。最值得欣赏的风景,就是自己奋斗的足迹。 12、人生从来没有真正的绝境。无论遭受多少艰辛,无论经历多少苦难,只要一个人的心中还怀着一粒信念的种子,那么总有一天,他就能走出困境,让生命重新开花结果。 13、当机会呈现在眼前时,若能牢牢掌握,十之八九都可以获得成功,而能克服偶发事件,并且替自己寻找机会的人,更可以百分之百的获得成功。 14、相信自己,坚信自己的目标,去承受常人承受不了的磨难与挫折,不断去努力去奋斗,成功最终就会是你的! 15、相信你做得到,你一定会做到。不断告诉自己某一件事,即使不是真的,最后也会让自己相信。 16、当你感到悲哀痛苦时,最好是去学些什么东西。领悟会使你永远立于不败之地。 17、出发,永远是最有意义的事,去做就是了。当一个人真正觉悟的一刻,就是他放弃追寻外在世界的财富,开始追寻他内心世界的真正财富。 18、幻想一步成功者突遭失败,会觉得浪费了时间,付出了精力,却认为没有任何收获;在失败面前,懦弱者痛苦迷茫,彷徨畏缩;而强者却坚持不懈,紧追不舍。 19、进步和成长的过程总是有许多的困难与坎坷的。有时我们是由于志向不明,没有明确的目的而碌碌无为。但是还有另外一种情况,是由于我们自己的退缩,与自己“亲密”的妥协没有坚持到底的意志,才使得机会逝去,颗粒无收。 20、任何人都不可以随随便便的成功,它来自完全的自我约束和坚韧不拔的毅力。永远别放弃自己,哪怕所有人都放弃了你。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.2 用列举法求概率
第2课时 用树状图法求概率
1.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,则小明与小红同车的概率是( )
A .19
B .16
C .13
D .12
2.①
一张圆桌旁有四个座位,A 先坐在如图25-2-8所示的位置上,B ,C ,D 三人随机坐到其他三个座位上,则A 与B 不相邻坐的概率为________.
图25-2-8
3.②假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚鸟卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( )
A.16
B.38
C.58
D.23
方法点拨
②在画树状图时,为了表示方便,可以用字母、数字或缩写等表示事件元素.
4.③如图25-2-9,有一块质地均匀的圆铁片,两面上分别写有1,2,有一个均匀的三棱锥旋转器和一个均匀的四棱锥旋转器,它们的侧面上分别写有1,2,3和1,2,3,4.在桌面上同时旋转这三件器物,停下来后,面向桌面的三个数字的积为奇数的概率是( )
图25-2-9
.12 B.13 C.16 D.18
5.掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为________.
6.④小刚、小强、小红利用假期到某个社区参加义务劳动,他们约定用“剪刀、石头、布”的方式确定到哪个社区,在同一回合中,三人都出“剪刀”的概率是________.
解题突破
④每人出剪刀的概率都是13,则三人同时出剪刀的概率是13×13×13=127
. 7.⑤2019·镇江某校5月份举行了八年级生物实验考查,有A 和B 两个考查实验,规定每名学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验,小明、小丽、小华都参加了本次考查.
(1)小丽参加实验A 考查的概率是________;
(2)用画树状图的方法求小明、小丽都参加实验A 考查的概率;
(3)他们三人都参加实验A 考查的概率是________.
方法点拨
⑤若一个事件分多步完成,那么这个事件的概率是每步概率的积.
8.2019·连云港为落实“垃圾分类”,环卫部门要求垃圾要按A ,B ,C 三类分别装袋、投放,其中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.
(1)直接写出甲投放的垃圾恰好是A 类的概率;
(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
9.A ,B ,C 三人玩篮球传球游戏,游戏规则:第一次传球由A 将球随机地传给B ,C 两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.
(1)求两次传球后,球恰好在B 手中的概率;
(2)求三次传球后,球恰好在A 手中的概率.
