题1:在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的

合集下载

操作系统教程习题答案

操作系统教程习题答案
核心级线程由操作系统内核进行管理。操作系统内核为应用程序提供相应的系统调用和应用程序接口API,供用户程序创建执行撤销线程。
1.单项选择题
(1)进程创建原语的任务是。
A、为进程编制程序B、为进程建立PCB表
C、为进程分配CPU D、为进程分配所需的各种资源
(2)进程从执行状态变为阻塞态的原因可能是。
A、D、某个进程被唤醒
(3)进程由执行态变化到就绪态的可能原因是。
A、等待的事件发生B、高优先级进程到来
3.基本概念的解释和辨析
(1)进程和程序
a.进程是动态的,程序是静态的
b.进程是暂时的,程序是永久的
c.进程与程序的组合结构不同
(2)进程和作业
一个正在执行的进程称为作业,作业可包含一个或多个进程
(3)进程和线程
a.地址空间资源:不同的进程地址空间是相互独立的,而统一进程的各线程共享同一地址空间
b.并发性:引入线程的操作系统中,不仅进程之间可以并发执行,而且一个进程的多个线程之间亦可并发执行
单项选择题1以下关于死锁的必要条件的叙述中错误的是a只要具备了死锁的必要条件就一定发生死锁现象b解决死锁问题可以从死锁的必要条件出发c一旦出现死锁处于死锁状态的进程一定同时具备死锁的必要条件d死锁的四个必要条件之间不是完全独立的但也不是等价的2以下关于死锁检测的叙述中错误的是a只要检测出死锁尚未解除则再申请该类资源的进程一定会卷入死锁b只要检测出死锁尚未解除则使用该类资源的所有进程一定卷入了死锁c死锁检测方法对系统资源的分配不加限制只要有剩余资源就可以分配d死锁检测中系统需要反复检测各进程资源申请和分配情况3以下关于死锁问题的说法中正确的是a死锁问题是无法解决的但可以避免b死锁的预防是通过破坏进程进入不安全状态来实现的c通过避免死锁四个必要条件中的任何一个就可以实现死锁避免d死锁的检测和解除是配合使用的当系统检测到出现死锁时就通过死锁解除方法解除死锁4以下关于系统的安全状态的描述中正确的是a系统处于不安全状态一定会发生死锁b系统处于不安全状态可能会发生死锁c系统处于安全状态时也可能会发生死锁d不安全状态是死锁状态的一个特例?5资源的静态分配算法在解决死锁问题中用于??a死锁预防b死锁避免c死锁检测d死锁解除?6有3个进程共享个同类资源为使系统不会发生死锁每个进程最多可以申请个资源

模式识别习题集答案解析

模式识别习题集答案解析

模式识别习题集答案解析1、PCA和LDA的区别?PCA是⼀种⽆监督的映射⽅法,LDA是⼀种有监督的映射⽅法。

PCA只是将整组数据映射到最⽅便表⽰这组数据的坐标轴上,映射时没有利⽤任何数据部的分类信息。

因此,虽然做了PCA后,整组数据在表⽰上更加⽅便(降低了维数并将信息损失降到了最低),但在分类上也许会变得更加困难;LDA在增加了分类信息之后,将输⼊映射到了另外⼀个坐标轴上,有了这样⼀个映射,数据之间就变得更易区分了(在低纬上就可以区分,减少了很⼤的运算量),它的⽬标是使得类别的点距离越近越好,类别间的点越远越好。

2、最⼤似然估计和贝叶斯⽅法的区别?p(x|X)是概率密度函数,X是给定的训练样本的集合,在哪种情况下,贝叶斯估计接近最⼤似然估计?最⼤似然估计把待估的参数看做是确定性的量,只是其取值未知。

