七年级数学实数讲义

合集下载

(完整word版)七年级实数讲义

(完整word版)七年级实数讲义

1月17日复华七年级数学实数12.1 实数的概念一、引入 数的范围至此扩大到了有理数,复习有理数的定义和分类:定义:整数和分数统称为有理数。

分类: 有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数如果把整数看作分母为1的分数,那么有理数就是用两个整数之比表示的分数:)0,(≠q q p qp都是整数,且 质疑:数的扩充是不是到此为止了呢?有理数是不是够用了?还有没有不是有理数的数呢? 问题2:正方形ABCD 的边长怎样表示?分析:设正方形ABCD 的边长为x ,那么x 2=2,即x 是这样一个数,它的平方等于2。

这个数表示面积为2的正方形的边长,是现实世界中真实存在的线段长度。

由于这个数和2有关,我们现在用2(读作“根号2”)来表示。

追问:面积为3的正方形,它的边长又如何表示?若面积为5呢? 问题3:2是有理数吗? 因为:有理数=分数)0,(≠q q p qp都是整数,且= 而2肯定不能表示为分数(详见P36),那就不能是有限小数,也不能是无限循环小数,所以2只能是“无限不循环小数”。

问题4:无限不循环小数还有吗?Π是有理数码? 二、归纳1.无理数(1)无限不循环小数叫做无理数。

(2)无理数包括正无理数和负无理数。

(3)只有符号不同的两个无理数,它们互为相反数。

2.实数(1)有理数和无理数统称为实数。

(2)实数可以这样分类:正有理数有理数 零 ——有限小数或无限循环小数实数 负有理数正无理数无理数 ——无限不循环小数负无理数三、练习1.将下列各数填入适当的括号内: 0、-3、2、6、3.14159、722、32.0&&&、5、π、0.3737737773…. 有理数:﹛ ﹜;无理数:﹛ ﹜; 正实数:﹛ ﹜;负实数:﹛ ﹜; 非负数:﹛ ﹜;整 数:﹛ ﹜. 提问:常见的无理数的形式有哪几种?(三种形式)2.请构造几个大小在3和4之间的无理数。