10.⑥
定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”,如“947”就是一个“V 数”.若某三位数十位上的数字为5,从4,6,8中任选两数作为个数和百位上的数字,则能与5组成“V 数”的概率是( )
A.16
B.14
C.13
D.23
解题突破
⑥根据定义,列举出所有等可能的结果,找到其中满足条件的结果的个数,最后依据概率公式求解
11.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若某三位数十位上的数字为7,从3,4,5,6,8,9中任选两数作为个位和百位上的数字,则与7组成“中高数”的概率是( )
A.12
B.23
C.25
D.35
12.定义一种“各个数位上的数字从左向右逐渐减小”的数叫做“下降数”,如876就是一个“下降数”.在一个不透明的布袋中有三个质地相同的小球,小球上分别标有1,2,
3三个数字.随机从中摸出一球,记下数字作为百位数字,然后放回摇匀.重复上面的操作两次,记下数字分别作为十位数字和个位数字,求三次摸球后得到的三位数是“下降数”的概率.
答案详析
1.C [解析] 用A ,B ,C 分别表示给九年级安排的三辆车,
根据题意,可以画出如下的树状图.
∵共有9种等可能的结果,小明与小红同车有3种情况,
∴小明与小红同车的概率是39=13
. 2.13
[解析] 可设第一个位置和第三个位置都与A 相邻.画树状图如下: ∵共6种等可能情况,A 与B 不相邻坐的情况有2种,
∴A 与B 不相邻而坐的概率为13
. 3.B [解析] 从树状图(C 代表雌鸟,X 代表雄鸟)中可以看出,三只雏鸟中有两只雌鸟
的概率是38
.故选B. 4.C [解析] 画树状图如下:
因为共有24种等可能情况,面向桌面的三个数字的积为奇数的情况有4种,所以概率为16
. 5.[导学号:04402317]38
[解析] 画树状图得:
∵共有8种等可能的结果,其中有两次正面朝上、一次反面朝上的情况有3种,
∴掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为38
. 6.[导学号:04402318]127
[解析] 根据题意画出树状图如下:
一共有27种等可能情况,三人都出“剪刀”的情况只有1种,
∴P (三人都出“剪刀”)=127
. 7.解:(1)12
(2)画树状图如下:
∵小明、小丽两人参加实验考查共有四种等可能结果,而两人均参加实验A 考查的情
况有1种,∴小明、小丽都参加实验A 考查的概率为14
. (3)18
8.解:(1)∵垃圾要按A ,B ,C 三类分别装袋,甲投放了一袋垃圾,
∴甲投放的垃圾恰好是A 类的概率为13
. (2)画树状图如下:
由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,
∴P (乙投放的垃圾恰有一袋与甲投放的垃圾是同类)=1218=23
. 9.[导学号:04402321]
解:(1)根据题意,画树状图如下:
∵共有4种等可能的结果,两次传球后,球恰好在B 手中的只有1种情况,
∴两次传球后,球恰好在B 手中的概率为14
. (2)根据题意,画树状图如下:
∵共有8种等可能的结果,三次传球后,球恰好在A 手中的有2种情况,
∴三次传球后,球恰好在A 手中的概率为28=14
. 10.[导学号:04402322]C
[解析] 根据题意,画树状图如下:
共有6种等可能的结果,能与5组成“V 数”的有2种(即658,856),所以从4,6,8
中任选两数,能与5组成“V 数”的概率为26=13
. 11.[导学号:04402323]C
[解析] 画树状图如下:
∵共有30种等可能的结果,与7组成“中高数”的有12种情况,
∴与7组成“中高数”的概率是1230=25
. 12.[导学号:04402324]
解:根据题意,画树状图如下:
由树状图可知共有27种等可能的结果,其中组成的“下降数”只有1个,即321,∴
三次摸球后得到的三位数是“下降数”的概率=127
. 【关键问答】
①当事件经过多个步骤(三步或三步以上)完成时,用树状图法求概率很有效.。