利⽤已知的样本结果,反推最有可能(最⼤概率)导致这样结果的参数值(模型已知,参数未知)。

贝叶斯估计则是把待估计的参数看成是符合某种先验概率分布的随机变量。

对样本进⾏观测的过程,把先验概率密度转化为后验概率密度,利⽤样本的信息修正了对参数的初始估计值。

当训练样本数量趋于⽆穷的时候,贝叶斯⽅法将接近最⼤似然估计。

如果有⾮常多的训练样本,使得p(x|X)形成⼀个⾮常显著的尖峰,⽽先验概率p(x)⼜是均匀分布,此时两者的本质是相同的。

3、为什么模拟退⽕能够逃脱局部极⼩值?在解空间随机搜索,遇到较优解就接受,遇到较差解就按⼀定的概率决定是否接受,这个概率随时间的变化⽽降低。

实际上模拟退⽕算法也是贪⼼算法,只不过它在这个基础上增加了随机因素。

这个随机因素就是:以⼀定的概率来接受⼀个⽐单前解要差的解。

通过这个随机因素使得算法有可能跳出这个局部最优解。

4、最⼩错误率和最⼩贝叶斯风险之间的关系?基于最⼩风险的贝叶斯决策就是基于最⼩错误率的贝叶斯决策,换⾔之,可以把基于最⼩错误率决策看做是基于最⼩风险决策的⼀个特例,基于最⼩风险决策本质上就是对基于最⼩错误率公式的加权处理。

模式识别习题及答案

模式识别习题及答案

模式识别习题及答案第⼀章绪论1.什么是模式具体事物所具有的信息。

模式所指的不是事物本⾝,⽽是我们从事物中获得的___信息__。

2.模式识别的定义让计算机来判断事物。

3.模式识别系统主要由哪些部分组成数据获取—预处理—特征提取与选择—分类器设计/ 分类决策。

第⼆章贝叶斯决策理论1.最⼩错误率贝叶斯决策过程答:已知先验概率,类条件概率。

利⽤贝叶斯公式得到后验概率。

根据后验概率⼤⼩进⾏决策分析。

2.最⼩错误率贝叶斯分类器设计过程答:根据训练数据求出先验概率类条件概率分布利⽤贝叶斯公式得到后验概率如果输⼊待测样本X ,计算X 的后验概率根据后验概率⼤⼩进⾏分类决策分析。

3.最⼩错误率贝叶斯决策规则有哪⼏种常⽤的表⽰形式答:4.贝叶斯决策为什么称为最⼩错误率贝叶斯决策答:最⼩错误率Bayes 决策使得每个观测值下的条件错误率最⼩因⽽保证了(平均)错误率最⼩。

Bayes 决策是最优决策:即,能使决策错误率最⼩。

5.贝叶斯决策是由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利⽤这个概率进⾏决策。

6.利⽤乘法法则和全概率公式证明贝叶斯公式答:∑====m j Aj p Aj B p B p A p A B p B p B A p AB p 1)()|()()()|()()|()(所以推出贝叶斯公式7.朴素贝叶斯⽅法的条件独⽴假设是(P(x| ωi) =P(x1, x2, …, xn | ωi)= P(x1| ωi) P(x2| ωi)… P(xn| ωi))8.怎样利⽤朴素贝叶斯⽅法获得各个属性的类条件概率分布答:假设各属性独⽴,P(x| ωi) =P(x1, x2, …, xn | ωi) = P(x1| ωi) P(x2| ωi)… P(xn| ωi)后验概率:P(ωi|x) = P(ωi) P(x1| ωi) P(x2| ωi)… P(xn| ωi)类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均值⽅差,最后得到类条件概率分布。

模式识别作业题(1)