七年级初一数学第六章 实数(讲义及答案)含答案

七年级初一数学第六章 实数(讲义及答案)含答案

七年级初一数学第六章 实数(讲义及答案)含答案一、选择题1.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( )A .132B .146C .161D .666 2.2(4)-的平方根与38-的和是( )A .0B .﹣4C .2D .0或﹣4 3.下列结论正确的是( ) A .64的立方根是±4B .﹣18没有立方根 C .立方根等于本身的数是0D .327-=﹣34.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持不变).下列三个代数式:①2()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ) A .①② B .①③ C .②③ D .①②③5.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .46.若15的整数部分为a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158- 7.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±98.下列各数中3.145,0.1010010001…,﹣17,2π38有理数的个数有( ) A .1个B .2个C .3个D .4个 9.已知一个正数的两个平方根分别是3a +1和a +11,这个数的立方根为( )A .4B .3C .2D .0 10.下列各组数中互为相反数的是( )A .32(3)-B .﹣|2|2)C .﹣38和38-D .﹣2和12二、填空题11.若已知()21230a b c -+++-=,则a b c -+=_____.12.64的立方根是___________.13.a 是10的整数部分,b 的立方根为-2,则a+b 的值为________.14.写出一个3到4之间的无理数____.15.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.16.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.17.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.18.49的平方根是________,算术平方根是______,-8的立方根是_____.19.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.20.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡⎤==⎣⎦,按此规定113⎡⎤-=⎣⎦_____. 三、解答题21.观察下列三行数:(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a ,化简计算求值:(5a 2-13a-1)-4(4-3a+54a 2) 22.规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈 3 次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈 4 次方”.一般地,把个记作 a ⓝ,读作 “a 的圈 n 次方”(初步探究)(1)直接写出计算结果:2③,(﹣12)③.(深入思考)2④2 111111 2222222⎛⎫=⨯⨯⨯=⨯= ⎪⎝⎭我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣12)⑩.(3)猜想:有理数a(a≠0)的圈n(n≥3)次方写成幂的形式等于多少.(4)应用:求(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧23.观察下列各式:111122-⨯=-+;11112323-⨯=-+;11113434-⨯=-+;…(1)你发现的规律是_________________.(用含n的式子表示;(2)用以上规律计算:1111223⎛⎫⎛⎫-⨯+-⨯+⎪ ⎪⎝⎭⎝⎭11113420172018⎛⎫⎛⎫-⨯+⋅⋅⋅+-⨯⎪ ⎪⎝⎭⎝⎭24.观察下来等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a,十位数字为b,且2≤a+b≤9,则用含a,b 的式子表示这类“数字对称等式”的规律是_______.25.观察下列各式,回答问题21131222-=⨯, 21241333-=⨯ 21351444-=⨯ …. 按上述规律填空:(1)211100-= × ,2112005-= × , (2)计算:21(1)2-⨯21(1)...3-⨯21(1)2004-⨯21(1)2005-= . 26.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为()2M x .如()()22735111, 561101M M ==.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定: 0与 0相加得 0; 0与1相加得1;1与1相加得 0,并向左边一位进1.如735561、的“模二数”111101、相加的运算过程如下图所示.根据以上材料,解决下列问题:(1)()29653M 的值为______ ,()()22589653M M +的值为_(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如()()22124100,630010M M ==,因为()()()222124630110,124630110M M M +=+=,所以()()()222124*********M M M +=+,即124与630满足“模二相加不变”.①判断126597,,这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有______个【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案.详解:1.52=2.25,可得出有2个1;2.52=6.25,可得出有4个2;3.52=12.25,可得出有6个3;4.52=20.25,可得出有8个4;5.52=30.25,可得出有10个5;则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146.故选:B.点睛本题考查了估算无理数的大小.2.D解析:D【分析】【详解】=4,4的平方根是±2,的平方根为±2,2,﹣2+(﹣2)=﹣4,2+(﹣2)=0.0或﹣4.故选:D.【点睛】本题考查的是实数的运算,熟知平方根的定义及立方根的定义是解答此题的关键.3.D解析:D【分析】利用立方根的定义及求法分别判断后即可确定正确的选项.【详解】解:A、64的立方根是4,原说法错误,故这个选项不符合题意;B、﹣18的立方根为﹣12,原说法错误,故这个选项不符合题意;C、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;D=﹣3,原说法正确,故这个选项符合题意;故选:D.【点睛】本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.4.A解析:A【分析】在正确理解完全对称式的基础上,逐一进行判断,即可得出结论.【详解】解:根据信息中的内容知,只要任意两个字母交换,代数式不变,就是完全对称式,则:①(a-b)2=(b-a)2;是完全对对称式.故此选项正确.②将代数式ab+bc+ca中的任意两个字母交换,代数式不变,故ab+bc+ca是完全对称式, ab+bc+ca中ab对调后ba+ac+cb,bc对调后ac+cb+ba,ac对调后cb+ba+ac,都与原式一样,故此选项正确;③a2b+b2c+c2a 若只ab对调后b2a+a2c+c2b 与原式不同,只在特殊情况下(ab相同时)才会与原式的值一样∴将a与b交换,a2b+b2c+c2a变为ab2+a2c+bc2.故a2b+b2c+c2a不是完全对称式.故此选项错误,所以①②是完全对称式,③不是故选择:A.【点睛】本题是信息题,考查了学生读题做题的能力.正确理解所给信息是解题的关键.5.C解析:C【分析】根据实数的定义,实数与数轴上的点一一对应,平方根的定义可得答案.【详解】①数轴上有无数多个表示无理数的点是正确的;2=;③平方根等于它本身的数只有0,故本小题是错误的;④没有最大的正整数,但有最小的正整数,是正确的.综上,正确的个数有3个,故选:C.【点睛】本题主要考查了实数的有关概念,正确把握相关定义是解题关键.6.A解析:A【分析】先根据无理数的估算求出a 、b 的值,由此即可得.【详解】91516<<,<<34<<,3,3a b ∴==,)336a b ∴-=-=, 故选:A .【点睛】 本题考查了无理数的估算,熟练掌握估算方法是解题关键.7.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C .【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键. 8.C解析:C【分析】直接利用有理数的定义进而判断得出答案.【详解】解:3.14,0.1010010001…,-17 ,2π 3.14,-17=-2共3个.故选C .【点睛】此题主要考查了有理数,正确把握有理数的定义是解题关键. 9.A解析:A【分析】根据一个正数的两个平方根互为相反数,可知3a+1+a+11=0,a=-3,继而得出答案.【详解】∵一个正数的两个平方根互为相反数,∴3a+1+a+11=0,a=-3,∴3a+1=-8,a+11=8∴这个数为64,所以,这个数的立方根为:4.故答案为:4.【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.10.B解析:B【分析】根据相反数的定义,找到只有符号不同的两个数即可.【详解】解:A3,3B、﹣||,﹣||)两数互为相反数,故本选项正确;C22D、﹣2和12两数不互为相反数,故本选项错误.故选:B.【点睛】考查了相反数的定义:要知道,只有符号不同的两个数互为相反数.二、填空题11.6【分析】分别根据绝对值、平方和算术平方根的非负性求得a、b、c的值,代入即可.【详解】解:因为,所以,解得,故,故答案为:6.本题考查非负数的性质,主要考查绝对值、平方解析:6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】解:因为()2120a b -+++=,所以10,20,30a b c -=+=-=,解得1,2,3a b c ==-=,故1(2)36a b c -+=--+=,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键. 12.2【分析】的值为8,根据立方根的定义即可求解.【详解】解:,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.解析:2【分析】8,根据立方根的定义即可求解.【详解】8=,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.13.-5【解析】∵32<10<42,∴的整数部分a=3,∵b 的立方根为-2,∴a+b=-8+3=-5.故答案是:-5.解析:-5【解析】∵32<10<42,a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.14.π(答案不唯一).【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.解:3到4之间的无理数π.答案不唯一.解析:π(答案不唯一).【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.解:3到4之间的无理数π.答案不唯一.15.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.17.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.18.±7 7 -2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.解析:±77-2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.19.-2 【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定. 【详解】 解:= ……所以数列以,,三个数循环, 所以== 故答案为:. 【解析:-2 【分析】根据1与它前面的那个数的差的倒数,即111n na a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a . 【详解】 解:1a =132131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2- 故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.20.-3 【分析】先确定的范围,再确定的范围,然后根据题意解答即可. 【详解】 解:∵3<<4 ∴-3<<-2 ∴-3故答案为-3. 【点睛】本题考查了无理数整数部分的有关计算,确定的范围是解答本解析:-3 【分析】1⎡⎣的范围,然后根据题意解答即可.【详解】解:∵34 ∴-3<1--2∴1⎡=⎣-3故答案为-3. 【点睛】三、解答题21.(1)-(-2)n ;(2)第②行数等于第①行数相应的数减去2;第③行数等于第①行数相应的数除以(-2);(3)-783 【分析】第一个有符号交替变化的情况时,可以考虑在你所找到的规律代数式中合理的加上负号,并检验计算结果。

《实数》 讲义

《实数》 讲义

《实数》讲义一、实数的概念实数,这个在数学世界中极为基础且重要的概念,是我们理解数量关系和解决数学问题的关键。

简单来说,实数就是包括有理数和无理数的数集。

有理数,我们都很熟悉,像整数(正整数、零、负整数)和分数(正分数、负分数)都属于有理数。

而无理数呢,则是那些无限不循环小数,比如大家熟知的圆周率π,还有根号 2 等等。

实数可以直观地理解为在数轴上能找到对应点的数。

也就是说,数轴上的每一个点都代表着一个实数,反之,每一个实数也都能在数轴上找到对应的点。

二、有理数有理数是实数的重要组成部分。

整数,像-3、0、5 这样的数,它们没有小数部分,清晰明了。

分数呢,比如 1/2、3/4 ,可以表示为两个整数的比值。

有理数具有一些很重要的性质。

比如,两个有理数相加、相减、相乘或相除(除数不为 0),结果仍然是有理数。

而且,有理数是可以用有限小数或无限循环小数来表示的。

我们在日常生活中,很多常见的数量关系都可以用有理数来描述。

比如购物时的价格、物品的数量等等。

三、无理数无理数虽然不像有理数那样“规矩”,但在数学中同样不可或缺。

像根号 2 ,它的值约为 141421356……,这个小数无限且不循环。

圆周率π,约为31415926……,也是一个无限不循环小数。

无理数的发现,让人们对数学的认识更加深入和丰富。

虽然它们的数值看起来没有规律,但通过数学方法和计算,我们可以对它们进行近似和研究。

四、实数的运算实数的运算包括加法、减法、乘法、除法和乘方等。

加法和减法:实数的加法和减法遵循相同的规则,即将对应位上的数字相加或相减,并考虑进位和借位。

乘法:两个实数相乘,先将它们按照整数乘法的规则相乘,然后确定积的符号(同号得正,异号得负),最后根据小数位数确定积的小数点位置。

除法:将除数变为倒数,然后与被除数相乘。

乘方:一个实数的 n 次幂,就是将这个实数乘以自身 n 次。

在进行实数运算时,要特别注意运算顺序,先算乘方、开方,再算乘除,最后算加减。

精品 七年级数学寒假讲义 实数

精品 七年级数学寒假讲义 实数

实数 第01课 平方根1.乘方:“n a ”.乘方的结果叫做幂,a 叫做底数,n 叫做指数,读作a 的n 次方或a 的n 次幂.2.平方:“2a ”,读作a 的平方或a 的二次方.3.平方的性质:任何数的平方都是非负数;算术平方根概念:一般地,如果一个正数的平方等于a ,那么这个数叫做a 的算术平方根,也就是说,如果x 2=a ,(x>0)那么x 叫做a 的算术平方根.则a x = 算术平方根性质:(1)当a ≥0时a ≥0(由定义得出)即非负数的算术平方根是非负数⎭⎬⎫⎩⎨⎧<-≥==)0()0(2a a a a a a (由定义得出)(2)个数性质:正数和0的算术平方根据都只有一个(3)还原性质:当0≥a 时,a a =2)(,即非负数算术平方根的平方等于该非负数 完全平方数:能够完全开方开的尽的数。