模式识别作业题(1)

m 2 mn ] 是奇异的。 mn n 2
1
2、参考参考书 P314“模式识别的概要表示”画出第二章的知识结构图。 答:略。 3、现有两类分类问题。如下图所示, (1,
1 1 3 ) 、 ( , ) 、 (1, 3 ) 、 (1,-tan10°)为 3 2 2 3 3 ,- * tan 10° ) 、 (2,0)为 W2 类。 5 5
W1 类,其中(1,-tan10°)已知为噪声点; (1,0) 、 ( 自选距离度量方法和分类器算法,判别(
6 ,0)属于哪一类? 5
答:度量方法:根据题意假设各模式是以原点为圆心的扇状分布,以两个向量之间夹角(都 是以原点为起点)的余弦作为其相似性测度,P22。 然后使用 K 近邻法,K 取 3,求已知 7 个点与(
2
答: (1)×,不一定,因为仅仅是对于训练样本分得好而已。 (2)×,平均样本法不需要。 (3)√,参考书 P30,将 r 的值代入式(2.26)即得。 (4)√,参考书 P34,三条线线性相关。 ( 5 ) √ ,就是说解区是 “ 凸 ” 的,参考书 P37 ,也可以证明,设 W1T X’=a, W2T X’=b, 则 a≤λW1+(1-λ)W2≤b(设 a≤b) 。 (6)√,参考书 P38。 (7)×,前一句是错的,参考书 P46。 (8)×,是在训练过程中发现的,参考书 P51。 (9)×,最简单的情况,两个点(0,0)∈w1,(2,0)∈w2,用势函数法求出来的判决界面是 x1=1。 (10)√,一个很简单的小证明, 设 X1=a+K1*e,X2= a-K1*e,X3=b+K2*e,X4= b-K2*e, Sw=某系数*e*e’,设 e=[m n],则 e *e’= [
方法三:参照“两维三类问题的线性分类器的第二种情况(有不确定区域) ”的算法,求 G12,G23,G13。 G12*x1>0, G12*x2<0, G12=(-1,-1,-1)’ G23*x2>0, G23*x3<0, G23=(-1,-1,1)’ G13*x1>0, G13*x3<0, G12=(-1,-1,1)’ 有两条线重合了。

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解Last revision on 21 December 2020一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

设计模式考试复习试题[含答案解析]

设计模式考试复习试题[含答案解析]

一、1. 设计模式一般用来解决什么样的问题: A.同一问题的不同表相2. 下列属于面向对象基本原则的是: C.里氏代换3. Open-Close原则的含义是一个软件实体:A.应当对扩展开放,对修改关闭.4. 当我们想创建一个具体的对象而又不希望指定具体的类时,使用(A)模式。

A.创建型5. 要依赖于抽象不要依赖于具体。

即针对接口编程不要针对实现编程:(D)依赖倒转原则6. 依据设计模式思想,程序开发中应优先使用的是( A )关系实现复用。

A, 委派7. 设计模式的两大主题是( D ) D.系统复用与系统扩展8. 单体模式中,两个基本要点(AB)和单体类自己提供单例A .构造函数私有 B.唯一实例9. 下列模式中,属于行为模式的是( B ) B观察者10. “不要和陌生人说话”是( D )原则的通俗表述 D.迪米特1. 软件体系结构是指一个系统的有目的的设计和规划,这个设计规划既不描述活动,也不描述系统怎样开发,它只描述系统的组成元素及其相互的交互协作。

2.一个UML模型只描述了一个系统要做什么,它并没告诉我们系统是怎么做。

3.接口是可以在整个模型中反复使用的一组行为,是一个没有属性而只有方法的类。

4.多重性指的是,某个类有多个对象可以和另一个类的一对象关联。

5.当一个类的对象可以充当多种角色时,自身关联就可能发生。

6.在泛化关系中,子类可以替代父类。

后前者出现的可以相同地方。

反过来却不成立。

7.最通常的依赖关系是一个类操作的形构中用到了另一个类的定义。

8.组成是强类型的聚集,因为聚集中的每个部分体只能属于一个整体。

9.实现的符号和继承的符号有相似之处,两者的唯一差别是实现关系用虚线表示,继承关系用实线表示。

10. 设计模式中应优先使用对象组合而不是类继承。

1.适配器模式属于创建型模式结构型( F )2.在设计模式中,“效果”只是指“原因和结果”( T )3.设计模式使代码编制不能真正工程化( T )4.面向对象语言编程中的异常处理,可以理解为责任链模式(T )5.反模式就是反对在软件开发过程中使用设计模式分析:反模式用来解决问题的带有共性的不良方法(F )1.什么是设计模式?设计模式目标是什么?答:设计模式是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。