如1,4,9,16,...平方根概念:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根,也就是说,如果x 2=a ,那么x 叫做a 的平方根.则a x ±=开平方:求一个数a 的平方根的运算叫做开平方.即求a ±的运算叫开平方. 表示方法:一个正数a 的平方根表示为a ±;若x 2=a (a >0)则x=a ±。

平方根的性质:(1)个数性质:正数有两个平方根,它们互为相反数,0只有一个平方根就是0本身.负数没有平方根 (2)还原性质:(由定义得出)当a ≥0时(a ±)2=a 即:非负数的平方根的平方等于该数 (三)a a a ±-,,的含义:a :当a ≥0时,表示a 的算术平方根a -:当a ≥0时,表示a 的算术平方根的相反数a ±:当a ≥0时,表示a 的平方根平方根的求法: 逆运算法,查表法,计算器,式子计算查表法的理论根据: 如果正数的小数点向右或向左移动2位,那么它的算术平方根的小数点就相应地向右、向左移动一位. 查表外数小数点移动法则:(1)被开方数的小数点要两位两位地移动,移动到使被查数成为有一位或两位整数的数 (2)被开方数的小数点每移动两位,查得的算术平方根的小数点要向相反方向移动一位。

七年级初一数学 第六章 实数(讲义及答案)含答案

七年级初一数学 第六章 实数(讲义及答案)含答案
根据有理数的定义、立方的性质、负数的性质、绝对值的性质对各项进行分析即可.
【详解】
A.有理数是整数和分数的统称,正确;
B.立方等于本身的数是-1,0,1,错误;
C. 不一定是负数,错误;
D.若 ,则 或 ,错误;
故答案为:A.
【点睛】
本题考查了判断说法是否正确的问题,掌握有理数的定义、立方的性质、负数的性质、绝对值的性质是解题的关键.
5,7,11,19,35,67…②
根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).
12.若实数a、b满足 ,则 =_____.
13.若|x|=3,y2=4,且x>y,则x﹣y=_____.
14.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是_____.
七年级初一数学 第六章 实数(讲义及答案)含答案
一、选择题
1.对一组数 的一次操作变换记为 ,定义其变换法则如下:
,且规定 ( 为大于 的整数),
如, , , ,
则 ( ).
A. B. C. D.
2.下列说法正确的是( )
A.有理数是整数和分数的统称B.立方等于本身的数是0,1
C. 一定是负数D.若 ,则
(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________; ⑩=________.
(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;
(3)算一算: .

七年级(下)数学 同步讲义 实数的概念及数的开方 (解析版)

七年级(下)数学 同步讲义 实数的概念及数的开方 (解析版)