GB4706.1-1998家用和类似用途电器的安全 第一部分:通用要求.

GB4706.1-1998家用和类似用途电器的安全  第一部分:通用要求.

家用和类似用途电器的安全 第一部分:通用要求GB 4706.1-1998国家标准局批准 1999-06-01实施前言本标准为家用和类似用途电器的安全通用要求。

本标准等效采用国际电工委员会IEC 335-1(1991)第3版《家用和类似用途电器的安全 第1部分:通用要求》和其第1修正件(1994)。

本标准中,作为规范性标准而引用的IEC 标准和对应的国家标准在附录A 列出。

有对应国家标准的,以引用的国家标准作为规范使用;暂无对应国家标准的,则以所列的IEC 标准作为规范使用。

本标准与IEC 出版物 335-1(1991)第3版主要差异如下:1)24.1中,将“符合有关IEC 标准中规定的安全要求”替换为“符合有关国家标准或IEC 标准中规定的安全要求”。

2)IEC 335-1(1991)凡涉及引用IEC 标准的地方,如有对应该IEC 标准的国家标准时,本标准则写入对应的国家标准。

3)7.12.4第6项,将“除非为器具提供一个符合24.3的开关”替换为“除非器具带有一个符合24.3的开关”。

由于GB 4706.1-1992为等同采用IEC 出版物 335-1(1976)第2版,及其第1、2、3、4、5、6号修正件,所以本标准与GB 4706.1-1992属两个不同的版本,在编辑方面完全不同。

为使IEC 出版物335-1的第3版与其第2版在章标题和附录标题上有对应关系,所以该出版物制定时,采用了列空章、列空附录的编辑方法。

在技术内容方面,本标准与GB 4706.1-1992有下列主要不同:——本标准在IEC 前言后有一重要引言,而GB 4706.1-1992无此引言。

——本标准第1章对非单相器具规定的最大额定电压为480V ,而不是GB 4706.1-1992第5章所规定的440V 。

——本标准第5章取消了M 连接的术语,GB 4706.1-1992第2章中的M 连接纳入X 连接的概念。

——本标准第2章增加了Ⅱ类结构和Ⅲ类结构的定义,GB 4706.1-1992第2章中没有这些定义。

模式识别习题解答第三章

模式识别习题解答第三章

题1:在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。

问该模式识别问题所需判别函数的最少数目是多少?答:将10类问题可看作4类满足多类情况1的问题,可将3类单独满足多类情况1的类找出来,剩下的7类全部划到4类中剩下的一个子类中。

再在此子类中,运用多类情况2的判别法则进行分类,此时需要7*(7-1)/2=21个判别函数。

故共需要4+21=25个判别函数。

题2:一个三类问题,其判别函数如下:d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-11.设这些函数是在多类情况1条件下确定的,绘出其判别界面和每一个模式类别的区域。