知识点1:实数的概念1、无限不循环的小数叫做无理数.注意:1)整数和分数统称为有理数; 2)圆周率π是一个无理数. 2、无理数也有正、负之分.如2、π、0.101001000100001等这样的数叫做正无理数;2-、π-、0.101001000100001-这样的数叫做负无理数;只有符号不同的两个无理数,如2与2-,π与π-,称它们互为相反数.实数、数的开方知识结构模块一 实数的概念和分类知识精讲3、有理数和无理数统称为实数. (1)按定义分类⎧⎫⎧⎪⎪⎨⎬⎨⎪⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数(2)按性质符号分类0⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数【例1】 写出下列各数中的无理数:3.1415926,2π,16,.0.5,0,23-,0.1313313331…(两个1之间依次多一个3),0.2121121112.【答案】2π、0.1313313331….【解析】无限不循环小数都是无理数. 【总结】考查无理数的概念.【例2】 判断正误,在后面的括号里对的用“√”,错的记“×”表示.(1)无限小数都是无理数. ( ) (2)无理数都是无限小数.( ) (3)带根号的数都是无理数.( ) (4)不带根号的数一定不是无理数.()【答案】(1)×; (2)√; (3)×; (4)×.【解析】(1)无限不循环小数才是无理数;(2)无理数是无限不循环小数当然是无限小数; (3)开方开不尽的数是无理数;(4)π没带根号但是无理数. 【总结】考查无理数的概念及无理数与小数的关系.【例3】 a 是正无理数与a 是非负无理数这两种说法是否一样?为什么. 【答案】一样.例题解析【解析】a 是非负无理数实质上就是说a 是正无理数,因为0不是无理数. 【总结】考查无理数的分类及无理数的概念.【例4】 若a +bx =c +dx (其中a 、b 、c 、d 为有理数,x 为无理数),则a =c ,b =d ,反之, 亦成立,这种说法正确吗?说明你的理由. 【答案】略.【解析】移项得:()()a c d b x -=-, 因为非零有理数乘以无理数的结果还是无理数,而a c -是有理数(两个有理数的差仍是有理数),忧伤0d b -=,从而0a c -=, 于是有:a c b d ==,,当a c b d ==,时,等式a bx c dx +=+成立. 【总结】考查有理数、无理数的运算性质.【例5】 3为什么是无理数?请说明理由.【解析】假设3是有理数,则3能写成两个整数之比的形式:3p q=, 又因为p 、q 没有公因数可以约去,所以pq是最简分数. 把3p q=两边平方,得223p q =,即223q p =.由于23q 是3的倍数,则p 必定是3的倍数.设3p m =, 则2239q m =, 同理q 必然也是3的倍数,设3q n =,既然p 、q 都是3的倍数,它们必定有公因数3,与前面假设pq是最简分数矛盾, 故3是无理数.【总结】考查对无理数的理解及证明.模块二:数的开方知识精讲一、开平方:1、定义:求一个数a的平方根的运算叫做开平方.2、如果一个数的平方等于a,那么这个数叫做a的平方根.这个数a叫做被开方数.x=±,1的平方根是1±.如21x=,1说明:1)只有非负数才有平方根,负数没有平方根;2)平方和开平方互为逆运算.3、算术平方根:正数a的两个平方根可以用“a的正平方根(又叫算术平方根),读作“根号a”;a的负平方根,读作“负根号a”.★注意:1)一个正数有两个平方根,这两个平方根互为相反数;零的平方根是0;2=2是被开方数的根指数,平方根的根指数为2,书写上一般平方根的根指数2略写;3)一个数的平方根是它本身,则这个数是0.二、开立方:1、定义:求一个数a的立方根的运算叫做开立方.2、如果一个数的立方等于a,那么这个数叫做a的立方根号a a叫做被开方数,“3”叫做根指数.★注意:1)任意一个实数都有立方根,而且只有一个立方根;负数有立方根;2)零的立方根是0;3)一个数的立方根是它本身,则这个数是0,1和-1.三、开n次方:1、求一个数a的n次方根的运算叫做开n次方.a叫做被开方数,n叫做根指数.2、如果一个数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根.3、当n为奇数时,这个数为a的奇次方根;当n为偶数时,这个数为a的偶次方根.★注意:1)实数a a是任意一个数,根指数n是大于1的奇数;2)正数a”表示,负n次方根用“0n=时,在中省略n);a>,根指数n是正偶数(当23)负数的偶次方根不存在;4)零的n 次方根等于零,表示为00n =.【例6】 写出下列各数的平方根:(1)9121; (2)2(9)-.【答案】(1)311±; (2)3±. 【解析】注意要先把题中给的算式化简,再求它的平方根. 【总结】考查平方根的概念,注意平方根有两个.【例7】 写出下列各数的正平方根: (1)225;(2)9.【答案】(1)15;(2)3.【解析】(1)15; (2)93=,3的正平方根是3. 【总结】考查平方根的概念,注意对正平方根的准确理解.【例8】 下列各式是否正确,若不正确,请说明理由.(1)1的平方根是1;(2)9是2(9)-的算术平方根; (3)π-是2π-的平方根;(4)81的平方根是9±.【答案】(1)×; (2)√; (3)×; (4)×.【解析】(1)错误:1的平方根是1±;(2)正确;(3)错误:2π-是负数,没有平方根; (4)2π-错:819=,9的平方根是3±.例题解析【总结】考查平方根的基本概念,注意一定要先化简,再求平方根.【例9】写出下列各数的立方根:(1)216;(2)0;(3)1-;(4)3438-;(5)27.【解析】(1)6;(2)0;(3)1-;(4)72-;(5)3.【总结】本题主要考查立方根的概念.【例10】判断下列说法是否正确;若不正确,请说明理由:(1)一个数的偶次方根总有两个;()(2)1的奇次方根是1±;()(3)7=±;()(4)2±是16的四次方根;()(5)a的n次方根的个数只与a的正负有关.()【答案】(1)×;(2)×;(3)×;(4)√;(5)×.【解析】(1)错误:负数没有偶次方根;(2)错误:奇次方根只有一个,所以1的奇次方根是1;(37=;(4)正确;(5)错误:还与n的奇偶性有关.【总结】考查数的开方的基本概念,注意奇次方根与偶次方根的区别.【例11】写出下列各数的整数部分和小数部分:(1(2(3)9【解析】(1)因为89=,8,8;(2)因为78==77;(3)因为34=,所以596<<,所以95,小数部分为4-【总结】考查利用估算法求出无理数的整数部分和小数部分.【例12】 求值:(1 (2);(3)2; (4)2(.【解析】(1)12; (2)0.1- ; (3)4; (4)11. 【总结】考查对平方根的理解及运用.【例13】 求值:(1 (2 (3; (4【解析】(1)4; (2)35-; (3)原式54=-; (4)原式2-. 【总结】考查实数的立方根的运用.【例14】 求值:(1 (2 (3; (4【解析】(1)6 ; (2)3 ; (3)3- ; (4)2. 【总结】考查实数的奇次方根与偶次方根的计算.【例15】 求值:(1(2)(3.【解析】(1)0.5 ; (2)原式=95; (3)原式60=. 【总结】考查实数的立方根运算.【例16】 小明的房间面积为17.62m ,房间的地面恰好由110块大小相同的正方形地砖铺成,问:每块地砖的边长是多少? 【答案】0.4m .【解析】设每块地砖的边长是x 米,则有:211017.6x =,化简得20.16x =,解得:0.4x = 即每块地砖的边长是0.4m .【总结】考查实数的运算在实际问题中的运用.【例17】 已知2a -1的平方根是3±,3a +b -1的算术平方根是4 【答案】3.【解析】由题意知:219a -=,3116a b +-=,即210a =,173b a =-解得:5a =,2b =,所以2549a b +=+=3=. 【总结】本题主要考查实数的平方根与算术平方根的区别,以及代数式的值.【例18】 若a 的平方根恰好是方程3x +2y =2的一组解,求x y a a +的值.【答案】125716()1616或.【解析】由题意,因为a 的两个平方根是相反数,那么y x =-,则有:32322x y x x +=-=,即2x =,2y =-.那么由题意可得:4a =,所以22125744161616x y a a -+=+=+=. 【总结】本题主要考查实数的平方根与求代数式的值.【例19】 3,3(43)8x y +=-,求2()n x y +的值. 【答案】1.【解析】由题意可得:49432x y x y -=⎧⎨+=-⎩, 解得:12x y =⎧⎨=-⎩,所以222()(12)(1)1n n n x y +=-=-=.【总结】本题考查实数的开方以及二元一次方程组的解法,学生忘记解方程组的情况下,老师可以略微拓展复习一下二元一次方程组的解法哦.【例20】用“>”把下列各式连接起来:=,-12-23【总结】本题考查实数的大小比较,注意先化简,再比较大小.【例21】 1.732 5.477≈,利用以上结果,求下列各式的近似值.(1≈_______;(2____________;(3≈_________;(4≈______________;(5___________;(6≈_____________.【答案】略.【解析】(1 1.7321017.32⨯=;(2 5.4771054.77≈⨯=;(3 1.732100173.2⨯=;(4 5.4770.10.5477≈⨯=;(5 1.7320.10.1732⨯=;(6 5.4770.010.05477≈⨯=.【总结】本题考查实数的运算,注意每题之间的联系,类比推理.【例22】填写下表,并回答问题:a…0.000001 0.001 1 1000 1000000 …….3a……(1)数a与它的立方根3a的小数点的移动有何规律?(2)根据这个规律,若已知33,,求a的值.==a0.005250.1738 1.738【解析】(1)由题可知,被开方数a的小数点每向右或向左移动三位,立方根3a的小数点相应地向右或向左移动一位;(2)由(1)总结的规律可知: 5.25a=.【总结】本题考查实数的开方与被开方数之间的关系,注意引导学生仔细分析表格.【例23】阅读下面材料并完成填空:你能比较两个数20162017和20172016的大小吗?为了解决这个问题先把问题一般化,要比较n n+1和(n+1)n的大小(的整数),先从分析n=1,=2,=3,……这些简单的情况入手,从中发现规律,经过归纳,猜想出结论.(1)通过计算,比较下列①—⑦各组中两个数的大小(在横线上填“>、=、<”号①12______21;②23______32;③34______43;④45______54;⑤56______65;⑥67______76;⑦78______87.(2)对第(1)小题的结果进行归纳,猜想出n n+1和(n+1)n的大小关系: ______(3)根据上面的归纳结果猜想得到的一般结论是:20162017_____20172016.【答案】(1)①<;②<;③>;④>;⑤>;⑥>;⑦>:(2)当n =1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;(3)>.【解析】(1)①12 <21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)当n=1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;(3)根据第(2)小题的结论可知,20162017>20172016.【总结】本题考查实数的运算规律,注意观察计算后的结果,总结出规律。