2.设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。

绘出其判别界面和多类情况2的区域。

3.设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘出其判别界面和每类的区域。

答:三种情况分别如下图所示:1.2.3.题3:两类模式,每类包括5个3维不同的模式,且良好分布。

如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。

)答:(1)若是线性可分的,则权向量至少需要14N n =+=个系数分量; (2)若要建立二次的多项式判别函数,则至少需要5!102!3!N ==个系数分量。

题4:用感知器算法求下列模式分类的解向量w : ω1: {(0 0 0)T, (1 0 0)T, (1 0 1)T, (1 1 0)T} ω2: {(0 0 1)T, (0 1 1)T, (0 1 0)T, (1 1 1)T}解:将属于2w 的训练样本乘以(1)-,并写成增广向量的形式x1=[0 0 0 1]',x2=[1 0 0 1]',x3=[1 0 1 1]',x4=[1 1 0 1]';x5=[0 0 -1 -1]',x6=[0 -1 -1 -1]',x7=[0 -1 0 -1]',x8=[-1 -1 -1 -1]';迭代选取1C =,(1)(0,0,0,0)w '=,则迭代过程中权向量w 变化如下:(2)(0 0 0 1)w '=;(3)(0 0 -1 0)w '=;(4)(0 -1 -1 -1)w '=;(5)(0 -1 -1 0)w '=;(6)(1 -1 -1 1)w '=;(7)(1 -1 -2 0)w '=;(8)(1 -1 -2 1)w '=;(9)(2 -1 -1 2)w '=; (10)(2 -1 -2 1)w '=;(11)(2 -2 -2 0)w '=;(12)(2 -2 -2 1)w '=;收敛所以最终得到解向量(2 -2 -2 1)w '=,相应的判别函数为123()2221d x x x x =--+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题1:在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。

问该模式识别问题所需判别函数的最少数目是多少?答:将10类问题可看作4类满足多类情况1的问题,可将3类单独满足多类情况1的类找出来,剩下的7类全部划到4类中剩下的一个子类中。

再在此子类中,运用多类情况2的判别法则进行分类,此时需要7*(7-1)/2=21个判别函数。

故共需要4+21=25个判别函数。

题2:一个三类问题,其判别函数如下:d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-11.设这些函数是在多类情况1条件下确定的,绘出其判别界面和每一个模式类别的区域。

2.设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。

绘出其判别界面和多类情况2的区域。

3.设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘出其判别界面和每类的区域。

答:三种情况分别如下图所示:1.2.3.题3:两类模式,每类包括5个3维不同的模式,且良好分布。

如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。

)答:(1)若是线性可分的,则权向量至少需要14N n =+=个系数分量; (2)若要建立二次的多项式判别函数,则至少需要5!102!3!N ==个系数分量。

题4:用感知器算法求下列模式分类的解向量w : ω1: {(0 0 0)T, (1 0 0)T, (1 0 1)T, (1 1 0)T} ω2: {(0 0 1)T, (0 1 1)T, (0 1 0)T, (1 1 1)T}解:将属于2w 的训练样本乘以(1)-,并写成增广向量的形式x1=[0 0 0 1]',x2=[1 0 0 1]',x3=[1 0 1 1]',x4=[1 1 0 1]';x5=[0 0 -1 -1]',x6=[0 -1 -1 -1]',x7=[0 -1 0 -1]',x8=[-1 -1 -1 -1]';迭代选取1C =,(1)(0,0,0,0)w '=,则迭代过程中权向量w 变化如下:(2)(0 0 0 1)w '=;(3)(0 0 -1 0)w '=;(4)(0 -1 -1 -1)w '=;(5)(0 -1 -1 0)w '=;(6)(1 -1 -1 1)w '=;(7)(1 -1 -2 0)w '=;(8)(1 -1 -2 1)w '=;(9)(2 -1 -1 2)w '=; (10)(2 -1 -2 1)w '=;(11)(2 -2 -2 0)w '=;(12)(2 -2 -2 1)w '=;收敛所以最终得到解向量(2 -2 -2 1)w '=,相应的判别函数为123()2221d x x x x =--+。