沪教版(五四制)七年级数学下册 第九讲 实数的概念及运算 讲义(无答案)

沪教版(五四制)七年级数学下册 第九讲  实数的概念及运算 讲义(无答案)

一、实数的分类:0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数 二、有理数的性质:⑴有理数的定义:可以写成两个整数p 与q (0q ≠)的比值的数.故所有的有理数都可以化成分数pq(0q ≠)的形式.⑵有理数进行加、减、乘、除四则运算的结果仍是有理数.即有理数集对于加减乘除四则运算具有封闭性.三、平方根和开平方:如果一个数的平方等于a ,那么这个数叫做a 的平方根. 求一个数a 的平方根的运算叫做开平方,a 叫做被开方数. 开平方与平方互为逆运算.在实数范围内,一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根.正数a 的两个平方根可以用“a 的正平方根(又叫算术平方根),读作“根号a ”;a 的负平方根,读作“负根号a ”.=.,00,0,0a a a a a a >⎧⎪===⎨⎪-<⎩四、立方根和开立方:如果一个数的立方等于a,那么这个数叫做a a ”,其中a 叫做被开方数,“3”叫做根指数.2”第九讲实数的概念及运算a ”a ”. 求一个数a 的立方根的运算叫做开立方.在实数范围内,任何一个数都有且只有一个立方根.正数的立方根为正数,负数的立方根为负数,0的立方根为0.实数的概念【例题1】 将下列各数填入适当的括号内:220,0.23,,0.37377377737π∙∙---⑴整 数:{ };⑵非负数:{ }; ⑶有理数:{ };⑷无理数:{ } ⑸正实数:{ };⑹负实数:{ }【例题2】 平方根等于它本身的数是 ,算术平方根等于它本身的数是 ,立方根等于它本身的数是 ;平方根与立方根相等的数是 .①196的平方根是_____;②2( 2.5)-的平方根是 ;③2(的平方根是 ;______的相反数是 ;⑥的立方根是 .【例题3】 求下列各式的值:(1_______= (2)________=(3)________= (4________=(5)________= (6)________=【例题4】 求下列各式的值:(1_______= (2)________=(3)________= (4________=(5________= (6________=实数的性质【例题5】 (1)已知a ,b ,c ,d 是有理数,a c +=+a c =,b d =.(2)已知x ,y 是有理数,且11()()402332x y πππ+++--=,求x y -的值.(3)已知x ,y 是有理数,且11 2.25034x y ⎛⎛+--- ⎝⎭⎝⎭,求x ,y 的值.【例题6】 (1)若a 为自然数,b 为整数,且满足2()7a =-a = ,b = .(2,求a ,b 的值.【例题7】 (12(2)0ab -=,求111(1)(1)(2009)(2009)ab a b a b +++++++的值.(2)已知x ,y ,z 满足24402x y z z -+-++=,求()x y z +的值.【例题8】 (1)已知关于x 1a =有三个整数解,求a 的值.(2)若m =试确定m 的值.【例题9】 (1a ,小数部分是b ,求22a b a b-+的值.(2b ,求4321237620b b b b +++-的值.【例题10】 (1)求最小的正整数m 是一个自然数。

初中七年级下册数学讲义第2讲-实数的表示与开方(上体馆)

初中七年级下册数学讲义第2讲-实数的表示与开方(上体馆)

1对3辅导讲义学员姓名: 学科教师: 年 级: 辅导科目: 授课日期时 间主 题第2讲-实数的表示与开方学习目标1.进一步理解无理数、实数、平方根等概念; 2.理解立方根和开立方运算以及开n 次方运算; 3. 会进行简单的实数运算;4. 掌握实数大小比较的方法,会根据情况灵活选择方法进行实数大小比较。

教学内容1. -0.064的立方根是_________,4的立方根是__________. -0.4, 342. 若,则___________. 1±3. 为最大的负整数,则a 的值为___________. 4±4、若一个数的立方根就是它本身,则这个数是________。

0、1、-1知识点一、立方根与开立方问题:什么是立方根?什么是开立方运算?x 21=x 3=回顾:立方根和开立方的性质有哪些?1.正数的立方根是一个正数,负数的立方根是一个负数,零的立方根是零;2.任意实数都有立方根,且只有一个立方根; 可以用具体的例子引导学生总结3. ()33a a =,33a a =.(注意与平方根和开平方相应性质的对比)4.33a a -=-.例1. 下面说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .负数没有立方根C .如果一个数有立方根,那么它一定有平方根D .一个数的立方根与被开方数同号 例2.33(2)-的值是 .例3. 立方根等于本身的数是 ,平方根等于本身的数是 . 答案:D ; -2; 0,1,-1; 0,1; 试一试:1.64的平方根是 ,64的立方根是 .2.16的平方根是 ,64的立方根是 .3.已知()38210x -+=,则x = .答案:1. 8,4±; 2. 2,2±; 3. 32; 【例题精讲】 例4.填表:a0.0000010.001 1 1000 10000003a教法指导:建议让学生观察并讨论本题的解题思路。

参考答案:0.01 0.1 1 10 100例5.根据上表总结规律:被开方数的小数点每向 移动 位,则立方根的小数点相应地向 移动 位. 教法指导:这个结论让学生多观察总结,还可以再举例让学生理解 参考答案:右,3,右,1 【试一试】已知35.25 1.738=,35258.067=,则30.000525-=( )A . 17.38-B . 0.01738-C . 806.7-D . 0.08067- 参考答案:D知识点二、立方根运算 【例题精讲】 例6. 计算:(1)38515; (2)327102--- ; (3)3387)(- ; (4)6356)(-; (5)312564-38+1001 ; (6)3125.0-1613+23)871(-.教法指导:建议让学生独立完成,可以设置为相互PK 的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数
知识要点:
1.平方根、算术平方根、立方根
例1.(1)9的平方根是_______________; 9的立方根为____________
9的算数平方根是_____________; 如果m 的立方根是9,那么m 的平方根是_______.
一个正数x 的平方根分别是31-+a a 和,则.________________,==x a (2) )3(2-的结果是( )
A. 9
B. ﹣3
C. ±3
D.3
1例2.(1)60的估算值为 ( )
A. 6<60<6.5
B. 7605.6<<
C. 5.7607<<
D. 7.5<60< 8
(2)60的整数部分是_______,小数部分是____________.
(3)满足不等式6060<<-x 的非正整数x 共有 . (4)设a =60,则=6.0____________; 2.实数
(1)实数的概念和分类
⎪⎪⎪