题5:用多类感知器算法求下列模式的判别函数: ω1: (-1 -1)T ,ω2: (0 0)T ,ω3: (1 1)T解:采用一般化的感知器算法,将模式样本写成增广形式,即1231011,0,1111x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭取初始值123000w w w ⎛⎫⎪=== ⎪ ⎪⎝⎭,取1C =,则有第一次迭代:以1x 为训练样本,123(1)(1)(1)0d d d ===,故123111(2)1,(2)1,(2)1111w w w -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭第二次迭代:以2x 为训练样本,123(2)1,(2)1,(2)1d d d ==-=-,故123111(3)1,(3)1,(3)1002w w w -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭第三次迭代:以3x 为训练样本,123(3)2,(3)2,(3)0d d d =-==,故123102(4)1,(4)0,(4)2011w w w -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭第四次迭代:以1x 为训练样本,123(4)2,(4)1,(4)5d d d ==-=-,故112233(5)(4),(5)(4),(5)(4)w w w w w w ===第五次迭代:以2x 为训练样本,123(5)0,(5)1,(5)1d d d ==-=-,故123102(6)1,(6)0,(6)2102w w w -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭第六次迭代:以3x 为训练样本,123(6)3,(6)0,(6)2d d d =-==,故112233(7)(6),(7)(6),(7)(6)w w w w w w ===第七次迭代:以1x 为训练样本,123(7)1,(7)0,(7)6d d d ===-,故112233(8)(7),(8)(7),(8)(7)w w w w w w ===第八次迭代:以2x 为训练样本,123(8)1,(8)0,(8)2d d d =-==-,故112233(9)(8),(9)(8),(9)(8)w w w w w w ===由于第六、七、八次迭代中对312,,x x x 均以正确分类,故权向量的解为:1231021,0,2102w w w -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭,可得三个判别函数为:112231210222d x x d d x x =---==+-题6: 采用梯度法和准则函数2(,,)21()8t tw x b J w x b w x b x⎡⎤=---⎣⎦,式中实数b 〉0,试导出两类模式的分类算法。

解:)]sgn(*[*|]|)[(||||412b x w x x b x w b x w x w J tt t -----=∂∂ 其中:⎩⎨⎧≤-->-=-0,10,1)sgn(b x w b x w b x w tt t得迭代式:2(1)()[(())|()|]*[*sgn(())]4||||t t tC w k w k w k x b w k x b x x w k x b x +=+----- 200(1)()()t t t w x b w k w k C b w x x w x b x ⎧->⎪+=+-⎨-≤⎪⎩题7:用LMSE 算法求下列模式的解向量: ω1: {(0 0 0)T , (1 0 0)T , (1 0 1)T , (1 1 0)T }ω2: {(0 0 1)T , (0 1 1)T , (0 1 0)T , (1 1 1)T }解:写出模式的增广矩阵X :00011001101111010011011101011111X ⎛⎫⎪ ⎪ ⎪⎪⎪= ⎪--⎪--- ⎪ ⎪-- ⎪ ⎪----⎝⎭#11000110010111000110110111000100010111110100010111()()001011010011001011011111111101111111111101011111t tX X X X --⎛⎫⎪ ⎪⎪--⎛⎫⎛⎫⎪ ⎪ ⎪------ ⎪⎪ ⎪== ⎪ ⎪ ⎪--------⎪ ⎪ ⎪----------- ⎪⎝⎭⎝⎭⎪-- ⎪ ⎪----⎝⎭=121121212(2)11222224-⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭01110001000101110010110111111111-⎛⎫ ⎪--- ⎪⎪--- ⎪----⎝⎭ 200102011002141112-⎛⎫ ⎪- ⎪=⎪- ⎪---⎝⎭01110001000101110010110111111111-⎛⎫⎪--- ⎪⎪--- ⎪----⎝⎭1111111111111111111111111421001011--⎛⎫ ⎪------ ⎪=⎪------ ⎪--⎝⎭取(1)(11111111)t b 和1C第一次迭代:#(1)(1)(1110.5)t X w b(1)(1)(1)(0.50.50.50.50.50.50.50.5)t X e w b#(2)(1)(1)(1.5 1.51.50.75)t CX w w e(2)(1)[(1)(1)](12111211)t C b b e e第二次迭代:e w b(2)(2)(2)(0.250.250.250.250.250.250.250.25)tX#w w eCX(3)(2)(2)(1.75 1.75 1.750.875)tb b e e(3)(2)[(2)(2)](1 2.5111 2.511)tC第三次迭代:e w bX(3)(3)(3)(0.1250.1250.1250.1250.1250.1250.1250.125)t#w w eCX(4)(3)(3)(1.875 1.875 1.8750.9375)tCb b e e(4)(3)[(3)(3)](1 2.75111 2.7511)t第四次迭代:e w b(4)(4)(4)(0.06250.06250.06250.06250.06250.06250.06250.0625)tX#(5)(4)(4)(1.9375 1.9375 1.93750.9688)tw w eCXb b e e(5)(4)[(4)(4)](1 2.875111 2.87511)tC第五次迭代:e w b(5)(5)(5)(0.03130.03130.03130.03130.03130.03130.03130.0313)tX#w w eCX(6)(5)(5)(1.9688 1.9688 1.96880.9844)tb b e e(6)(5)[(5)(5)](1 2.9375111 2.937511)tC第六次迭代:e w bX(6)(6)(6)(0.01560.01560.01560.01560.01560.01560.01560.0156)t#w w eCX(7)(6)(6)(1.9844 1.9844 1.98440.9922)tb b e e(7)(6)[(6)(6)](1 2.9688111 2.968811)tC第七次迭代:e w bX(7)(7)(7)(0.00780.00780.00780.00780.00780.00780.00780.0078)t#w w eCX(8)(7)(7)(1.9922 1.9922 1.99220.9961)tCb b e e(8)(7)[(7)(7)](1 2.9844111 2.984411)t第八次迭代:e w b(8)(8)(8)(0.00390.00390.00390.00390.00390.00390.00390.0039)tX#(9)(8)(8)(1.9961 1.99611.99610.9980)t CX w w e(9)(8)[(8)(8)](1 2.9922111 2.992211)t C b b e e第九次迭代:(9)(9)(9)(0.00200.00200.00200.00200.00200.00200.00200.0020)tX e w b#(10)(9)(9)(1.9980 1.99801.99800.9990)t CX w w e(10)(9)[(9)(9)](1 2.9961111 2.996111)t C b b e e第十次迭代:3(10)(10)(10) 1.010(0.97660.97660.97660.980.980.980.980.98)tX e w b#(11)(10)(10)(1.9990 1.99901.99900.9995)t CX w w e(11)(10)[(10)(10)](1 2.9980111 2.998011)t C b b