⎪⎪
⎪⎨⎧⎩⎨
⎧⎪⎩
⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数0 ⎪⎩⎪⎨⎧负实数正实数实数0 (2)实数与数轴上的点是一一对应的. (3)实数的相反数、绝对值、倒数、比较大小. (4)实数的运算.
例3. (1)在数轴上与表示2的点距离为3的点表示的实数为_________;
(2
)在实数
22
,0.13,,49,7
π-⋅⋅⋅⋅⋅⋅(每两个3之间依次多一个1)中,无理数的个数是_______个. (3)比较大小
2
π
(4)计算
2
课堂练习
一、选择题
1. 下列说法正确的是 ( )
A . 4是16-的算术平方根
B . 8的立方根是2±
C . 4-是16的平方根
D . 2
)4(-的平方根是4. 2. 下列等式中,正确的是 ( )
A . 3
4 B . 34 C . 38 D . 3
4
3. 下列各数53542515.0、0、2
.0 、π3、7
22
, 1010010001.6、11131、27中,无理数的个数是
( )
A . 1
B . 2
C . 3
D . 4
4. 在下列实数中,无理数是( ).
A .2
B .0
C
D .
1
3
5.在1-,π,0,, 3.1415926,0.36••
这七个数中,无理数的个数有( )
A .1个
B .2 个
C .3 个
D .4个
6. 计算 ).
A ..3- C .3± D . 9
7. 下列说法中,正确的是
A .9的算术平方根是-3
B .16的平方根是4
C .1的立方根是1±
D .-27的立方根是-3 8.若式子1-x 在实数范围内有意义,则x 的取值范围是( )
A. x <1
B. x ≤1
C. x >1
D. x ≥1 9.下面四个数中与10最接近的数是( )
A .2
B .3
C .4
D .5
10. 设1a =,a 在两个相邻整数之间,则这两个整数是( ).
A .1和2 B.2和3 C.3和4 D.4和5
11.已知:,3604.00468.03=则()3
=-36.04 ( )
(A )46800- (B )4680- (C )8.46-(D )68.4-
二、填空题
12.如果m 的算术平方根是8,那么m 的值是_______. 13.在0.14,
11
7
,,π
这五个实数中,无理数的是 . 14
,1,2,4按从小到大的顺序排列,则正中间的数是________. 15.
x 的取值范围是 .
16.

22(4)0,a c --=则a b c -+= .
17. 若___032==-++b a b a ,则.
18. 已知:m ,n 为两个连续的整数,且m
n ,则m +n = . 19
m <m 是整数,则m 的值等于 . 20.若29x =,38y =-,则x +y = .
21.实数a 在数轴上的位置如图所示,则2
2
)3()2(-+-a a = . 22. 若
()x x -=-112
,则x 的取值范围是____________.
23. 若45-x 的算术平方根是3,则它的另一个平方根是______,x =_______. 24. 计算:
()
.__________52
= ().___________32
=--
25. 若()05312
=++++-c b a ,则abc 的平方根是_____________.
26. 若b a ,互为相反数,d c ,互为倒数,m 表示到原点距离为1的有理数,则
m cd b a +++=_____________;
27. =--<<2,0a b a b a 则若___________. 28. 计算: ()43--=____________; =-23)3(
___________.
三、计算 29.
()0
3π- 30.
1)+
31. 3
492716
3---
. 32.
31
16804
--+-
四、解答题
33.在没有带开方功能的计算器的情况下,我们可以用下面的方法得到(n 为正整数)的近似值a k (k 为正整数),并通过迭代逐渐减小|a k ﹣|的值来提高a k 的精确度,以求的近似值为例,迭代过程如下: (1)先估计的范围并确定迭代的初始值a 1: ∵


,∴
,取

(2)通过计算
得到精确度更高的近似值a k+1:(说明
,此题中记
,以下结果都要求写成小数形式):
k=1时,m 1== _________ ,a 2=a 1﹣m 1= _________ ,|a 2﹣
|= _________ ;
k=1时,m 2= _________ (精确到0.001),a 3= _________ ﹣ _________ = _________ '|a 3﹣|= _________ ;
…。

相关文档
最新文档