e e由于31.010e,可以认为此时权系数调整完毕,最终的权系数为:(2221)t w相应的判别函数为:1231()222d x x x x题8:用二次埃尔米特多项式的势函数算法求解以下模式的分类问题ω1: {(0 1)T , (0 -1)T } ω2: {(1 0)T , (-1 0)T }111201022212011222331201222441211021551211121226612112212()(,)()()1()(,)()()2()(,)()()42()(,)()()2()(,)()()4()(,)()()2(4x x x H x H x x x x H x H x x x x x H x H x x x x x H x H x x x x x H x H x x x x x x H x H x x x ϕϕϕϕϕϕϕϕϕϕϕϕ=========-=========2771221021288122112212299122122122)()(,)()()42()(,)()()2(42)()(,)()()(42)(42)x x x H x H x x x x x H x H x x x x x x H x H x x x ϕϕϕϕϕϕ-===-===-===--所以,势函数91(,)()()k iiki K x x x x ϕϕ==∑第一步:取1101X w ⎛⎫=∈ ⎪⎝⎭,故2222212211212()152040243264K X x x x x x x x =-+++-- 第二步:取2101X w ⎛⎫=∈⎪-⎝⎭,12()50K X =>,故21()()K X K X = 第三步:取3210X w ⎛⎫=∈ ⎪⎝⎭,23()90K X =>,故223232211()()(,)20162016K X K X K X X x x x x =-=+--第四步:取4210X w -⎛⎫=∈ ⎪⎝⎭,34()40K X =>,故222224342121212()()(,)152********K X K X K X X x x x x x x x =-=+---+ 第五步:取5101X w ⎛⎫=∈ ⎪⎝⎭,45()270K X =>,故54()()K X K X =第六步:取6101X w ⎛⎫=∈ ⎪-⎝⎭,56()130K X =-<,故2265612()()(,)3232K X K X K X X x x =+=-+ 第七步:取7210X w ⎛⎫=∈ ⎪⎝⎭,67()320K X =-<,故76()()K X K X =第八步:取8210X w -⎛⎫=∈⎪⎝⎭,78()320K X =-<,故 87()()K X K X =第九步:取9101X w ⎛⎫=∈ ⎪⎝⎭,89()320K X =>,故98()()K X K X =第十步:取10101X w ⎛⎫=∈ ⎪-⎝⎭,910()320K X =>,故109()()K X K X =从第七步到第十步的迭代过程中,全部模式都已正确分类,故算法已经收敛于判别函数:221012()()3232d X K X x x ==-+ 题9:用下列势函数2||||(,)k X X k K X X eα--=求解以下模式的分类问题ω1: {(0 1)T, (0 -1)T}ω2: {(1 0)T, (-1 0)T}选取1α=,在二维情况下,势函数为1222212(,)exp{||||}exp{[()()]}k k k k K X X X X x x x x =--=--+-以下为势函数迭代算法:第一步:取1101X w ⎛⎫=∈ ⎪⎝⎭,故22112()exp{(1)}K X x x =---第二步:取2101X w ⎛⎫=∈⎪-⎝⎭,12()exp{4}0K X =->,故21()()K X K X = 第三步:取3210X w ⎛⎫=∈ ⎪⎝⎭,23()exp{1}0K X =->,故22223231212()()(,)exp{(1)}exp{(1)}K X K X K X X x x x x =-=-------第四步:取4210X w -⎛⎫=∈ ⎪⎝⎭,34()exp{2}exp{4}0K X =--->,故222222434121212()()(,)exp{(1)}exp{(1)}exp{(1)}K X K X K X X x x x x x x =-=---------+-第五步:取5101X w ⎛⎫=∈ ⎪⎝⎭,45()1exp{2}exp{2}0K X =---->,故54()()K X K X =第六步:取6101X w ⎛⎫=∈⎪-⎝⎭,56()exp{4}exp{2}exp{2}0K X =-----<,故 2222656121222221212()()(,)exp{(1)}exp{(1)} exp{(1)}exp{(1)}K X K X K X X x x x x x x x x =+=--++---------+-第七步:取7210X w ⎛⎫=∈ ⎪⎝⎭,67()exp{2}exp{2}1exp{4}0K X =-+----<,故76()()K X K X =第八步:取8210X w -⎛⎫=∈⎪⎝⎭,78()exp{2}exp{2}exp{4}10K X =-+----<,故 87()()K X K X =第九步:取9101X w ⎛⎫=∈ ⎪⎝⎭,89()exp{4}1exp{2}exp{2}0K X =-+---->,故98()()K X K X =第十步:取10101X w ⎛⎫=∈⎪-⎝⎭,910()1exp{4}exp{2}exp{2}0K X =+----->,故 109()()K X K X =从第七步到第十步的迭代过程中,全部模式都已正确分类,故算法已经收敛于判别函数:222210121222221212()()exp{(1)}exp{(1)} exp{(1)}exp{(1)}d X K X x x x x x x x x ==--++---------+-。

相关文档
最新文档